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Supporting Figures 
 

 
Figure S1. Flowchart of the deep multiple sequence alignment (MSA) construction method, DeepMSA, 
including three stages of MSA generation based on sequences from HHblits search against Uniclust30 (first 
column), Jackhmmer search through UniRef (second column) and HMMsearch through Metaclust (third 
column). 



 
Figure S2. Illustration of the fast algorithm for calculating the FUscore for discontinuous two-domain 
proteins. There are two domain boundaries for discontinuous two-domain proteins: the first domain is 
[(1,𝑚𝑚), (𝑛𝑛 + 1, 𝐿𝐿)] and the second domain is [𝑚𝑚 + 1,𝑛𝑛], where L is the length of the protein. 
 



 
Figure S3. The differences between the distributions of FUscore for multi- and single-domain proteins in 
the training dataset. (A) The distributions of FUscore2c for continuous multi- and single-domain proteins in 
the training dataset. (B) The distributions of FUscore2d for discontinuous multi- and single-domain proteins 
in the training dataset. 
 
  



 
Figure S4. Case illustration for two special domain patterns, “D1-1, D2, D1-2, D3, D1-3” and “D1-1, D2-
1, D1-2, D2-2”. (A) Iterative domain boundary detection of FUpred for pattern “D1-1, D2, D1-2, D3, D1-
3”. (B) Iterative domain boundary detection of FUpred for pattern “D1-1, D2-1, D1-2, D2-2”.  
  



 
Figure S5. Optimization of the parameter α, which determines the top αL contact pairs used to form the 
final contact map for an input sequence, where L refers to length of the query protein. 
 
 
  



 
Figure S6. Optimization of parameters Cutoff2c and Cutoff2d, which are used to distinguish between 
continuous multi- and single-domain proteins, as well as discontinuous multi- and single-domain proteins, 
respectively. The heat map value corresponds to the MCC. 
 
 
 
 
  



 
Figure S7. Case Study of domain boundary prediction for the (A) Cpn60 chaperonin (PDB ID: 1we3F), 
(B) archaeal intein-encoded homing endonuclease PI-PfuI (PDB ID: 1dq3A), (C) Beta-glucosidase from 
Kluyveromyces marxianus (PDB ID: 3ac0A), and (D) Breast Cancer type 2 susceptibility protein (PDB ID: 
1miuA). The left panels show the native (grey) and ResPRE-predicted (red) contact maps for the target 
proteins, where cyan lines indicate the domain boundaries for the native structures. The middle panels give 
the experimental structures for each protein. The right panels show the iterative recursion procedure for 
domain boundary detection used by FUpred. Different domains are marked by distinct colors.  
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Table S1. Summary of domain boundary prediction for 38 three-domain proteins, where the total length of 
the two adjacent domains is less than the length of the third one. The values in parentheses are p-values 
between the results of FUpred and the other control methods calculated using pairwise two-sided Student’s 
t-tests. FUpreds (FUpredb) forces the algorithm to search for the domain split point between the two adjacent 
small domains (or between the adjacent small domain and large domain) in the first iteration round, where 
the split point is located where the local minimum FUscore occurs around the SCOPe2.07 domain boundary 
definition (±20 residues). 
 

Methods NDO DBD 
FUpred 0.937 0.748 
FUpreds 0.937 (0.88) 0.756 (0.89) 
FUpredb 0.939 (0.94) 0.729 (0.41) 

 
 
Table S2. Information for the discontinuous multi-domain patterns present in the SCOPe2.07 database.  
 
Pattern Number of 

patterns 
Percent in all 
discontinuous 
patterns 

Percent in 
SCOPe2.07 
database 

Can be solved  
by FUpred 

ABA 2137 65.37% 0.7736% Yes 
ABAC 466 14.26% 0.1687% Yes 
ABCBA 201 6.15% 0.0728% Yes 
ABCB 162 4.96% 0.0586% Yes 
ABACDCA 70 2.14% 0.0253% Yes 
ABAB 61 1.87% 0.0221% No 
ABCDC 25 0.76% 0.0091% Yes 
ABCBDE 24 0.73% 0.0087% Yes 
ABCBD 21 0.64% 0.0076% Yes 
ABCA 18 0.55% 0.0065% Yes 
ABACD 17 0.52% 0.0062% Yes 
ABACDEF 12 0.37% 0.0043% Yes 
ABCDCAEFGHGE 9 0.28% 0.0033% Yes 
ABACAD 8 0.24% 0.0029% Yes 
ABCADE 8 0.24% 0.0029% Yes 
ABCDEFEG 6 0.18% 0.0022% Yes 
ABCDEB 5 0.15% 0.0018% Yes 
ABCBC 4 0.12% 0.0014% No 
ABCDCE 4 0.12% 0.0014% Yes 
ABACDE 3 0.09% 0.0011% Yes 
ABCDEBF 3 0.09% 0.0011% Yes 
ABCBDEF 1 0.03% 0.0004% Yes 
ABCDA 1 0.03% 0.0004% Yes 
ABCDEDFGH 1 0.03% 0.0004% Yes 
ABCDEFGHIFJKLKMN 1 0.03% 0.0004% Yes 
ABCDEFGHIFJKLKMNO 1 0.03% 0.0004% Yes 

Each identical character indicates one domain. The same character in a pattern means the separated fragments of discontinuous 
domains. For example, “ABA” means a protein with two domains where domain A is a discontinuous domain with two separated 
fragments.  
 



 
Table S3. Single- and multi-domain classification results on 491 test proteins which are non-redundant to 
the training datasets of ResPRE, ThreaDomEx and ConDo. ‘Pre’, ‘Rec’, ‘ACC’ and ‘MCC’ are the 
precision, recall, accuracy and Matthew’s correlation coefficient, respectively, as defined by Eq. (5). Bold 
values indicate the best performer in each category. 
 

Methods Multi Single All 
Pre Rec Pre Rec ACC MCC 

FUpred 0.770 0.882 0.952 0.899 0.894 0.751 
ThreaDomEx 0.681 0.912 0.961 0.837 0.857 0.693 
ConDo 0.704 0.699 0.885 0.887 0.835 0.587 
DOMpro 0.564 0.647 0.857 0.808 0.764 0.438 
DoBo 0.395 0.971 0.975 0.431 0.580 0.385 

 
Table S4. Summary of domain boundary prediction results for the 136 multi-domain proteins which are 
non-redundant to the training datasets of ResPRE, ThreaDomEx and ConDo. The values in parentheses are 
p-values between the FUpred results and the other control methods results calculated using one-sided 
Student’s t-tests. Bold values indicate the best performer in each category. 
 

Methods NDO DBD 
FUpred 0.747 0.430 
ThreaDomEx 0.689 (2.26E-03) 0.332 (2.89E-03) 
ConDo 0.687 (1.15E-03) 0.266 (7.76E-06) 
DOMpro 0.594 (4.92E-11) 0.110 (4.08E-14) 
DoBo 0.544 (5.92E-14) 0.169 (1.47E-11) 

  



Table S5. Performance of different methods for both continuous and discontinuous multi-domain proteins. 
One-sided Student’s t-tests were adopted here. 
 

Target Method NDO p-value DBD p-value 

Continuous 
domain 
(716) 

FUpred 0.791 * 0.494 * 
ThreaDomEX 0.776 2.33E-02 0.480 1.94E-01 

ConDo 0.765 4.81E-04 0.388 7.85E-09 
DOMpro 0.600 3.14E-54 0.094 1.64E-66 

DoBo 0.596 2.18E-52 0.211 1.78E-45 

Discontinuous 
Domain 

(133) 

FUpred 0.788 * 0.521 * 
ThreaDomEX 0.672 2.22E-08 0.421 2.29E-03 

ConDo 0.620 2.05E-11 0.312 9.38E-09 
DOMpro 0.500 2.31E-19 0.052 1.86E-19 

DoBo 0.417 2.00E-21 0.171 2.93E-15 
 
Table S6. The best template quality comparison for ThreaDomEx for different data groups. One-sided 
Student’s t-tests were adopted here. 
 

Measures NDO>=0.4 NDO<0.4 p-value DBD>=0.25 DBD<0.25 p-value 
TM-score 0.642 0.584 1.36E-02 0.652 0.604 2.18E-04 

 
 
Table S7. Accuracy comparison for contacts that were used in FUpred for different data groups. 
 

Measures NDO>=0.4 NDO<0.4 p-value DBD>=0.25 DBD<0.25 p-value 
PREintra+ 0.502 0.469 4.33E-02 0.514 0.466 2.46E-07 
PREinter+ 0.035 0.024 1.00E-03 0.038 0.036 8.08E-01 
PFPintra- 0.364 0.368 1.00E-00 0.358 0.381 1.97E-03 
PFPinter- 0.096 0.139 1.84E-02 0.092 0.115 5.34E-04 

‘+’ indicates that one-sided Student’s t-tests were used to test whether the PREintra/PREinter values of the NDO>=0.4 group were 
statistically greater than those values for the NDO<0.4 group, while ‘-’ indicates that one-sided Student’s t-tests were used to test 
whether the PFPintra/PFPinter values of the NDO>=0.4 group were statistically less than those values for the NDO<0.4 group. 
 
  



Supporting Texts 
 

Text S1. Deep multiple sequence alignment (MSA) construction 

Starting from the input protein sequence, a deep MSA (Zhang, et al., 2019) is generated by iterative 
sequence homology searches against multiple sequence databases. This deep MSA construction process 
can be divided into three stages (Fig. S1.). In stage 1, HHblits (Remmert, et al., 2011) from HH-suite is 
used to search the query sequence against UniClust30 (Galiez, et al., 2016) to generate the first-level MSA. 
If stage 1 does not generate enough sequences, stage 2 will be performed, where Jackhmmer from the 
HMMER (Johnson, et al., 2010) package is used to search the query sequence against UniRef90 (the 
UniProt, et al., 2014) to extract full-length sequences (hits) and HHblits is used to convert the full-length 
sequences into a custom HHblits format database. Starting from the first-level MSA, HHblits is again 
applied to search this custom database to generate the second-level MSA. If the MSA from stage 2 still 
does not have enough sequences, stage 3 will be performed, where the second-level MSA is converted by 
hmmbuild from the HMMER package into a Hidden Markov Model (HMM) and the HMM is then searched 
against the Metaclust (Steinegger and Söding, 2018) metagenome sequence database by HMMsearch from 
the HMMER package to extract full-length hits. Similar to stage 2, hits from HMMsearch are built into a 
custom HHblits database. The second-level MSA is used to jump-start an HHblits search against this new 
custom HHblits database to get the third-level MSA. Based on these three stages, we generate a deep MSA 
to obtain a higher number of sequences. 
  



Text S2. Fast Algorithm for calculating the FUscore for discontinuous two-domain proteins 

As shown in Fig. S2, there are two domain boundaries for discontinuous two-domain proteins: the first 
domain is [[1,𝑚𝑚], [𝑛𝑛 + 1, 𝐿𝐿]] and the second domain is [𝑚𝑚 + 1,𝑛𝑛], where L is the length of the protein. 
Note that 1 ≤ 𝑚𝑚 < 𝑛𝑛 ≤ 𝐿𝐿 − 1. In order to calculate the FUscore2d, we need to calculate the number of 
contacts in each block, i.e., 𝑁𝑁1, 𝑁𝑁2, 𝑁𝑁3, 𝑁𝑁12, 𝑁𝑁13, 𝑁𝑁23 which is shown as follows: 
 

𝑁𝑁1(𝑚𝑚,𝑛𝑛) = ��𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑗𝑗)
𝑚𝑚

𝑗𝑗=1

𝑚𝑚

𝑖𝑖=1

 

𝑁𝑁2(𝑚𝑚,𝑛𝑛) = � � 𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑗𝑗)
𝑛𝑛

𝑗𝑗=𝑚𝑚+1

𝑛𝑛

𝑖𝑖=𝑚𝑚+1

 

𝑁𝑁3(𝑚𝑚,𝑛𝑛) = � � 𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑗𝑗)
𝐿𝐿

𝑗𝑗=𝑛𝑛+1

𝐿𝐿

𝑖𝑖=𝑛𝑛+1

 

𝑁𝑁12(𝑚𝑚,𝑛𝑛) = � � 𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑗𝑗)
𝑛𝑛

𝑗𝑗=𝑚𝑚+1

𝑚𝑚

𝑖𝑖=1

 

𝑁𝑁13(𝑚𝑚,𝑛𝑛) = � � 𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑗𝑗)
𝐿𝐿

𝑗𝑗=𝑛𝑛+1

𝑚𝑚

𝑖𝑖=1

 

𝑁𝑁23(𝑚𝑚,𝑛𝑛) = � � 𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑗𝑗)
𝐿𝐿

𝑗𝑗=𝑛𝑛+1

𝑛𝑛

𝑖𝑖=𝑚𝑚+1

 

 
However, the complexity of the above strategy for calculating each block is 𝑂𝑂(𝐿𝐿2). By iterating over all 
pairs of splitting points 𝑚𝑚 and 𝑛𝑛, the total running time will be 𝑂𝑂(𝐿𝐿2 × 𝐿𝐿 × 𝐿𝐿) = 𝑂𝑂(𝐿𝐿4), which is time-
consuming. In order to improve the efficiency of our algorithm, we propose a dynamic programming 
algorithm to speed up the procedure by reducing the time complexity of calculating each block from 𝑂𝑂(𝐿𝐿2) 
to 𝑂𝑂(𝐿𝐿) . Thus, the total time complexity will be reduced to 𝑂𝑂(𝐿𝐿 × 𝐿𝐿 × 𝐿𝐿) = 𝑂𝑂(𝐿𝐿3) . The dynamic 
programming strategy is shown as follows: 
 

1. The recursion relationship for 𝑵𝑵𝟏𝟏 
When the domain splitting point shifts from 𝑚𝑚 to 𝑚𝑚 + 1 and the domain shifting point 𝑛𝑛 
does not change, i.e., the domains are  [[1,𝑚𝑚 + 1], [𝑛𝑛 + 1, 𝐿𝐿]] and  [𝑚𝑚 + 2,𝑛𝑛], the value 
of 𝑁𝑁1(𝑚𝑚 + 1,𝑛𝑛) can be calculated based on 𝑁𝑁1(𝑚𝑚,𝑛𝑛) as follows: 
 

𝑁𝑁1(𝑚𝑚 + 1,𝑛𝑛) = � � 𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑗𝑗)
𝑚𝑚+1

𝑗𝑗=1

𝑚𝑚+1

𝑖𝑖=1

= ��𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑗𝑗)
𝑚𝑚

𝑗𝑗=1

𝑚𝑚

𝑖𝑖=1

+ 𝐶𝐶𝐶𝐶(𝑚𝑚 + 1,𝑚𝑚 + 1) + �𝐶𝐶𝐶𝐶(𝑖𝑖,𝑚𝑚 + 1)
𝑚𝑚

𝑖𝑖=1

+ �𝐶𝐶𝐶𝐶(𝑚𝑚 + 1, 𝑗𝑗)
𝑚𝑚

𝑗𝑗=1

= 𝑁𝑁1(𝑚𝑚,𝑛𝑛) + 𝐶𝐶𝐶𝐶(𝑚𝑚 + 1,𝑚𝑚 + 1) + 2 ∗�𝐶𝐶𝐶𝐶(𝑖𝑖,𝑚𝑚 + 1)
𝑚𝑚

𝑖𝑖=1

 



When the domain shifting point shifts from 𝑛𝑛 to 𝑛𝑛 + 1 and the domain splitting point 𝑚𝑚 
does not change, i.e., the domains are  [[1,𝑚𝑚], [𝑛𝑛 + 2, 𝐿𝐿]] and  [𝑚𝑚 + 1,𝑛𝑛 + 1], 𝑁𝑁1 is not 
affected by the change, i.e.,  
 
𝑁𝑁1(𝑚𝑚,𝑛𝑛 + 1) = 𝑁𝑁1(𝑚𝑚,𝑛𝑛) 
 
𝑁𝑁1(𝑚𝑚 + 1,𝑛𝑛 + 1) = 𝑁𝑁1(𝑚𝑚 + 1,𝑛𝑛) 

 
2. The recursion relationship for 𝑵𝑵𝟑𝟑 
Similarly, when the domain shifting point shifts from 𝑛𝑛 to 𝑛𝑛 + 1 and the domain splitting 
point 𝑚𝑚 does not change, i.e., the domains are  [[1,𝑚𝑚], [𝑛𝑛 + 2, 𝐿𝐿]] and  [𝑚𝑚 + 1,𝑛𝑛 + 1], the 
value of 𝑁𝑁3(𝑚𝑚,𝑛𝑛 + 1) can be calculated based on 𝑁𝑁3(𝑚𝑚,𝑛𝑛) as follows: 
 

𝑁𝑁3(𝑚𝑚,𝑛𝑛 + 1) = � � 𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑗𝑗)
𝐿𝐿

𝑗𝑗=𝑛𝑛+2

𝐿𝐿

𝑖𝑖=𝑛𝑛+2

= � � 𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑗𝑗)
𝐿𝐿

𝑗𝑗=𝑛𝑛+1

𝐿𝐿

𝑖𝑖=𝑛𝑛+1

+ 𝐶𝐶𝐶𝐶(𝑛𝑛 + 1,𝑛𝑛 + 1) − � 𝐶𝐶𝐶𝐶(𝑖𝑖,𝑛𝑛 + 1)
𝐿𝐿

𝑖𝑖=𝑛𝑛+1

− � 𝐶𝐶𝐶𝐶(𝑛𝑛 + 1, 𝑗𝑗)
𝐿𝐿

𝑗𝑗=𝑛𝑛+1

= 𝑁𝑁3(𝑚𝑚,𝑛𝑛) + 𝐶𝐶𝐶𝐶(𝑛𝑛 + 1,𝑛𝑛 + 1) − 2 ∗ � 𝐶𝐶𝐶𝐶(𝑖𝑖,𝑛𝑛 + 1)
𝐿𝐿

𝑖𝑖=𝑛𝑛+1

 

 
When the domain splitting point shifts from 𝑚𝑚 to 𝑚𝑚 + 1 and the domain shifting point 𝑛𝑛 
does not change, i.e., the domains are  [[1,𝑚𝑚 + 1], [𝑛𝑛 + 1, 𝐿𝐿]] and  [𝑚𝑚 + 2,𝑛𝑛], 𝑁𝑁3 is not 
affected by the change, i.e., 
 
𝑁𝑁3(𝑚𝑚 + 1,𝑛𝑛) = 𝑁𝑁3(𝑚𝑚,𝑛𝑛) 
 
𝑁𝑁3(𝑚𝑚 + 1,𝑛𝑛 + 1) = 𝑁𝑁3(𝑚𝑚,𝑛𝑛 + 1) 

 
3. The recursion relationship for 𝑵𝑵𝟐𝟐 
When the domain splitting point shifts from 𝑚𝑚 to 𝑚𝑚 + 1 and the domain shifting point 𝑛𝑛 
does not change, i.e., the domains are  [[1,𝑚𝑚 + 1], [𝑛𝑛 + 1, 𝐿𝐿]] and  [𝑚𝑚 + 2,𝑛𝑛], the value 
of 𝑁𝑁2(𝑚𝑚 + 1,𝑛𝑛) can be calculated based on 𝑁𝑁2(𝑚𝑚,𝑛𝑛) as follows: 
 

𝑁𝑁2(𝑚𝑚 + 1,𝑛𝑛) = � � 𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑗𝑗)
𝑛𝑛

𝑗𝑗=𝑚𝑚+2

𝑛𝑛

𝑖𝑖=𝑚𝑚+2

= � � 𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑗𝑗)
𝑛𝑛

𝑗𝑗=𝑚𝑚+1

𝑛𝑛

𝑖𝑖=𝑚𝑚+1

+ 𝐶𝐶𝐶𝐶(𝑚𝑚 + 1,𝑚𝑚 + 1) − � 𝐶𝐶𝐶𝐶(𝑖𝑖,𝑚𝑚 + 1)
𝑛𝑛

𝑖𝑖=𝑚𝑚+1

− � 𝐶𝐶𝐶𝐶(𝑚𝑚 + 1, 𝑗𝑗)
𝑛𝑛

𝑗𝑗=𝑚𝑚+1

= 𝑁𝑁2(𝑚𝑚,𝑛𝑛) + 𝐶𝐶𝐶𝐶(𝑚𝑚 + 1,𝑚𝑚 + 1) − 2 ∗ � 𝐶𝐶𝐶𝐶(𝑖𝑖,𝑚𝑚 + 1)
𝑛𝑛

𝑖𝑖=𝑚𝑚+1

 



 
When the domain shifting point shifts from 𝑛𝑛 to 𝑛𝑛 + 1 and the domain splitting point 𝑚𝑚 
does not change, i.e., the domains are  [[1,𝑚𝑚], [𝑛𝑛 + 2, 𝐿𝐿]] and  [𝑚𝑚 + 1,𝑛𝑛 + 1], the value 
of 𝑁𝑁2(𝑚𝑚,𝑛𝑛 + 1) can be calculated based on 𝑁𝑁2(𝑚𝑚,𝑛𝑛) as follows: 
 

𝑁𝑁2(𝑚𝑚,𝑛𝑛 + 1) = � � 𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑗𝑗)
𝑛𝑛+1

𝑗𝑗=𝑚𝑚+1

𝑛𝑛+1

𝑖𝑖=𝑚𝑚+1

= � � 𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑗𝑗)
𝑛𝑛

𝑗𝑗=𝑚𝑚+1

𝑛𝑛

𝑖𝑖=𝑚𝑚+1

+ 𝐶𝐶𝐶𝐶(𝑛𝑛 + 1,𝑛𝑛 + 1) + � 𝐶𝐶𝐶𝐶(𝑖𝑖,𝑛𝑛 + 1)
𝑛𝑛

𝑖𝑖=𝑚𝑚+1

+ � 𝐶𝐶𝐶𝐶(𝑛𝑛 + 1, 𝑗𝑗)
𝑛𝑛

𝑗𝑗=𝑚𝑚+1

= 𝑁𝑁2(𝑚𝑚,𝑛𝑛) + 𝐶𝐶𝐶𝐶(𝑛𝑛 + 1,𝑛𝑛 + 1) + 2 ∗ � 𝐶𝐶𝐶𝐶(𝑖𝑖,𝑛𝑛 + 1)
𝑛𝑛

𝑖𝑖=𝑚𝑚+1

 

 
When the domain splitting point shifts from 𝑚𝑚 to 𝑚𝑚 + 1 and the domain shifting point 𝑛𝑛 
shifts from 𝑛𝑛 to 𝑛𝑛 + 1, i.e., the domains are  [[1,𝑚𝑚 + 1], [𝑛𝑛 + 2, 𝐿𝐿]] and  [𝑚𝑚 + 2,𝑛𝑛 + 1], 
the value of 𝑁𝑁2(𝑚𝑚 + 1,𝑛𝑛 + 1) can be calculated based on 𝑁𝑁2(𝑚𝑚,𝑛𝑛) as follows: 
 

𝑁𝑁1(𝑚𝑚 + 1,𝑛𝑛 + 1) = � � 𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑗𝑗)
𝑛𝑛+1

𝑗𝑗=𝑚𝑚+2

𝑛𝑛+1

𝑖𝑖=𝑚𝑚+2

= � � 𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑗𝑗)
𝑛𝑛

𝑗𝑗=𝑚𝑚+2

𝑛𝑛

𝑖𝑖=𝑚𝑚+2

+ 𝐶𝐶𝐶𝐶(𝑛𝑛 + 1,𝑛𝑛 + 1) + � 𝐶𝐶𝐶𝐶(𝑖𝑖,𝑛𝑛 + 1)
𝑛𝑛

𝑖𝑖=𝑚𝑚+2

+ � 𝐶𝐶𝐶𝐶(𝑛𝑛 + 1, 𝑗𝑗)
𝑛𝑛

𝑗𝑗=𝑚𝑚+2

= 𝑁𝑁2(𝑚𝑚 + 1,𝑛𝑛) + 𝐶𝐶𝐶𝐶(𝑛𝑛 + 1,𝑛𝑛 + 1) + 2 ∗ � 𝐶𝐶𝐶𝐶(𝑖𝑖,𝑛𝑛 + 1)
𝑛𝑛

𝑖𝑖=𝑚𝑚+2

= 𝑁𝑁2(𝑚𝑚,𝑛𝑛) + 𝐶𝐶𝐶𝐶(𝑚𝑚 + 1,𝑚𝑚 + 1) − 2 ∗ � 𝐶𝐶𝐶𝐶(𝑖𝑖,𝑚𝑚 + 1)
𝑛𝑛

𝑖𝑖=𝑚𝑚+1

+ 𝐶𝐶𝐶𝐶(𝑛𝑛 + 1,𝑛𝑛 + 1) + 2 ∗ � 𝐶𝐶𝐶𝐶(𝑖𝑖,𝑛𝑛 + 1)
𝑛𝑛

𝑖𝑖=𝑚𝑚+2

 

 
 
 

4. The recursion relationship for 𝑵𝑵𝟏𝟏𝟐𝟐 
 
Similar to the calculations of 𝑁𝑁1, 𝑁𝑁2, and 𝑁𝑁3, the recursion relationship for 𝑁𝑁12 is shown 
as follows: 



𝑁𝑁12(𝑚𝑚 + 1,𝑛𝑛) = � � 𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑗𝑗)
𝑛𝑛

𝑗𝑗=𝑚𝑚+2

𝑚𝑚+1

𝑖𝑖=1

= � � � 𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑗𝑗)
𝑛𝑛

𝑗𝑗=𝑚𝑚+1

− 𝐶𝐶𝐶𝐶(𝑖𝑖,𝑚𝑚 + 1)�
𝑚𝑚+1

𝑖𝑖=1

= � � 𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑗𝑗)
𝑛𝑛

𝑗𝑗=𝑚𝑚+1

𝑚𝑚+1

𝑖𝑖=1

− � 𝐶𝐶𝐶𝐶(𝑖𝑖,𝑚𝑚 + 1)
𝑚𝑚+1

𝑖𝑖=1

= � � 𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑗𝑗)
𝑛𝑛

𝑗𝑗=𝑚𝑚+1

𝑚𝑚

𝑖𝑖=1

+ � 𝐶𝐶𝐶𝐶(𝑚𝑚 + 1, 𝑗𝑗)
𝑛𝑛

𝑗𝑗=𝑚𝑚+1

− � 𝐶𝐶𝐶𝐶(𝑖𝑖,𝑚𝑚 + 1)
𝑚𝑚+1

𝑖𝑖=1

= 𝑁𝑁12(𝑚𝑚,𝑛𝑛) + � 𝐶𝐶𝐶𝐶(𝑚𝑚 + 1, 𝑗𝑗)
𝑛𝑛

𝑗𝑗=𝑚𝑚+1

− � 𝐶𝐶𝐶𝐶(𝑖𝑖,𝑚𝑚 + 1)
𝑚𝑚+1

𝑖𝑖=1

= 𝑁𝑁12(𝑚𝑚,𝑛𝑛) + � 𝐶𝐶𝐶𝐶(𝑖𝑖,𝑚𝑚 + 1)
𝑛𝑛

𝑖𝑖=𝑚𝑚+1

− � 𝐶𝐶𝐶𝐶(𝑖𝑖,𝑚𝑚 + 1)
𝑚𝑚+1

𝑖𝑖=1

 

 

𝑁𝑁12(𝑚𝑚,𝑛𝑛 + 1) = � � 𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑗𝑗)
𝑛𝑛+1

𝑗𝑗=𝑚𝑚+1

𝑚𝑚

𝑖𝑖=1

= �� � 𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑗𝑗)
𝑛𝑛

𝑗𝑗=𝑚𝑚+1

+ 𝐶𝐶𝐶𝐶(𝑖𝑖,𝑛𝑛 + 1)�
𝑚𝑚

𝑖𝑖=1

= � � 𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑗𝑗)
𝑛𝑛

𝑗𝑗=𝑚𝑚+1

𝑚𝑚

𝑖𝑖=1

+ �𝐶𝐶𝐶𝐶(𝑖𝑖,𝑛𝑛 + 1)
𝑚𝑚

𝑖𝑖=1

= 𝑁𝑁12(𝑚𝑚,𝑛𝑛) + �𝐶𝐶𝐶𝐶(𝑖𝑖,𝑛𝑛 + 1`)
𝑚𝑚

𝑖𝑖=1

 

 

𝑁𝑁12(𝑚𝑚 + 1,𝑛𝑛 + 1) = � � 𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑗𝑗)
𝑛𝑛+1

𝑗𝑗=𝑚𝑚+2

𝑚𝑚+1

𝑖𝑖=1

= � � � 𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑗𝑗)
𝑛𝑛

𝑗𝑗=𝑚𝑚+2

+ 𝐶𝐶𝐶𝐶(𝑖𝑖,𝑛𝑛 + 1)�
𝑚𝑚+1

𝑖𝑖=1

= � � � 𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑗𝑗)
𝑛𝑛

𝑗𝑗=𝑚𝑚+1

− 𝐶𝐶(𝑖𝑖,𝑚𝑚 + 1) + 𝐶𝐶𝐶𝐶(𝑖𝑖,𝑛𝑛 + 1)�
𝑚𝑚+1

𝑖𝑖=1

= � � 𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑗𝑗)
𝑛𝑛

𝑗𝑗=𝑚𝑚+1

𝑚𝑚+1

𝑖𝑖=1

− � 𝐶𝐶𝐶𝐶(𝑖𝑖,𝑚𝑚 + 1)
𝑚𝑚+1

𝑖𝑖=1

+ � 𝐶𝐶𝐶𝐶(𝑖𝑖,𝑛𝑛 + 1)
𝑚𝑚+1

𝑖𝑖=1

= � � 𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑗𝑗)
𝑛𝑛

𝑗𝑗=𝑚𝑚+1

𝑚𝑚

𝑖𝑖=1

+ � 𝐶𝐶𝐶𝐶(𝑚𝑚 + 1, 𝑗𝑗)
𝑛𝑛

𝑗𝑗=𝑚𝑚+1

− � 𝐶𝐶𝐶𝐶(𝑖𝑖,𝑚𝑚 + 1)
𝑚𝑚+1

𝑖𝑖=1

+ � 𝐶𝐶𝐶𝐶(𝑖𝑖,𝑛𝑛 + 1)
𝑚𝑚+1

𝑖𝑖=1

= 𝑁𝑁12(𝑚𝑚,𝑛𝑛) + � 𝐶𝐶𝐶𝐶(𝑖𝑖,𝑚𝑚 + 1)
𝑛𝑛

𝑖𝑖=𝑚𝑚+1

− � 𝐶𝐶𝐶𝐶(𝑖𝑖,𝑚𝑚 + 1)
𝑚𝑚+1

𝑖𝑖=1

+ � 𝐶𝐶𝐶𝐶(𝑖𝑖,𝑛𝑛 + 1)
𝑚𝑚+1

𝑖𝑖=1

 



5. The recursion relationship for 𝑵𝑵𝟏𝟏𝟑𝟑 
 
Similar to the calculations of 𝑁𝑁1, 𝑁𝑁2, and 𝑁𝑁3, the recursion relationship for 𝑁𝑁13 is shown 
as follows: 
 

𝑁𝑁13(𝑚𝑚 + 1,𝑛𝑛) = � � 𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑗𝑗)
𝐿𝐿

𝑗𝑗=𝑛𝑛+1

𝑚𝑚+1

𝑖𝑖=1

= � � 𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑗𝑗)
𝐿𝐿

𝑗𝑗=𝑛𝑛+1

𝑚𝑚

𝑖𝑖=1

+ � 𝐶𝐶𝐶𝐶(𝑚𝑚 + 1, 𝑗𝑗)
𝐿𝐿

𝑗𝑗=𝑛𝑛+1

= 𝑁𝑁13(𝑚𝑚,𝑛𝑛) + � 𝐶𝐶𝐶𝐶(𝑖𝑖,𝑚𝑚 + 1)
𝐿𝐿

𝑖𝑖=𝑛𝑛+1

 

 

𝑁𝑁13(𝑚𝑚,𝑛𝑛 + 1) = � � 𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑗𝑗)
𝐿𝐿

𝑗𝑗=𝑛𝑛+2

𝑚𝑚

𝑖𝑖=1

= �� � 𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑗𝑗)
𝐿𝐿

𝑗𝑗=𝑛𝑛+1

− 𝐶𝐶𝐶𝐶(𝑖𝑖,𝑛𝑛 + 1)�
𝑚𝑚

𝑖𝑖=1

= � � 𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑗𝑗)
𝐿𝐿

𝑗𝑗=𝑛𝑛+1

𝑚𝑚

𝑖𝑖=1

−�𝐶𝐶𝐶𝐶(𝑖𝑖,𝑛𝑛 + 1)
𝑚𝑚

𝑖𝑖=1

= 𝑁𝑁13(𝑚𝑚,𝑛𝑛) −�𝐶𝐶𝐶𝐶(𝑖𝑖,𝑛𝑛 + 1)
𝑚𝑚

𝑖𝑖=1

 

 

𝑁𝑁13(𝑚𝑚 + 1,𝑛𝑛 + 1) = � � 𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑗𝑗)
𝐿𝐿

𝑗𝑗=𝑛𝑛+2

𝑚𝑚+1

𝑖𝑖=1

= � � 𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑗𝑗)
𝐿𝐿

𝑗𝑗=𝑛𝑛+2

𝑚𝑚

𝑖𝑖=1

+ � 𝐶𝐶𝐶𝐶(𝑚𝑚 + 1, 𝑗𝑗)
𝐿𝐿

𝑗𝑗=𝑛𝑛+2

= 𝑁𝑁13(𝑚𝑚,𝑛𝑛 + 1) + � 𝐶𝐶𝐶𝐶(𝑚𝑚 + 1, 𝑗𝑗)
𝐿𝐿

𝑗𝑗=𝑛𝑛+2

= 𝑁𝑁13(𝑚𝑚,𝑛𝑛) −�𝐶𝐶𝐶𝐶(𝑖𝑖,𝑛𝑛 + 1)
𝑚𝑚

𝑖𝑖=1

+ � 𝐶𝐶𝐶𝐶(𝑖𝑖,𝑚𝑚 + 1)
𝐿𝐿

𝑖𝑖=𝑛𝑛+2

 

 
 

 
6. The recursion relationship for 𝑵𝑵𝟐𝟐𝟑𝟑 
 
Similar to the calculations of 𝑁𝑁1, 𝑁𝑁2, and 𝑁𝑁3, the recursion relationship for 𝑁𝑁23 is shown 
as follows: 
 

𝑁𝑁23(𝑚𝑚 + 1,𝑛𝑛) = � � 𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑗𝑗)
𝐿𝐿

𝑗𝑗=𝑛𝑛+1

𝑛𝑛

𝑖𝑖=𝑚𝑚+2

= � � 𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑗𝑗)
𝐿𝐿

𝑗𝑗=𝑛𝑛+1

𝑛𝑛

𝑖𝑖=𝑚𝑚+1

− � 𝐶𝐶𝐶𝐶(𝑚𝑚 + 1, 𝑗𝑗)
𝐿𝐿

𝑗𝑗=𝑛𝑛+1

= 𝑁𝑁23(𝑚𝑚,𝑛𝑛) + � 𝐶𝐶𝐶𝐶(𝑖𝑖,𝑚𝑚 + 1)
𝐿𝐿

𝑖𝑖=𝑛𝑛+1

 

 



𝑁𝑁23(𝑚𝑚,𝑛𝑛 + 1) = � � 𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑗𝑗)
𝐿𝐿

𝑗𝑗=𝑛𝑛+2

𝑛𝑛+1

𝑖𝑖=𝑚𝑚+1

= � � � 𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑗𝑗)
𝐿𝐿

𝑗𝑗=𝑛𝑛+1

− 𝐶𝐶𝐶𝐶(𝑖𝑖,𝑛𝑛 + 1)�
𝑛𝑛+1

𝑖𝑖=𝑚𝑚+1

= � � 𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑗𝑗)
𝐿𝐿

𝑗𝑗=𝑛𝑛+1

𝑛𝑛+1

𝑖𝑖=𝑚𝑚+1

− � 𝐶𝐶𝐶𝐶(𝑖𝑖,𝑛𝑛 + 1)
𝑛𝑛+1

𝑖𝑖=𝑚𝑚+1

= � � 𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑗𝑗)
𝐿𝐿

𝑗𝑗=𝑛𝑛+1

𝑛𝑛

𝑖𝑖=𝑚𝑚+1

+ � 𝐶𝐶𝐶𝐶(𝑛𝑛 + 1, 𝑗𝑗)
𝐿𝐿

𝑗𝑗=𝑛𝑛+1

− � 𝐶𝐶𝐶𝐶(𝑖𝑖,𝑛𝑛 + 1)
𝑛𝑛+1

𝑖𝑖=𝑚𝑚+1

= 𝑁𝑁23(𝑚𝑚,𝑛𝑛) + � 𝐶𝐶𝐶𝐶(𝑖𝑖,𝑛𝑛 + 1)
𝐿𝐿

𝑖𝑖=𝑛𝑛+1

− � 𝐶𝐶𝐶𝐶(𝑖𝑖,𝑛𝑛 + 1)
𝑛𝑛+1

𝑖𝑖=𝑚𝑚+1

 

 

𝑁𝑁23(𝑚𝑚 + 1,𝑛𝑛 + 1) = � � 𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑗𝑗)
𝐿𝐿

𝑗𝑗=𝑛𝑛+2

𝑛𝑛+1

𝑖𝑖=𝑚𝑚+2

= � � 𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑗𝑗)
𝐿𝐿

𝑗𝑗=𝑛𝑛+2

𝑛𝑛+1

𝑖𝑖=𝑚𝑚+1

− � 𝐶𝐶𝐶𝐶(𝑚𝑚 + 1, 𝑗𝑗)
𝐿𝐿

𝑗𝑗=𝑛𝑛+2

= 𝑁𝑁23(𝑚𝑚,𝑛𝑛 + 1) − � 𝐶𝐶𝐶𝐶(𝑚𝑚 + 1, 𝑗𝑗)
𝐿𝐿

𝑗𝑗=𝑛𝑛+2

= 𝑁𝑁23(𝑚𝑚,𝑛𝑛) + � 𝐶𝐶𝐶𝐶(𝑖𝑖,𝑛𝑛 + 1)
𝐿𝐿

𝑖𝑖=𝑛𝑛+1

− � 𝐶𝐶𝐶𝐶(𝑖𝑖,𝑛𝑛 + 1)
𝑛𝑛+1

𝑖𝑖=𝑚𝑚+1

− � 𝐶𝐶𝐶𝐶(𝑖𝑖,𝑚𝑚 + 1)
𝐿𝐿

𝑖𝑖=𝑛𝑛+2

 

 
Each time we update the values, we remember the values of 
𝑁𝑁1(𝑚𝑚,𝑛𝑛),𝑁𝑁2(𝑚𝑚,𝑛𝑛),𝑁𝑁3(𝑚𝑚,𝑛𝑛),𝑁𝑁12(𝑚𝑚,𝑛𝑛),𝑁𝑁13(𝑚𝑚,𝑛𝑛) and 𝑁𝑁23(𝑚𝑚,𝑛𝑛). Then when calculating the new terms 
𝑁𝑁1(𝑚𝑚 + 1,𝑛𝑛) , 𝑁𝑁2(𝑚𝑚 + 1,𝑛𝑛) , 𝑁𝑁3(𝑚𝑚 + 1,𝑛𝑛) , 𝑁𝑁12(𝑚𝑚 + 1,𝑛𝑛) , 𝑁𝑁13(𝑚𝑚 + 1,𝑛𝑛) , 𝑁𝑁23(𝑚𝑚 + 1,𝑛𝑛) , 𝑁𝑁1(𝑚𝑚,𝑛𝑛 +
1) , 𝑁𝑁2(𝑚𝑚,𝑛𝑛 + 1) , 𝑁𝑁3(𝑚𝑚,𝑛𝑛 + 1) , 𝑁𝑁12(𝑚𝑚,𝑛𝑛 + 1) , 𝑁𝑁13(𝑚𝑚,𝑛𝑛 + 1) , 𝑁𝑁23(𝑚𝑚,𝑛𝑛 + 1) , 𝑁𝑁1(𝑚𝑚 + 1,𝑛𝑛 + 1) , 
𝑁𝑁2(𝑚𝑚 + 1,𝑛𝑛 + 1) , 𝑁𝑁3(𝑚𝑚 + 1,𝑛𝑛 + 1) , 𝑁𝑁12(𝑚𝑚 + 1,𝑛𝑛 + 1) , 𝑁𝑁13(𝑚𝑚 + 1,𝑛𝑛 + 1) , and 𝑁𝑁23(𝑚𝑚 + 1,𝑛𝑛 + 1) , 
we only need to calculate the increment. Therefore, the complexity of the dynamic programming strategy 
for calculating each block is only 𝑂𝑂(𝐿𝐿), resulting in a running time for calculating the FUscore2d (as shown 
below) that is also only 𝑂𝑂(𝐿𝐿).   

 
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹2𝑑𝑑(𝑚𝑚,𝑛𝑛)

= 2�𝑁𝑁12(𝑚𝑚,𝑛𝑛) + 𝑁𝑁23(𝑚𝑚,𝑛𝑛)�

∗ �
1.0

𝑁𝑁3(𝑚𝑚,𝑛𝑛) + 𝑁𝑁1(𝑚𝑚,𝑛𝑛) + 2𝑁𝑁13(𝑚𝑚,𝑛𝑛) +
1.0

𝑁𝑁2(𝑚𝑚,𝑛𝑛)
� 

 
By iterating over all pairs of splitting points 𝑚𝑚 and 𝑛𝑛, the total running time is 𝑂𝑂(𝐿𝐿 × 𝐿𝐿 × 𝐿𝐿) = 𝑂𝑂(𝐿𝐿3). 
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