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Supporting Texts 
 

Text S1. Template ranking and modeling method in LOMETS2 

For a given target, 220 templates are generated by 11 component threading programs, 

where the top 20 templates sorted in descending order of Z-scores are selected from each 

program. The Z-score of a template alignment is calculated by: 

𝑍 − 𝑠𝑐𝑜𝑟𝑒(𝑖, 𝑗) =
𝑆(𝑖, 𝑗) − ⟨𝑆(𝑗)⟩

𝜎(𝑗)
                                          (𝑆1) 

where 𝑆(𝑖, 𝑗) is the threading alignment score of the i-th template for the j-th server and ⟨S(j)⟩ 
and 𝜎(𝑗) are the average alignment score and standard deviation across all templates for the j-

th server, respectively. 

The top 10 templates are selected from the 220 templates based on the following scoring 

function:  

𝑠𝑐𝑜𝑟𝑒(𝑖, 𝑗) = 𝑐𝑜𝑛𝑓(𝑗) ∗
𝑍 − 𝑠𝑐𝑜𝑟𝑒(𝑖, 𝑗)

𝑍0(𝑗)
+ 𝑠𝑒𝑞𝑖𝑑(𝑖, 𝑗)                                       (S2) 

where 𝑠𝑒𝑞𝑖𝑑(𝑖, 𝑗) is the sequence identity to query of the i-th template for the j-th server. 

Furthermore, 𝑐𝑜𝑛𝑓(𝑗) is the confidence of the j-th server, which is equal to the average TM-

score to the native structure for the first template calculated from a training set of 243 non-

redundant proteins. 𝑍0(𝑗) is the Z-score cut-off for defining good/bad templates for the j-th 

server, which was decided by maximizing the Matthews correlation coefficient (MCC) for 

distinguishing a good template (with a TM-score ≥0.5) from a bad template (TM-score <0.5) 

on the same training set. As a result, the parameters 𝑍0(𝑗) (and 𝑐𝑜𝑛𝑓(𝑗)) are 5.6 (0.617), 83.0 

(0.589), 6.9 (0.587),  33.0 (0.574), 8.7 (0.570), 6.1 (0.569), 10.0 (0.567), 7.0 (0.566), 7.6 

(0.562), 3.2 (0.558), and 21.0 (0.536) for CEthreader, HHpred, SparksX, FFAS3D, Neff-

MUSTER, MUSTER, HHsearch, SP3, PPAS, PROSPECT2, and PRC, respectively. 

The five full-length models are constructed by MODELLER (1) based on the top 5 

templates identified by LOMETS2. For each model, spatial restraints are collected from a set 

of similar templates, which have a close structural similarity (with a TM-score >0.5) to the 

target template, to assist the MODELLER structure modeling. 

  

Text S2. The normalized number of effective sequences (Neff) in an MSA 

The depth of a multiple sequence alignment (MSA) can be measured by the normalized 

number of effective sequences (Neff): 

𝑁𝑒𝑓𝑓 =
1

√𝐿
∑

1

1 + ∑ 𝐼[𝑆𝑚,𝑛 ≥ 0.8]𝑁
𝑚=1,𝑚≠𝑛

𝑁

𝑛=1
                                           (𝑆3) 

where L is the length of a query protein, N is the number of sequences in the MSA, 𝑆𝑚,𝑛 is the 

sequence identity between the m-th and n-th sequences. 𝐼[𝑆𝑚,𝑛 ≥ 0.8] is equal to 1 if 𝑆𝑚,𝑛 ≥
0.8, or zero otherwise. Therefore, Neff is essentially equal to the number of non-redundant 

sequences (sequence identity<0.8) in the MSA normalized by the query length. 

 

Text S3. ResPRE for contact-map prediction 

ResPRE (https://zhanglab.ccmb.med.umich.edu/ResPRE/) is a newly developed method 

for contact-map prediction (2), which consists of two consecutive steps of precision matrix-

based feature generation and deep residual neural network-based contact inference. 

Precision matrix-based feature generation. Given an MSA with N sequences and L 

positions, the frequencies of observing residue type a at position i is denoted as 𝑓𝑖(𝑎), and the 

https://zhanglab.ccmb.med.umich.edu/ResPRE/


co-occurrence of the two residue types a and b at positions i and j is denoted as 𝑓𝑖,𝑗(𝑎, 𝑏). These 

can be estimated by 

{
 
 

 
 𝑓𝑖(𝑎) =

1

𝜆 + ∑ 1/𝑚𝑛 
𝑁
𝑛=1

[
𝜆

𝑞
+ ∑

1

𝑚𝑛
𝛿𝑎,𝑎𝑖

𝑛

𝑁

𝑛=1

] 

𝑓𝑖,𝑗(𝑎, 𝑏) =
1

𝜆 + ∑ 1/𝑚𝑛 
𝑁
𝑛=1

[
𝜆

𝑞2
+ ∑

1

𝑚𝑛
𝛿𝑎,𝑎𝑖

𝑛 , 𝛿𝑏,𝑎𝑗
𝑛

𝑁

𝑛=1

]

                         (𝑆4) 

where 𝛿𝑎,𝑏𝑛 = 1 if a and b are identical for the n-th sequence, or =0 otherwise; 𝜆 = 1 is the 

pseudocount to approximate the background observation; 1/𝑚𝑛 is used to reweight the n-th 

sequence, where 𝑚𝑛 is the number of sequences in the MSA that have a sequence identity >80% 

to the n-th sequence; 𝑞 is the number of possible residue types at one position and is set to 21 

(i.e., 20 naturally-occurring residue types plus gap). 

By extending each position of the MSA into a 21-dimensional vector using one-hot 

encoding, a 21×L by 21×L covariance matrix S can be computed by 

𝑆𝑖,𝑗
𝑎,𝑏 = 𝑓𝑖,𝑗(𝑎, 𝑏) − 𝑓𝑖(𝑎)𝑓𝑗(𝑏)                                                   (𝑆5) 

where all the parameters for marginal correlation between residue pair i and j is represented by 

a 21×21 submatrix 𝑆𝑖,𝑗 . From this covariance matrix, we can further obtain the inverse 

covariance matrix 𝛩 (i.e., precision matrix) by minimizing the following objective function: 

∑𝑆𝑖,𝑖 ∙ Θ𝑖,𝑖

𝐿

𝑖=1

− log(det(Θ)) + 𝜌 ∑∑‖Θ𝑖,𝑗‖2

2
𝐿

𝑗=𝑖

𝐿

𝑖=1

                                  (𝑆6) 

Here, the first term is the trace of 𝑆 ∙ Θ, the second term is the negative log determinant, 

and the last term is the L2 norm. The estimated precision matrix Θ̂ that minimizes Eq. (S6) is 

therefore the inverse matrix of S under L2 regularization. 

The precision matrix can be further split into 𝐿 × 𝐿 blocks, where each block represents a 

21×21 matrix that indicates the direct coupling correlations for 21×21 residue type pairs at the 

corresponding position pair. The 441(=21×21) dimensional descriptors from the corresponding 

block will be utilized as the features and will be directly fed into the following deep neural 

network, without further pre-processing.  

Deep residual neural network architecture. A protein contact-map can be treated as a two-

dimensional image, where each pixel is one pair of residues. The contact prediction problem 

can thus be formulated as an image segmentation problem, i.e., a pixel-wise labeling problem, 

in computer vision. This makes the contact prediction problem naturally suitable for deep 

Convolutional Neural Networks (CNN), especially the recently proposed Residual Neural 

Network architecture. 

In ResPRE, the fully residual networks (FRNs) for contact-map prediction take the 

L×L×441 precision matrix as input, where 441 is the number of input feature channels, to 

predict the L×L contact-map. The first layer employs a 1×1 convolutional kernel to reduce the 

feature dimension from 441 to 64. The reduced feature map output by this convolutional layer 

is then sequentially fed into 22 residual blocks where the kernel sizes are 3 × 3, the padding 

size is 1, and the activation function is ReLU. Finally, a convolutional layer with a 3 × 3 kernel 

size is used to obtain the final contact-map prediction with a sigmoid activation function. 

 

Text S4. CEthreader for contact-map guided fold-recognition 

CEthreader (https://zhanglab.ccmb.med.umich.edu/CEthreader/) is a fold-recognition 

algorithm to identify similar-fold structures from the PDB under the guidance of predicted 

contact-maps. The core part of the algorithm consists of contact-map prediction, eigen-

decomposition of the contact matrix, and contact-guided template search and selection.  

https://zhanglab.ccmb.med.umich.edu/CEthreader/


Contact-map prediction and the selection of contacts. The contact-map of a query 

sequence (with C distance <8 Å) is predicted using the ResPRE method (2) by coupling 

evolutionary precision matrices with deep residual neural networks (see Text S3 for a detailed 

description). The top 𝑁 = ∑ 𝜎𝑐𝑟𝐿𝑐𝑟∈{𝑙𝑜𝑛𝑔,𝑚𝑒𝑑𝑖𝑢𝑚,𝑠ℎ𝑜𝑟𝑡}  predicted residue pairs, ranked by their 

confidence scores, are selected to form the final contact-map of the query, where 𝑐𝑟 refers to 

the long-, medium- and short-range contacts with sequence separation |𝑖 − 𝑗| ≥ 24 , 23 ≥
|𝑖 − 𝑗| ≥ 12 , and |𝑖 − 𝑗| ≤ 11 , respectively. The parameters 𝜎𝑐𝑟  were determined by 

maximizing the TM-score of CEthreader on a set of 905 training protein-pairs.  

Eigen-decomposition of contact-maps. The contact-map can be represented by an L×L 

symmetric binary matrix, 𝑀, in which residue pairs that form contacts are designated as 1 and 

non-contacting pairs are set to 0. Based on the eigen-decomposition theory, we can infer that 

𝑀 = ∑ 𝜆𝑘𝑉𝑘
⃗⃗⃗⃗ ∗

𝐿

𝑘=1

𝑉𝑘
⃗⃗⃗⃗ 

𝑇
                                                            (𝑆7) 

where 𝜆𝑘  represents the k-th eigenvalue of M, and 𝑉𝑘
⃗⃗⃗⃗ = (𝑣1,𝑘, 𝑣2,𝑘, ⋯ , 𝑣𝐿,𝑘)

𝑇
 is the 

corresponding eigenvector. Since the contribution of each eigenvector depends on the absolute 

magnitude of the eigenvalue in Eq. (S7), the contact-map can be approximated by considering 

only the largest K positive eigenvalues and associated eigenvectors:  

𝑀 ≈ ∑ 𝜆𝑘𝑉𝑘
⃗⃗⃗⃗ ∗ 𝑉𝑘

⃗⃗⃗⃗ 
𝑇

𝐾

𝑘=1

                                                           (𝑆8) 

Here, we do not consider the negative eigenvalues because it introduces complex numbers to 

the following computation. 

Based on Eq. (S8), any pair of contacts between residues i and j can be written as 

𝑀𝑖,𝑗 ≈ (√𝜆1𝑣𝑖,1, √𝜆2𝑣𝑖,2, … , √𝜆𝐾𝑣𝑖,𝐾) ∗ (√𝜆1𝑣𝑗,1, √𝜆2𝑣𝑗,2, … , √𝜆𝐾𝑣𝑗,𝐾)
𝑇
          (𝑆9) 

In this way, the contact profiles for the i- and j-th residues are described by the vectors  

{
𝑈𝑖
⃗⃗  ⃗ = (√𝜆1𝑣𝑖,1, √𝜆2𝑣𝑖,2, … , √𝜆𝑘𝑣𝑖,𝐾)

𝑈𝑗
⃗⃗  ⃗ = (√𝜆1𝑣𝑗,1, √𝜆2𝑣𝑗,2, … , √𝜆𝑘𝑣𝑗,𝐾)

                                       (𝑆10) 

This representation of contact-maps using single-body profiles allows the integration of the 

contact-map into dynamic program alignment for fold recognition. 

Contact-guided fold recognition. The fold-recognition in CEthreader is performed by 

threading the query sequence through a non-redundant structure set collected from the PDB 

library. The contact-guided alignment score for aligning the i-th residue of the query to the j-

th residue of the template protein is represented by 

𝑆𝑐𝑚+𝑠𝑠+𝑝𝑟𝑜𝑓(𝑖, 𝑗) = 𝑤1 ∗ 𝑆𝑐𝑚(𝑖, 𝑗) + 𝑤2 ∗ 𝑆𝑝𝑟𝑜𝑓(𝑖, 𝑗) + 𝑤3 ∗ 𝑆𝑠𝑠(𝑖, 𝑗) + 𝑤4    (𝑆11) 

Here, the first term accounts for the contact-map match between the query and template by: 

𝑆𝑐𝑚(𝑖, 𝑗) = {

𝑈𝑖
⃗⃗  ⃗ ⋅ 𝑃𝑗⃗⃗ 

max (|𝑈𝑖
⃗⃗  ⃗|, |𝑃𝑗⃗⃗ |)2

        if |𝑈𝑖
⃗⃗  ⃗| ≠ 0⃗  𝑎𝑛𝑑 |𝑃𝑗⃗⃗ | ≠ 0⃗ 

0                                      if |𝑈𝑖
⃗⃗  ⃗| = |𝑃𝑗⃗⃗ | = 0⃗ 

               (𝑆12) 

where 𝑈𝑖
⃗⃗  ⃗ and 𝑃𝑗⃗⃗  are the contact eigenvectors for the i-th residue of the query and the j-th residue 

of the template as defined in Eq. (S10). The second and third terms, 𝑆𝑝𝑟𝑜𝑓(𝑖, 𝑗) and 𝑆𝑠𝑠(𝑖, 𝑗), 

account for the sequence profile-to-profile and secondary structure alignment scores between 

the i-th residue of the query and the j-th residue of the template. The weighting parameters are 

determined by maximizing the TM-score of the 905 training protein-pairs described above.  

The Needleman-Wunsch dynamic programming algorithm is used to align two protein 

sequences, where an affine penalty scheme is utilized for an l residue gap where 𝐺 = 𝑔𝑜 + 𝑔𝑒𝑙. 
𝑔𝑜 and 𝑔𝑒 were determined using the 905 training protein pairs.  



 

 

Text S5. Summary of the 11 component threading methods used in LOMETS2 

The LOMETS2 server integrates predictions from 11 programs that represent a diverse set 

of state-of-the-art threading algorithms, including CEthreader, HHsearch (3), HHpred (4), 

SparksX (5), FFAS3D (6), Neff-MUSTER, MUSTER (7), SP3 (8), PPAS (9), PROSPECT2 

(10), and PRC (11). All the programs are installed and run on our local supercomputer cluster 

and the template libraries are updated every week. Currently, the template library contains 

74,336 domains/chains with a pairwise sequence identity <70%. For a protein chain that 

consists of multiple domains, both the whole chain and individual domain structures are 

included in the library. Below we give an overview of the threading programs that are used by 

the LOMETS2 server. 

CEthreader is an in-house contact-based threading method. A detailed introduction of the 

algorithm is given in Text S4. 

HHsearch (3) is based on profile hidden Markov models (HMMs), an extension of 

sequence profiles which also contain information on position-specific probabilities of amino 

acid matches, insertions, and deletions as well as the frequencies of emitting different amino 

acid types. By default, HHsearch builds an MSA for a query sequence using the HHblits (12) 

program from the HH-Suite package. From this alignment, a profile HMM is calculated. 

HHsearch searches the profile HMM for a query through a pre-built template database of 

profile HMMs, and outputs a ranked list of templates based on threading probability score as 

well as pairwise query-template alignments.  

HHpred (4) is an extension of HHsearch. Starting from the template list generated by 

HHsearch, the templates are selected and re-ranked as follows: the first template is selected by 

a neural network, which uses 4 features to predict the template TM-score. Next, for each 

template in the template list, a score, which rewards homology quality and alignment quality, 

is calculated. The template with the highest score is iteratively added until no template has a 

positive score. Additionally, HHpred allows users to build a homology model using 

MODELLER (1) based on distance restraints collected from templates which follow multi-

component Gaussian mixture distributions.  

SP3 (8) detects templates by dynamic programming, where the alignment score contains 

structural fragment-derived sequence profiles, evolution-derived sequence profiles and 

secondary structure information.  

SparksX (5) is an extension of the SP3 program, which calculates the alignment scores 

based on the estimated probability of a match between predicted and actual single-body 

structural properties, and incorporates the prediction of secondary structure, backbone torsional 

angles and solvent accessible surface area.  

FFAS3D (6) implements local dynamic programming to perform profile-profile 

comparison based on structural features including sequence profiles, secondary structure, 

solvent accessibility, and residue depth. A template re-ranking strategy is proposed based on a 

neural network. 

MUSTER (7) and Neff-MUSTER are two in-house programs built on Needleman-Wunsch 

dynamic programming. The alignment score contains terms from sequence profiles, secondary 

structures, structure fragment profiles, solvent accessibility, dihedral torsional angles, and 

hydrophobic scoring matrices. The major difference between MUSTER and Neff-MUSTER is 

that MUSTER uses fixed weights to combine the different terms but the weights in Neff-

MUSTER are dynamically determined, in particular the weight for the sequence profile, by the 

effective number of sequences (Neff) in the MSA.  



PPAS (9) is another in-house threading program based on profile-profile alignments in 

conjunction with secondary structure matches, where alignments are generated by a global 

dynamic programming algorithm. 

PROSPECT2 (10) uses a scoring function that includes residue mutations, secondary 

structure propensity, solvent accessibility, and a generic pairwise contact potential. A divide-

and-conquer searching approach is exploited to generate the global optimization of alignments. 

PRC (11) is based on profile HMM–HMM alignments, which are computed by finding the 

Viterbi path that maximizes the sum of the forward–backward odds scores. The profile HMMs 

are generated by SAM-T2k (13). 

  



Supporting Tables 
 

Table S1. Comparison between the TM-scores for the first templates identified by different 

threading programs for the 614 test proteins using default profiles versus those using deep 

profiles built by the DeepMSA program (marked by ‘D’). P-values are calculated between the 

TM-scores for the default and deep profile-based methods using one-sided Student’s t-tests. 

Coverage is equal to the number of aligned residues divided by the length of the query sequence. 

Nst is the number of targets with a TM-score >0.5.  

 

Type Methods TM-score p-value RMSD (Å) Coverage Nst 

All 

(614) 

LOMETS2 0.6076 - 6.3127 0.8818 457 

LOMETS2 (D) 0.6210 5.99E-08 6.3294 0.9057 478 

CEthreader 0.6010 - 6.6685 0.8957 448 

CEthreader (D) 0.6125 9.14E-08 6.3423 0.8977 467 

HHpred 0.5760 - 6.8778 0.8416 418 

HHpred (D) 0.5892 1.47E-05 6.5800 0.8463 429 

SparksX  0.5712 - 7.3927 0.8842 409 

SparksX (D) 0.5867 1.15E-06 7.1062 0.8864 429 

FFAS3D 0.5683 - 6.9449 0.8498 407 

FFAS3D (D) 0.5740 1.80E-01 6.8767 0.8574 413 

Neff-MUSTER 0.5566 - 7.8963 0.8956 397 

Neff-MUSTER (D) 0.5700 2.15E-08 7.4410 0.8926 414 

MUSTER 0.5532 - 7.9918 0.8929 383 

MUSTER (D) 0.5693 7.34E-10 7.6111 0.8853 408 

HHsearch 0.5579 - 6.8497 0.8084 404 

HHsearch (D) 0.5674 6.72E-06 6.6798 0.8160 414 

SP3 0.5164 - 9.5843 0.8918 346 

SP3 (D) 0.5656 1.49E-15 7.8658 0.8690 408 

PPAS 0.5408 - 8.3076 0.8707 381 

PPAS (D) 0.5618 4.33E-11 7.8848 0.8712 406 

PROSPECT2 0.5348 - 9.4497 0.9161 368 

PROSPECT2 (D) 0.5584 1.01E-12 8.5037 0.9074 395 

PRC 0.5005 - 7.2205 0.7530 352 

PRC (D) 0.5385 1.10E-20 6.0480 0.7626 384 

Easy 

(403) 

LOMETS2 0.7018 - 4.5344 0.9057 380 

LOMETS2 (D) 0.7055 4.32E-03 4.5332 0.9074 384 

CEthreader 0.6895 - 4.8330 0.9127 371 

CEthreader (D) 0.6977 1.03E-05 4.7727 0.9173 380 

HHpred 0.6963 - 4.6177 0.8967 375 

HHpred (D) 0.7018 3.70E-03 4.5753 0.9033 379 

SparksX 0.6920 - 4.7451 0.9023 370 

SparksX (D) 0.6959 1.60E-03 4.8226 0.9096 375 

FFAS3D 0.6840 - 4.4767 0.8857 373 

FFAS3D (D) 0.6810 9.04E-01 4.4807 0.8896 371 

Neff-MUSTER 0.6828 - 4.7875 0.9012 366 

Neff-MUSTER (D) 0.6886 2.10E-07 4.7537 0.9040 370 

MUSTER 0.6800 - 5.0450 0.9039 358 

MUSTER (D) 0.6869 4.04E-09 4.8593 0.9035 367 

HHsearch 0.6880 - 4.5878 0.8946 372 

HHsearch (D) 0.6882 1.84E-02 4.8170 0.8966 369 



SP3  0.6443 - 6.2238 0.9061 331 

SP3 (D) 0.6879 3.09E-09 5.1743 0.9091 368 

PPAS 0.6691 - 5.0719 0.8914 358 

PPAS (D) 0.6786 4.52E-08 4.8243 0.8923 363 

PROSPECT2 0.6663 - 5.9436 0.9175 347 

PROSPECT2 (D) 0.6821 2.35E-13 5.5249 0.9140 365 

PRC 0.6456 - 5.0052 0.8550 339 

PRC (D) 0.6678 7.55E-10 4.3943 0.8608 355 

Hard 

(211) 

LOMETS2 0.4277 - 9.7090 0.8360 77 

LOMETS2 (D) 0.4595 1.24E-06 9.7602 0.8836 94 

CEthreader 0.4319 - 10.1742 0.8633 77 

CEthreader (D) 0.4497 1.08E-03 9.3401 0.8604 87 

HHpred 0.3463 - 11.1946 0.7364 43 

HHpred (D) 0.3740 3.00E-04 10.4089 0.7374 50 

SparksX 0.3405 - 12.4496 0.8498 39 

SparksX (D) 0.3780 4.73E-05 11.4678 0.8419 54 

FFAS3D 0.3472 - 11.6590 0.7813 34 

FFAS3D (D) 0.3696 1.60E-03 11.4530 0.7960 42 

Neff-MUSTER 0.3156 - 13.8339 0.8849 31 

Neff-MUSTER (D) 0.3434 2.00E-03 12.5737 0.8708 44 

MUSTER 0.3110 - 13.6201 0.8718 25 

MUSTER (D) 0.3447 7.00E-04 12.8668 0.8506 41 

HHsearch 0.3095 - 11.1698 0.6438 32 

HHsearch (D) 0.3366 1.76E-05 10.2377 0.6619 45 

SP3 0.2721 - 16.0026 0.8646 15 

SP3 (D) 0.3320 2.54E-08 13.0066 0.7926 40 

PPAS 0.2956 - 14.4876 0.8311 23 

PPAS (D) 0.3387 1.05E-05 13.7302 0.8309 43 

PROSPECT2 0.2835 - 16.1461 0.9133 21 

PROSPECT2 (D) 0.3220 1.00E-03 14.1930 0.8948 30 

PRC 0.2234 - 11.4515 0.5581 13 

PRC (D) 0.2916 1.27E-13 9.2065 0.5749 29 

 

  



Table S2. Comparison between the full-length models generated by LOMETS2 and its 

component threading programs for the 614 test proteins. P-values are calculated between the 

TM-scores of the LOMETS2 models and its component threading programs using one-sided 

Student’s t-tests. Nst is the number of targets with a TM-score >0.5.  

 

Type Methods TM-score p-value RMSD (Å) Nst 

All 

(614) 

LOMETS2 0.6753 - 7.2050 523 

CEthreader 0.6391 2.94E-61 8.4379 496 

HHpred 0.6151 1.13E-77 9.8186 452 

SparksX 0.6057 1.12E-84 9.1840 442 

FFAS3D 0.5964 2.61E-87 10.2415 434 

HHsearch 0.5946 1.55E-82 11.1002 432 

MUSTER 0.5893 8.51E-86 9.9167 423 

Neff-MUSTER 0.5882 1.03E-87 9.8094 425 

SP3 0.5843 2.01E-89 10.4776 421 

PPAS 0.5836 1.74E-85 10.2869 422 

PROSPECT2 0.5763 3.32E-84 9.5524 404 

PRC 0.5707 1.11E-91 13.0354 404 

Easy 

(403) 

LOMETS2 0.7587 - 5.4001 398 

CEthreader 0.7218 3.64E-45 6.4460 386 

HHpred 0.7242 5.43E-52 6.4432 384 

SparksX 0.7157 8.80E-55 6.4732 383 

FFAS3D 0.7025 3.89E-60 7.3228 380 

HHsearch 0.7109 2.49E-54 6.9233 375 

MUSTER 0.7061 2.90E-54 6.9357 373 

Neff-MUSTER 0.7078 2.14E-55 6.8481 379 

SP3 0.7059 7.41E-57 6.9997 375 

PPAS 0.7002 2.78E-56 7.1106 373 

PROSPECT2 0.6987 5.12E-51 6.6738 366 

PRC 0.6966 2.52E-58 7.8082 363 

Hard 

(211) 

LOMETS2 0.5160 - 10.6521 125 

CEthreader 0.4811 1.10E-17 12.2422 110 

HHpred 0.4068 1.18E-31 16.2655 68 

SparksX 0.3957 4.18E-32 14.3614 59 

FFAS3D 0.3938 4.55E-31 15.8162 54 

HHsearch 0.3725 3.14E-31 19.0780 57 

MUSTER 0.3664 7.77E-34 15.6101 50 

Neff-MUSTER 0.3596 6.98E-34 15.4654 46 

SP3 0.3522 1.39E-34 17.1201 46 

PPAS 0.3608 1.91E-32 16.3534 49 

PROSPECT2 0.3425 3.76E-34 15.0504 38 

PRC 0.3301 8.76E-35 23.0192 41 

  



Table S3. Model quality comparison between LOMETS2 and its component threading 

programs for 121 CASP13 domains. P-values are calculated between the TM-scores of the 

LOMETS2 models and its component threading programs using one-sided Student’s t-tests. 

 

Methods TM-score p-value RMSD (Å) 

LOMETS2 0.638 - 6.41 

CEthreader 0.600 1.36E-08 6.73 

HHpred 0.571 3.21E-06 14.95 

SparksX 0.570 5.77E-07 10.49 

FFAS3D 0.562 5.31E-08 10.84 

HHsearch 0.561 3.57E-08 15.23 

MUSTER 0.559 2.03E-08 10.94 

SP3 0.555 5.21E-09 10.81 

Neff-MUSTER 0.553 1.58E-08 11.21 

PPAS 0.551 4.29E-09 11.81 

PRC 0.548 6.32E-10 18.72 

PROSPECT2 0.540 1.06E-10 10.65 

 
 

  



Supporting Figures 
 

 
Figure S1. Flowchart of the DeepMSA algorithm, showing the three stages of MSA generation 

using sequences from HHblits search against Uniclust30 (first column in yellow), Jackhmmer 

search through UniRef (second column in green) and HMMsearch through Metaclust (third 

column in cyan). 

 

  



 
 

Figure S2. Comparison between the number of homologous sequences detected by our deep 

MSA generation program and the default programs that were used in the previous iteration of 

LOMETS. (A) Number of sequences in the deep MSAs and HHblits MSAs; (B) Number of 

effective sequences (Neff) in the deep MSAs and HHblits MSAs; (C) Number of sequences in 

the deep MSAs and PSI-BLAST MSAs; (D) Neff for the deep MSAs and PSI-BLAST MSAs. 

The black dashed-dotted line represents the diagonal line (i.e. 𝑦 = 𝑥). The red numbers are the 

number of points above or below the diagonal line. 

 

  



 
 

Figure S3. Comparison between the LOMETS2 modeling results and the top ten servers in 

CASP13 based on average TM-scores of the first models for the 121 released CASP13 domains. 

‘Zhang-Server’ (blue) and ‘QUARK’ (blue) used ‘LOMETS2’ (red) as their template 

identification component in CASP13. Note that the CEthreader server also participated in 

CASP13 but it did not use the DeepMSA method to generate deep profiles and predict 

secondary structures at that time. Therefore, it had a moderate average TM-score of 0.566. 

When we re-ran the program with the deep MSAs, the average TM-score of CEthreader 

increased from 0.566 to 0.600 (see Table S3), which put it at the #6 position in the list. 

However, the difference between LOMETS2 and CEthreader for these domains is similar to 

the difference for the in-house benchmark test results (Table S2), showing the consistent 

improvement of LOMETS2 over its component programs. 

 

  



 

 
 

Figure S4. TM-score comparison between the first models generated by LOMETS2, 

CEthreader and RaptorX-TBM for the 121 released CASP13 domains. The RaptorX-TBM 

models were downloaded from the CASP13 webpage, and LOMETS2 and CEthreader were 

re-run with DeepMSA profiles after CASP13, but all templates generated after May 2018 were 

excluded. (A) LOMETS2 vs. CEthreader; (B) CEthreader vs. RaptorX-TBM; (C) LOMETS2 

vs. RaptorX-TBM. The numbers in different sections indicate the number of proteins above or 

below the diagonal line.  

 

  



 
Figure S5. The actual response time versus protein size for the 1,433 jobs processed by the 

LOMETS2 server recently. In cases where many jobs are accumulated in the queue, it will take 

a longer time for the job to finish due to increased queue waiting times. The red line is fit to 

the targets with the quickest response time, which should correspond to the actual running time 

of the LOMETS2 programs when the job queue is clear. 
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