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Improving fragment-based ab initio protein
structure assembly using low-accuracy
contact-map predictions
S. M. Mortuza1,3, Wei Zheng 1,3, Chengxin Zhang 1, Yang Li1, Robin Pearce1 & Yang Zhang 1,2✉

Sequence-based contact prediction has shown considerable promise in assisting non-

homologous structure modeling, but it often requires many homologous sequences and a

sufficient number of correct contacts to achieve correct folds. Here, we developed a method,

C-QUARK, that integrates multiple deep-learning and coevolution-based contact-maps to

guide the replica-exchange Monte Carlo fragment assembly simulations. The method was

tested on 247 non-redundant proteins, where C-QUARK could fold 75% of the cases with

TM-scores (template-modeling scores) ≥0.5, which was 2.6 times more than that achieved

by QUARK. For the 59 cases that had either low contact accuracy or few homologous

sequences, C-QUARK correctly folded 6 times more proteins than other contact-based

folding methods. C-QUARK was also tested on 64 free-modeling targets from the 13th CASP

(critical assessment of protein structure prediction) experiment and had an average GDT_TS

(global distance test) score that was 5% higher than the best CASP predictors. These data

demonstrate, in a robust manner, the progress in modeling non-homologous protein struc-

tures using low-accuracy and sparse contact-map predictions.
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Ab initio protein structure prediction, which generally
refers to approaches that model protein structures with-
out using homologous templates in the PDB (Protein

Data Bank), has attracted constant interest over the last several
decades1–7. Consequently, considerable progress has been wit-
nessed along this direction by the community-wide CASP (critical
assessment of protein structure prediction) experiments8–12. For
instance, while the success of ab initio modeling was limited to
folding small proteins with lengths below 100 residues until only
a decade ago13–15, several advanced pipelines, including Rosetta3

and QUARK5, generated correct folds for challenging targets with
lengths above 100 residues in the recent CASP experiments16,17.
The advancements are primarily due to the development of
advanced energy force fields and efficient search engines that help
obtain the global energy minimum near the native state during
the folding simulations. Nevertheless, the current force fields and
search engines often fail to capture precise long-range atomic
interactions in proteins. As a result, the modeling accuracy for
large proteins with complicated topologies based on ab initio
folding approaches has been inconsistent and still far from
satisfactory11,18.

One of the efficient ways to overcome the limitations in ab
initio modeling is to incorporate long-range contacts, i.e., spatial
adjacency of residue pairs with large sequence separations but
that are close to each other in the three-dimensional (3D)
structures, as restraints in the folding simulations. While the a
priori knowledge of inter-residue contacts helps constrain the
conformational search towards near-native states, sufficiently
high accuracy contact prediction is required so that the modeling
accuracy is not hindered because of too many falsely predicted
contacts. Early efforts in contact prediction focused on
coevolution19 and machine learning20,21, but the impact on ab
initio structure folding was modest due to the limited accuracy of
the contact-map prediction22,23. A leap in contact prediction
accuracy was recently brought about by the introduction of direct
coupling analysis (DCA)24–27 and deep neural-network
learning28,29 techniques. While DCA helps remove translational
contact noises from multiple sequence alignments (MSAs),
supervised deep-learning techniques learn inherent contact pat-
terns from PDB structures starting from co-evolutionary features
derived from MSAs. Despite the remarkable progress in contact
prediction, the success of current ab initio modeling protocols
cannot be attained to their full potentials unless the predicted
contacts are effectively integrated with the folding simulations. In
particular, when the number of homologous sequences and
therefore the accuracy of sequence-based contact prediction is
low, how to balance the noisy contact-maps with the advanced
folding simulation force fields to construct correct ab initio
structure folds remains an important and challenging problem.

In this study, we developed a contact-guided ab initio folding
program, C-QUARK, as an extension of QUARK5,30, which has
been ranked as one of the top methods in the CASP experiments
since 20108–11. To systematically explore the capacity of contact-
map prediction, especially those with low accuracy, to improve ab
initio folding, a 3-gradient (3 G) contact potential, characterized
by three smooth platforms that account for both short- and long-
distance gradients, is proposed and carefully tailored to incor-
porate the contact restraints with the QUARK-based folding
simulations. The pipeline was rigorously benchmarked in com-
parison to QUARK, as well as other state-of-the-art structure
modeling methods, on both CASP targets and a separate large-
scale test dataset, where C-QUARK showed a remarkable
advantage for modeling distant- and non-homologous targets.
The results demonstrate, in a robust manner, the critical
importance of a balanced combination of multiple com-
plementary contact restraints with an advanced knowledge-based

force field for improving the accuracy of ab initio protein struc-
ture prediction, especially for targets with complicated folding
topologies.

It should be noted that after the work was completed, the field
witnessed important progress brought by the introduction of
distance6,31 and inter-residue orientation7 predictions integrated
with quick gradient descent optimization. Nevertheless, given the
special role of contact-map prediction in protein folding and the
fact that most of the predicted distances and orientations are on
residue pairs within short distances of each other (i.e., in contact),
we believe it is of critical importance to study and benchmark
separately the impact of contact-maps on the problem of ab initio
protein structure prediction, and systematically examine the cri-
tical weaknesses and strengths of deep-learning contact restraints
when coupled with advanced protein folding simulation
algorithms.

Results
C-QUARK significantly outperforms QUARK in ab initio
structure prediction. Built on one of the top ab initio protein
folding simulation programs, QUARK5,30, C-QUARK starts with
multiple sequence alignment (MSA) collection from whole-
genome and metagenome sequence databases32, where two types
of contact-maps are created by deep-learning29,33–36 and co-
evolution26,37–40 based predictors. Next, structural fragments
with continuous sequence lengths (1-20 AA) are collected from
unrelated PDB structures and used to assemble full-length
structure models by Replica-Exchange Monte Carlo (REMC)
simulations under the guidance of a composite force field con-
sisting of knowledge-based energy terms, inter-residue contacts
collected from the structure fragments based on their distance
profiles30, and the sequence-based contact-map predictions
(Fig. 1).

Since the major difference between C-QUARK and QUARK is
the incorporation of contact restraints in the former program,
benchmarking the two programs can examine the effectiveness of
contact-maps in ab initio folding of proteins. We collected a set of
247 non-redundant single domain proteins from the PDB, which
had resolutions better than 3 Å and lengths between 50–300
residues (see Supplementary Data S2). Table 1 summarizes the
folding results, where the average TM-score (template-modeling
score) of the first models from C-QUARK (0.606) was 43% higher
than that by QUARK (0.423). This difference corresponded to a
p-value of 6:8 ´ 10�51 as calculated by a one-sided Student’s t-test,
showing the improvement from the contact-map predictions is
highly statistically significant. Table 1 also lists the results for the
best in top-five models, which were ranked based on the cluster
size of decoys from SPICKER41, where C-QUARK once again
significantly outperformed QUARK with an average TM-score
(=0.629) that was 34% higher than the latter (=0.468) with a p-
value of 2:0 ´ 10�47. Here, TM-score is metric for assessing the
structural similarity between the models and the native structures,
and takes a value in the range (0, 1]42. Statistics shows that a TM-
score >0.5 corresponds to a model with a similar fold as the
native43.

To examine the advantage of C-QUARK on specific targets, we
present a head-to-head TM-score comparison with QUARK in
Fig. 2a, where the RMSD (Root-mean-square deviation) compar-
ison of the two programs is listed in Fig. S1 in Supplementary
Information (SI). The data show that C-QUARK generated better
models with higher TM-scores (or lower RMSDs) than QUARK
for 224 (212) out of the 247 targets. If we count the cases with
correct structural folds, the first models by C-QUARK obtained
correct folds for 186 (75% of the cases) targets, while only 71
targets (29% of the cases) were correctly folded by QUARK. The
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number of correct folds generated by the two programs increased
further to 196 and 90, respectively, when the best in top-five
models was considered. It is noteworthy that there was no target
for which QUARK generated a model with a TM-score ≥ 0.5 that
C-QUARK did not do the same for. Rather, C-QUARK generated
correct folds for 46% of the cases that were not foldable by
QUARK, indicating the dominantly positive impact of contact
restraints in ab initio folding of protein structures by C-QUARK.

To evaluate the ability of C-QUARK to model different protein
types, we classified the test targets into three categories, alpha,
beta and alpha-beta proteins, based on their secondary structure
compositions (Supplementary Data S2). Although it is relatively
easier to model alpha-proteins compared to other protein types as
witnessed in previous CASP experiments, QUARK could generate
correct folds for only 42% of the cases (24 out of the 64 alpha
proteins, Table S1). On the other hand, the integration of contact
restraints in the C-QUARK simulations resulted in correct folds
for 52 out of the 64 (81%) alpha proteins, which was almost
double that of QUARK. Furthermore, the success rates of
C-QUARK for folding beta and alpha-beta proteins was ~3 fold
higher than that of QUARK. For instance, out of the 67 beta-
proteins and 116 alpha-beta proteins in the test set, C-QUARK

generated correct folds for 42 and 92 cases while QUARK did so
for only 15 and 29 cases, respectively. The improvement of the
modeling accuracy for beta-proteins is particularly exciting, since
ab initio modeling of beta-proteins has been notoriously difficult
as observed in CASP experiments9–11. The primary difficulty in
folding beta-proteins lies in the fact that beta-proteins often have
complicated topologies characterized by long-range contact-
maps, where the inherent force fields of ab initio folding
programs usually have difficulty capturing such long-range
interactions formed by subtle hydrogen-bonding networks. The
incorporation of long-range inter-residue contact prediction in
C-QUARK effectively captured such interactions and significantly
improved the folding performance for targets with complicated
beta-fold topologies.

In Fig. 2b, we further examine the folding ability of C-QUARK
and QUARK for proteins with different lengths. The average TM-
scores of the C-QUARK models for proteins with lengths in the
range 50–100, 101–50, 151–200, 201–250 and 251–300 residues
were 0.588, 0.621, 0.638, 0.542 and 0.627, while those for QUARK
were 0.516, 0.431, 0.388, 0.300 and 0.333, respectively. Obviously,
the difference between the two programs increased as the size of
the proteins increased, which is understandable as QUARK tends
to have a relatively higher success rate for small proteins, while
the contact-map accuracy and C-QUARK performance have no
obvious length-dependence in this test set (Supplementary
Fig. S2). To simplify the comparison, we also split the proteins
into two sets of small proteins (with ≤ 150 residues) and large
proteins (>150 residues). For the 156 small proteins, the average
TM-scores of the C-QUARK and QUARK models were 0.607 and
0.467, corresponding to only a 30% TM-score improvement by
C-QUARK. However, for the 91 large proteins, the improvement
increased to 74%, where the average TM-scores were 0.604 and
0.347 for C-QUARK and QUARK, respectively. In addition, the
average TM-score by C-QUARK was largely comparable for the
small and large proteins (0.607 vs 0.604), while the modeling
accuracy of QUARK was dramatically worse for large proteins
(0.467 vs 0.347).

Fig. 1 Flowchart of C-QUARK for contact-guided ab initio protein structure prediction. The pipeline consists of five consecutive steps: multiple sequence
alignment generation by DeepMSA, deep-learning based contact-map prediction, fragment creation, contact-guided Monte Carlo folding simulation, and
model selection and refinement.

Table 1 Summary of structure modeling by C-QUARK and
QUARK on the 247 test proteins.

First model Best in top-five models

TM-score RMSD (Å) TM-score RMSD (Å)

C-QUARK 0.606
(186, 75%)

6.94 0.629
(196, 79%)

6.22

QUARK 0.423
(71, 29%)

12.14 0.468
(90, 36%)

10.31

P-value 6:8 ´ 10�51 1:8 ´ 10�29 2:0 ´ 10�47 9:1 ´ 10�23

P-values are calculated between C-QUARK and QUARK using one-sided Student’s t-tests. The
values in parentheses represent the number and percentage of the cases with TM-scores >0.5.
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Case studies reveal important roles of both medium- and long-
range contacts on folding proteins with complicated topolo-
gies. To investigate the reasons for the dramatic improvements,
we present a structural comparison of the C-QUARK and
QUARK models with the corresponding native structures along
with the contact-map predictions for three test cases in Fig. 3. The
first example (PDBID: 2d7jA) is a large alpha-beta protein with
188 residues that consists of 11 beta-strands, five alpha-helices
and one 310-helix. The core of the domain is a seven-stranded
beta-sheet surrounded by alpha-helices on both sides (Fig. 3a).
The native contact-map in Fig. 3d shows that the helices at the
N-terminal (HN) and the C-terminal (HC) are in proximity due to
long-range interactions between residues in the two helices
(marked with rectangles in Fig. 3d). The majority of the native
contacts, including the long-range contacts that hold the helices
at both termini together, were correctly predicted, where the
contact-map prediction accuracy was 0.648, as shown by the red
circles in the left triangle of Fig. 3d. The restraints from these
predicted contacts primarily lead to the arrangement of the
residues in the C-QUARK model with the same contact network
as the native structure, as shown in the C-QUARK model and in
the contact-map with blue circles in the left triangle of Fig. 3d.
The contact restraints in the core regions also helped maintain
the overall topology of the seven beta-strands in that region. As a
result, the C-QUARK model was very similar to the native with a
TM-score=0.793. On the other hand, due to the lack of long-
range contact restraints between the N- and C-termini in the
QUARK simulations, the two alpha helices at the termini were far
away from each other in the QUARK model. Hence, the overall
fold and the corresponding contact-map (blue circles in the right
triangle of Fig. 3d) of the QUARK model were significantly dif-
ferent from that of the native, resulting in a low TM-score of
0.295. This example highlights the importance of contacts, par-
ticularly long-range contacts, for correctly modeling large alpha-
beta proteins.

Although alpha-proteins are relatively easier to model, we
highlight in Fig. 3b how contacts can further improve modeling
accuracies for alpha-proteins by not only bringing the contacting
residues close to each other but also helping to reshape the helix
structures and correct inter-helical orientations (parallel or anti-
parallel). This target (PDBID: 1y9iA [https://doi.org/10.2210/
pdb1Y9I/pdb]) has 159 residues and contains nine alpha helices,
where Helix-9 at the C-terminal forms long-range contacts with

Helix-2, 3, 4 and 6. Additionally, Helix-9 is arranged in an anti-
parallel fashion with Helix-3, 4 and 7, while it is parallel to Helix-
2 and 6. Contacts predicted between Helix-9 and the five other
helices, shown by the red circles in the left triangle of Fig. 3e,
helped bring the five helices closer to Helix-9 during the
C-QUARK simulations. Moreover, the correct prediction of these
contacts contributed to the correct orientations of the helices as
highlighted by the rectangles in the contact-map. Therefore,
C-QUARK was capable of modeling the shape and orientation of
all nine helices correctly and generated a model with a TM-score
of 0.782. On the other hand, QUARK generated a wrong fold
(TM-score=0.319) with incorrect packing and orientation of the
helices due to the lack of contact information in the simulations.

While long-range contact predictions are especially helpful, it is
noteworthy that medium-range contacts also play an important
role in dictating ab initio protein folding. Figure 3c shows an
example from the polysaccharide lyase-like protein (PDBID:
4peuA [https://doi.org/10.2210/pdb4PEU/pdb]) which has 250
residues and comprises 29 beta-strands. The first five strands
from the N-terminal form two sandwiched anti-parallel beta-
sheets, where Strand-1 forms long-range contacts with Strand-5,
and short- and medium-range contacts with Strand-2. As a result,
Strand-1 intervenes between Strands-2 and 5, where Strand-1 is
anti-parallel to Strand-2 and parallel to Strand-5. Due to correctly
predicted contacts between residues of Strand-2 and 5 and those
of Strand-1, which are mainly in the medium-range as shown by
the red circles and highlighted with rectangles (Fig. 3f), these
N-terminal beta-sheets were all correctly formed during the
C-QUARK simulations. The remainder of the C-terminal
structure, which is comprised of eight helical turns of right-
handed beta-helices, was also modeled correctly due to the
restraints from the prevalent medium-range contacts (Fig. 3f).
Overall, the C-QUARK model had a close structure to the native
with a TM-score of 0.638, while the QUARK simulations only
lead to short-range hydrogen-bonding and the formation of
pairing between the adjacent beta-strands, which resulted in an
incorrect fold with a TM-score of 0.236.

C-QUARK performance correlates with contact prediction
accuracy and satisfaction rate. One of the critical factors for
contact-assisted ab initio folding is the accuracy of predicted
contacts used as restraints during the simulations. Figs. S3A and

Fig. 2 Comparison of C-QUARK and QUARK models on 247 test proteins. a TM-scores of the first models by C-QUARK versus those by QUARK for
different protein classes, where the dotted-crosses represent the alpha proteins, the circles represent the beta proteins, and the crosses indicate the alpha-
beta proteins. b Average TM-scores by C-QUARK and QUARK at different protein-length intervals, where the white bars represent the C-QUARK results
and the gray bars correspond to the QUARK results.
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S3C show that the accuracy of the contact-maps extracted from
the final C-QUARK models is indeed closely correlated with the
accuracy of the predicted contact-maps that are used in the
simulations, with a Pearson correlation coefficients (PCCs) of
0.703, 0.783, 0.778 and 0.793 for short-, medium-, long- and all-
range contacts, respectively. These data imply that the contact
restraints are effectively implemented in the folding simulations,
which constitutes the major driving force for the success of
C-QUARK ab initio structure modeling. The evidence can also be
seen from the data in Supplementary Table S2, in which the
accuracy of the overall input contacts to C-QUARK (0.502) was
significantly higher than those extracted from the QUARK
models (0.335) with a p-value of 1.2 × 10−30. Interestingly,
although the goal of C-QUARK is not to generate a high-accuracy
contact-map, the contacts derived from the C-QUARK models
had a slightly (but statistically significantly) higher accuracy than
the input contacts, suggesting that the combination of deep-
learning contacts with the QUARK force field can further
improve the overall contact-map quality in the final models.

In Supplementary Fig. S3B, D, we present the accuracy of
contact predictions directly against the TM-scores of the final
C-QUARK models. While there is still a positive correlation
between the TM-score and contact accuracy, it is considerably
weaker than that of the contact-contact correlations (with
PCC= 0.620 vs 0.793 for all-range contacts). In particular,
among the 46 targets whose long-range contacts had low accuracy
(<30%), C-QUARK created correct folds with a TM-score >0.5
for 20 cases (43%) (Supplementary Fig. S3D). In comparison, for
these 46 targets, QUARK only successfully folded 9 proteins with
TM-scores >0.5. These data demonstrate the ability of QUARK to

fold protein structures through its inherent fragment assembly
procedure combined with fragment-based distance profiles30.
Furthermore, the number of foldable cases increased by a factor
of 2.2 even with low-accuracy contact-maps, showing the
effectiveness of C-QUARK at incorporating noisy contact-maps
in its folding simulations for ab initio structure prediction.

While accurate contact prediction helps improve the success
rate of the ab initio folding simulations, it is also important to
incorporate the contacts in the simulations in an efficient way.
Since contact predictions with higher confidence scores generally
have a higher likelihood of being correct (see Supplementary
Fig. S4), our 3 G contact potential (Eq. 1 in Methods) was
designed in a way that the well depth is proportional to the
confidence score of each predicted contact (Eq. S4 in SI) and
therefore the folding simulations primarily satisfy the contacts
with higher confidence scores. Accordingly, a strong correlation
was observed between the contact satisfaction rate and the
accuracy of the predicted contacts with PCCs of 0.847, 0.798,
0.796 and 0.842 for the short-, medium-, long- and all-range
contacts, respectively (Supplementary Fig. S5A). Such strong
correlations in turn lead to a positive correlation between the
contact satisfaction rate and the TM-scores of the final models, as
shown in Supplementary Fig. S6, where the PCCs between the
TM-scores of the final models and the contact satisfaction rates
for all- and long-range contacts were 0.665 and 0.672,
respectively.

As an illustration, Supplementary Fig. S7 lists the trajectories of
the Replica-Exchange Monte Carlo (REMC) simulations for 1jiwI
[https://doi.org/10.2210/pdb1JIW/pdb], where both the contact
satisfaction rate and TM-score of the C-QUARK decoys increased

Fig. 3 Illustrative examples for contact-guided ab initio structure folding. a–c 3D structures for 2d7jA [https://doi.org/10.2210/pdb2D7J/pdb], 1y9iA
[https://doi.org/10.2210/pdb1Y9I/pdb] and 4peuA [https://doi.org/10.2210/pdb4PEU/pdb], with blue to red running from N- to C-terminal.
d–f corresponding contact-maps for the native structures (gray circles), predicted contacts (red circles), the contacts in the C-QUARK models (blue circles
in the upper left triangles), and contacts in the QUARK models (blue circles in the lower right triangle). In a, d, HN and HC represent the N- and C-terminal
helices, respectively, which are in contact in the native structure and C-QUARK model but not in the QUARK model, as highlighted in rectangles in the
contact-map. In b, e, numbers indicate the order of helices from N- to C-terminal, where the contacts that contribute to the correct helix packing are
highlighted by rectangles with ‘A’ and ‘P’ referring to anti-parallel and parallel, respectively, in the contact-map. In c, f, numbers indicate the order of the
beta-strands at the N-terminal whose contacts are highlighted by rectangles in the contact-map.
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as the number of simulation cycles increased. As expected, the
satisfaction rate of the predicted contacts during the QUARK
simulation had no obvious change along with the simulation and
the overall satisfaction rate was much lower than C-QUARK due
to the absence of contact restraints in the simulation (Table S3).
In Supplementary Fig. S8, we present the decoy conformations at
the initial stages after the first REMC sweep and the final stage for
target 1jiwI [https://doi.org/10.2210/pdb1JIW/pdb], where a
correct fold with a TM-score=0.757 was produced by drawing
the N- and C-terminal strands, which were initially 13.5 Å apart,
to the native contact (~4.4 Å).

C-QUARK significantly outperforms other contact-guided
folding methods for targets lacking homologous sequences
and high-accuracy contacts. While contact-map prediction
greatly improves the performance of ab initio folding, other
physical and knowledge-based energy terms, including pairwise
atomic potentials, solvation, hydrogen bonding, secondary
structure element (SSE) packing and fragment-based distance
profiles in C-QUARK (Eq. S2), also play important roles in
improving modeling accuracy, e.g., by filtering out contacts that
are physically unrealistic. Such complementarity between the
contact potential and the inherent QUARK force field is vital in
ab initio modeling. For instance, if the fragment-based distance-
profile term is removed from the C-QUARK force field, the
average TM-score of the first models by C-QUARK decreases
from 0.606 to 0.593 with a p-value of 4:16 ´ 10�4 (Table S4).
Furthermore, if the entire fragments module, including the
fragment-profile energy term and the fragment replacement
movements in the simulation optimization (see details in Meth-
ods) is excluded from C-QUARK, the performance will become
much worse, where the TM-score will be reduced from 0.606 to
0.553 with a p-value of 1:59 ´ 10�30. These data indicate that the
structural fragment module plays an important role in C-
QUARK, which further demonstrate that the success of
C-QUARK should be attributed to the interplay between pre-
dicted residue-residue contacts and the inherent force field and
structural assembly simulation process.

To further quantitatively examine the importance of the
comprehensive force field, we compared the performance of
C-QUARK with three other programs that build structural
models mainly based on predicted contacts or distances,
including CNS44, DConStruct45 (v1.0) and trRosetta7 (v1.0).
Here, CNS constructs protein structures primarily based on the
satisfaction of distance geometries. The DConStruct algorithm is
similar to CNS, but also considers idealized secondary structure
geometries and produces models using the Limited-memory
Broyden–Fletcher–Goldfarb–Shanno46 (L-BFGS) procedure
found in the MODELLER (v9.21) package47. trRosetta builds
the model with two steps. The first is L-BFGS energy
minimization with a restrained version of Rosetta, where the
restraints contain inter-residue distance and orientation distribu-
tions from deep residual neural network predictions. In the
second step, statistical energy functions are added to the force
field to relax the model. Here, we implement CNS through the
CONFOLD (v1.0) package48. The input features for CNS and
DConStruct are built on the same set of contact and secondary
structure predictions as what are used in C-QUARK. Since
trRosetta generates restraints on its own, we provided the same
MSAs but used only the contact restraints (i.e., distances where
the peak of the predicted distance distribution was lower than 8 Å
or the sum of probabilities below 8 Å was greater than 0.5), to
provide a fair comparison with C-QUARK.

The modeling results of C-QUARK, CNS and DConStruct on
the 247 test proteins are summarized in Table S5, where the

average TM-score of the first models by C-QUARK (0.606) was 14
and 16% higher than that of CNS (0.530) and DConStruct (0.524),
respectively; the differences corresponded to p-values of
3:5´ 10�20 and 1:5 ´ 10�25 as determined by one-sided Student’s
t-tests. Figs. S9A and S9B present a head-to-head TM-score
comparison between the methods, where the first models from
C-QUARK had a higher TM-score than CNS (DConStruct) in 199
(198) out of the 247 cases, while the CNS (DConStruct) models
did so for only 48 (49) of the cases. Notably, out of the 59 targets
which had either a low effective number of sequences (Nf< 15) or
a low contact-map accuracy (<30%), C-QUARK generated correct
folds for 24 cases (i.e., 41% of the cases), while CNS (DConStruct)
obtained correct folds for only 4 (4) of the cases (Table S6). Since
contact prediction with low Nf MSAs has been an bottleneck in
contact-guided ab initio modeling11, such a significantly increased
success rate by C-QUARK in generating correct models for these
challenging targets is particularly encouraging. Meanwhile, the
TM-score of C-QUARK (0.428) for these 59 targets was also
significantly (p-value= 1:36´ 10�6) higher than that of QUARK
(0.348), showing that contact-map predictions are still helpful for
folding despite the relatively lower accuracy (Supplementary
Fig. S9C and Table S6).

Since the same contact-maps were used by all three programs, it
is of interest to examine why C-QUARK could create models with
obviously better quality, particularly for the cases with low Nf and
low contact prediction accuracy. Here, we used models produced
by C-QUARK and CNS to highlight the reasons. Figure 4a and d
show an example from 3teqB [https://doi.org/10.2210/pdb3TEQ/
pdb], an alpha-protein packed with two anti-parallel, long helices.
The Nf value for this target was relatively low (=12.2), which
resulted in the contact-map (red circles in Fig. 4d) being
comprised of many falsely predicted contacts. Overall, the contact
prediction accuracy was 0.273 and 0.213 for long- and all-range
contacts, respectively. With the help of the SSE prediction and
pair-wise atomic and helix packing interactions contained in the
inherent C-QUARK force field, C-QUARK eliminated the
majority of the false-positive contacts during the simulations, as
observed in the contact-map of the final model in Fig. 4d (blue
circles in the left triangle) with accuracies of 0.667 and 0.500 for
long- and all-range contacts, respectively. As a result, C-QUARK
generated a model with a similar fold to the native with a TM-
score of 0.658, shown in blue in Fig. 4a. On the other hand, the
helices in the CNS model (shown in green in Fig. 4a) were bent in
an unrealistic fashion due to the satisfaction of false-positive
contacts (blue circles in the right triangle of Fig. 4d), resulting in a
model with a low TM-score (0.289). It is noted that without
contact information, C-QUARK would not be able to obtain a
correct model as the TM-score of the QUARK model was only
0.44 for this target, demonstrating again the importance of the
complementarity of the QUARK force field and the contact
restraints even at a low accuracy.

Figure 4b and e shows another example from 1zuuA, which is a
small beta-protein with 56 residues. Here, the Nf was very high
(=1504.9), and hence the contact prediction accuracy for short-,
medium, long- and all-range contacts was relatively high with
accuracies of 0.6, 0.625, 0.659 and 0.627, respectively. The
accuracies of the contact-maps derived from the final C-QUARK
models increased further to 0.897, 0.836, 0.775 and 0.831,
respectively, due to the removal of false positive contacts that
clashed with the pairwise atomic interactions and hydrogen
bonding between the beta-strands that formed the beta-sheets. As
a result, the TM-score of the C-QUARK model for this target was
0.808. On the other hand, the TM-score of the CNS model was
only 0.271, mainly due to false-positive contacts (highlighted by
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the dashed circles in Fig. 4e) that were correctly filtered out by
C-QUARK but that incorrectly guided the CNS modeling.

One of the hallmarks of C-QUARK is that even if contact
restraints are not present for some region of the query, the
inherent QUARK potential can often help compensate for their
absence and create correct full-length models. Figure 4c shows
such an example from 4yy2A [https://doi.org/10.2210/pdb4YY2/
pdb], for which the native contacts between the N- and
C-terminal helices (HN and HC) were not predicted (i.e., the
red circles are largely absent in the rectangles in Fig. 4f).
Additionally, due to the low Nf (=0.402), numerous false positive
contacts were scattered around the contact-map. Despite the lack
of contacts in the helix regions and the use of noisy contact
restraints, the inherent QUARK potential correctly captured the
interaction of the terminal helices and generated a model with a
correct fold and a high TM-score of 0.813. On the other hand,
CNS generated a completely wrong model with a TM-
score=0.290 by satisfying too many of the false positive contacts.
In particular, due to the missing HN-HC contact restraints, the
N-terminal helix was positioned far away from the C-terminal
helix in the CNS model.

It is important to note that in the construction of our test
dataset, homologous entries with sequence identities >30% to the
training proteins of C-QUARK were filtered out. However,
sequences homologous to the training sets of ResPRE and other
third-party contact predictors, whose contact predictions are used
by C-QUARK, were not particularly excluded from our test
dataset. One reason is that the training sets for contact predictors
are very large (e.g., the ResPRE training set included about 5,600
high-resolution protein structures and DeepContact utilized

around 14,000 proteins from SCOPe 2.06 to train the method,
etc.,), to facilitate effective deep-learning training. Thus, the
filtering of homologous proteins from these training sets would
result in an insufficient number of proteins in the test dataset.
Furthermore, C-QUARK, CNS and DConStruct utilized the same
set of contacts, thus we did not specifically filter out the
homologous proteins in the test set. However, since trRosetta
generates spatial restraints using its own deep-learning predictor,
to provide a fair comparison, we constructed a test dataset by
removing proteins with a 50% sequence identity to not only the
training sets of all the contact predictors used by C-QUARK, but
also the training set of trRosetta. This resulted in only 57 proteins
being left in this test dataset. Supplementary Table S7 shows the
results for the modeling performance of C-QUARK, CNS,
DConStruct and trRosetta on this reduced test set. The TM-
score of the C-QUARK models on this reduced dataset was
slightly lower than that of the entire test set (compared to
Supplementary Table S6), probably due to the fact that this sub-
dataset is non-redundant with the training set and is thus more
difficult for contact prediction as the average accuracy was also
reduced for CNS and DConStruct. Nevertheless, C-QUARK still
significantly outperformed all the other control methods on this
reduced dataset. It is notable that C-QUARK was 13.4% better
than trRosetta, which was modified to only use predicted contacts
derived from the distance predictions as restraints, in terms of the
average TM-score of the first models (Supplementary Fig. S9D).
Despite the fact that the relax/refinement step of trRosetta also
uses physical and knowledge-based potentials, the global fold is
primarily decided by the energy minimization step that only used
predicted restraints. These results again demonstrate that

Fig. 4 Illustrative examples for C-QUARK and CNS structure prediction on the same contact-maps. a–c Overlay of predicted models (blue: C-QUARK;
green: CNS) with the native (red) for 3teqB [https://doi.org/10.2210/pdb3TEQ/pdb], 1zuuA [https://doi.org/10.2210/pdb1ZUU/pdb] and 4yy2A
[https://doi.org/10.2210/pdb4YY2/pdb], respectively. d–e Corresponding contact-maps for the native structure (gray circles), predicted contacts (red
circles), contacts in the C-QUARK models (blue circles in the upper left triangles), and contacts in the CNS models (blue circles in the lower right triangle).
In a, the dashed circle and arrow mark the unrealistic bending of the helices in the CNS model due to satisfying too many falsely predicted contacts. In
e, the dashed circle highlights the falsely predicted beta-sheet that was filtered out by C-QUARK but not by CNS. In c, f, the dashed circle and arrow mark
the incorrect move of the C-terminal helix (HC) away from the N-terminal helix (HC) due to absent contact predictions, while C-QUARK’s inherent
potential captured the inter-helix interactions as highlighted in the rectangular region of the contact-map.
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C-QUARK outperforms other contact-based folding programs,
mainly due to the help from its comprehensive force field used in
the structural assembly simulations.

Why does C-QUARK fail for the remaining 13% of cases? The
examples in Figs. 3 and 4 have shown that the advanced force
field can help in modeling the sequences where the contact
restraints are incorrect or not available. This statement is mostly
valid for the regions comprised of regular SSEs (alpha-helix or
beta-sheet), as the QUARK force field has particular energy terms
to enhance the packing of regular SSEs5. For cases that non- or
incorrectly predicted contacts are involved in the loop or coil
regions, the structure of which is much less regular, however,
C-QUARK often fails to correctly model these regions. The data
in Fig. 2a show that C-QUARK did not produce correct folds
(TM-scores >0.5) for 51 out of the 247 test targets. Out of these
51 targets, 18 targets obtained reasonable folds with TM-scores
≥0.45, while models for the remaining 33 targets could be con-
sidered as incorrect. As shown in Supplementary Fig. S10, most of
these targets had low contact accuracy, i.e., <0.4. Nevertheless,
there were a few targets whose contact prediction accuracy for
both long- and medium-range contacts was above 0.4. The rea-
sons C-QUARK failed to fold these proteins is due to either mis-
predicted SSEs or the lack of key contact predictions in the seg-
ments involving loops and coils.

Figure 5 is an example from 2xvsA [https://doi.org/10.2210/
pdb2XVS/pdb], which shows that both these factors hindered the
modeling accuracy of C-QUARK. This target is an alpha-beta
protein that contains a 310-helix and a beta-strand at the positions
40–43 and 51–52, respectively. However, the SSE prediction
program, PSSPred49, predicted the whole region [40–52] as a coil,
as highlighted in Fig. 5a and b. Additionally, no contacts were
predicted between residues in this and other regions, although
long-range contacts exist and bring this region and the C-terminal
residues in the native structure together as highlighted by the
rectangle in Fig. 5c. Collectively, C-QUARK generated a poor
model with a TM-score of 0.42 for this target. Similar issues also
occurred for three other proteins, 1fasA [https://doi.org/10.2210/
pdb1FAS/pdb], 3nikA [https://doi.org/10.2210/pdb3NIK/pdb]
and 4h4nA [https://doi.org/10.2210/pdb4H4N/pdb], which had

medium- and long-range contact prediction accuracies >0.4 but
TM-scores <0.45, as discussed in Supplementary Fig. S11. These
examples highlight the importance of correct SSE prediction,
where the development of specific potentials handling the loop
and coil regions should be helpful to address this issue.

Performance of C-QUARK on CASP13 targets. Not all methods
have standalone packages available. To compare C-QUARK
directly with other state-of-the-art structure prediction programs,
C-QUARK participated in the 13th critical assessment of structure
prediction (CASP13) experiment as the “QUARK” server. Here,
we analyzed the performance of C-QUARK on the 64 CASP13
FM (free modeling), FM/TBM (free modeling/template-based
modeling) and TBM-hard (template-based modeling-hard) tar-
gets (Supplementary Data S3). By definition, these targets are
challenging since homologous templates are absent or difficult to
detect from the PDB library. Supplementary Table S8 lists the
average TM-scores and GDT_TS (global distance test) scores of
the first predicted models by C-QUARK and the other best five
server groups in the CASP13 experiment. Here, GDT_TS is the
standard score metric used by the CASP assessors. We collected
the models directly from the “QUARK” server which ran
C-QUARK.

This dataset should provide a relatively fairer test with state-of-
the-art structure modeling programs since most programs used
sequence-based contact-maps and all the programs had access to
the most recent sequence databases released before CASP13.
Based on the experimental structures of 64 CASP13 targets, the
average GDT_TS of C-QUARK was higher than that of all other
participating servers with p-values <0.05 as calculated by one-
sided Student’s t-tests (Supplementary Table S8). Especially in the
TBM-hard and FM categories, C-QUARK was 4 and 5% better
than the second-best method, respectively. For FM/TBM targets,
BAKER-ROSETTASERVER (60.58) was slightly better than
C-QUARK (58.94), but the difference was not statistical
significantly. Some programs, such as the RaptorX servers, also
used sequence-based distance map predictions50. It is notable that
RaptorX-Contact predicted the residue-residue distances, and
then fed the restraints into CNS to reconstruct the 3D models.
The average GDT_TS score of the C-QUARK first models (52.09)

Fig. 5 An example case (PDBID: 2xvsA [https://doi.org/10.2210/pdb2XVS/pdb]) for which C-QUARK failed to generate a correct fold. a The native
structure with a dashed circle highlighting the regions (40–43 and 51–52) which should be a 310-helix and beta-strand, respectively. However, the
secondary structure predictor, PSSpred, predicted these regions as coils. b The best in the top five models from C-QUARK with the dashed circle marking
the coil region that was not folded correctly due to the wrong SSE prediction. c The contact-maps for the native structure (gray circles), C-QUARK model
(blue) and sequence-based predictions (red), where the rectangles highlight the above-mentioned region which has no predicted contacts.
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was still 12% higher than that of the RaptorX-Contact server
(46.56). This gap was slightly smaller than the difference between
C-QUARK and CNS in our benchmark test set (Supplementary
Table S5, where C-QUARK was 16% better than CNS), which is
probably because, compared to contact prediction, additional
information can be extracted from distance predictions to help
guide the CNS modeling in RaptorX-contact. In Supplementary
Fig. S12, we highlight one of the FM targets, T0980s1-D1 (PDBID:
6gnxA [https://doi.org/10.2210/pdb6GNX/pdb]), which contains
105 residues with a 5-strand fold packed with an opposite helix. The
TM-score of the first C-QUARK model was 0.540 for this domain,
while the models generated by all other servers had TM-scores
below 0.5. The poorer prediction for this target by other programs
may be partially attributed to a low Nf value (8.2) and, subsequently,
low accuracy in predicted contacts with numerous false positives
(highlighted by the rectangles in Supplementary Fig. S12B). On the
other hand, most of the falsely predicted contacts were avoided in
the C-QUARK models, due to the complementary effect of the
inherent knowledge-based force field and the fragment-based
distance profiles, which helped to correctly fold this target.

Discussion
In this study, we developed a contact-guided ab initio folding pro-
gram, C-QUARK, which showed a significantly improved ability to
model “hard” proteins that do not have homologous templates in
the PDB. While the C-QUARK pipeline is built on the platform of
QUARK, one of the top ab initio modeling programs in the field, the
average TM-score improved by 43% when the sequence-based
contact predictions were incorporated in the pipeline. Importantly,
the overall success rate for correct fold generation by C-QUARK was
approximately 75%, which is 2.6 times higher than QUARK (29%),
indicating the importance of contact-map prediction in improving
ab initio structural modeling. Additionally, C-QUARK shows a
consistent ability to fold medium- to large-sized proteins with
lengths >150 residues which has been one of the limitations in the
field of ab initio modeling for decades51. In the recent CASP13
experiment, for example, C-QUARK obtained models with TM-
scores >0.50 for five ab initio modeling targets, T0950-D1 (PDBID:
6ek4A [https://doi.org/10.2210/pdb6EK4/pdb]), T0969-D1 (PDBID:
6cciA [https://doi.org/10.2210/pdb6CCI/pdb]), T0978-D1 [https://
predictioncenter.org/casp13/target.cgi?id=72&view=regular], T100
0-D2 (PDBID: 6u7lA [https://doi.org/10.2210/pdb6U7L/pdb]) and
T1005-D1 (PDBID: 6q64A [https://doi.org/10.2210/pdb6Q64/pdb]),
which had >300 residues.

The ability of C-QUARK to generate ab initio folds can be
partly attributed to high-accuracy contact-maps by the deep-
learning and coevolution-based predictors, as evident from the
strong correlations (0.793 and 0.620) between the contact pre-
diction accuracy and the contact accuracy and the TM-score of
the final models, respectively. Since C-QUARK uses contact-maps
from multiple programs built on different techniques26,29,34–38, a
key attribute of C-QUARK is the contact model selection pro-
cedure based on Nf, confidence score, residue separation and
sequence length, which is implemented through a 3 G contact
potential with parameters systematically optimized on the train-
ing dataset. The second important contribution to the success of
C-QUARK is the effective fragment assembly simulations guided
by the inherent knowledge- and physics-based force field exten-
ded from QUARK5,30. This contact-independent folding ability is
critical to fold proteins that have low accuracy or unevenly dis-
tributed contact-maps, since the advanced folding simulations
help to handle the regions without contact-map restraints. If we
removed the fragment module during the folding simulations, the
performance of C-QUARK would be reduced by approximately

10%. Moreover, the complementary energy terms in the inherent
force field were found to be helpful for filtering out some of the
false-positive contacts, including contacts that were not physically
realistic or even those that were physical realistic but were
inconsistent with the force field used during the folding simula-
tions. This advantage was demonstrated on the benchmark data
with the contact geometry-based structure construction pro-
grams, including CNS and DConStruct, where C-QUARK folded
6 times more targets with TM-scores >0.5 for the 59 targets with
either shallow MSAs (Nf < 15) or low contact accuracy (<30%).

Nevertheless, there are several aspects of C-QUARK that may
be improved. First, although the inherent QUARK force field can
assemble the regular SSE regions for the cases when the contact
accuracy is low, the modeling ability is much less efficient when
the low accuracy contact regions involve loops and coils, which
can be exaggerated when the SSEs are mis-predicted. Correct
secondary structure prediction and development of specific
energy terms for the loop/turn/coil residue packing will be
important for addressing this issue. Second, the dynamics of the
C-QUARK simulations are still unsatisfactory and often hinder
the modeling accuracy of large proteins in a limited time,
although the folding results do not obviously depend on the
protein length when a sufficient number of simulation cycles are
conducted (typically using 500 REMC sweeps)5. As shown in
Supplementary Fig. S13, when the simulations are terminated
after 50 h as set in the online server, for instance, the default
simulations with 500 REMC sweeps cannot be completed for
proteins larger than 230 residues; this is mainly due to the inef-
ficient energy calculation process that takes approximately 55% of
the simulation time. Further improvement of the energy calcu-
lation and optimization of the Monte Carlo (MC) movements can
help speed up the simulation processes. Third, although
C-QUARK outperformed most of the servers, including those
using distance restraints, in CASP13, the most recent progress of
the field showed advancement in modeling accuracy using deep-
learning distance, inter-residue torsion angle and hydrogen
bonding restraints for ab initio structure predictions6,7,31,52. Due
to the limited information provided by the binary distance clas-
sification in contact prediction, folding programs that solely use
contact restraints may not be comparable with the most advanced
programs that combine contact restraints with those categories of
spatial restraints (see the comparisons between C-QUARK,
AlphaFold and trRosetta in Supplementary Table S9 on the 64
CASP13 FM targets); most of these components are yet to be
contained in the current C-QUARK pipeline. Finally, modeling
multi-domain proteins is much harder than folding single-
domain structures because of the introduction of additional
degree of freedom in inter-domain orientations. For instance, the
average TM-score (0.47) of the full-length models predicted by
C-QUARK for the 21 multi-domain targets in CASP13 was much
lower than that (0.65) for the individual domains (Supplementary
Fig. S14 and Table S10). This is mainly due to the low accuracy of
inter-domain contact prediction compared to intra-domain
contact prediction, where the low contact accuracy probably
originates from the worse MSA quality for the multi-domain
sequences. Meanwhile, many energy terms of the C-QUARK
force field, including solvation and radius of gyration, have been
designed and optimized for single-domain structure folding.
Overall, while there is considerable space for further improve-
ment and many of the strategies/components are under devel-
opment in C-QUARK, the results reported in this study
demonstrate a robust and significant advantage of efficiently
combining contact-map restraints with the cutting-edge folding
assembly simulations for folding non- and distantly-homologous
proteins.
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Methods
The C-QUARK pipeline is established on the framework of the QUARK ab initio
structure prediction pipeline5, where the flowchart is depicted in Fig. 1. Compared
to the QUARK pipeline, C-QUARK has 3 major implementations, including: (i) a
multiple sequence alignment generation tool, DeepMSA32, which is used in
C-QUARK for profile construction and contact-map prediction; (ii) the deep-
learning-based and coevolution-based contact prediction module for residue-
residue contact-map prediction, combination and selection; (iii) a contact potential
term developed and carefully trained to balance its contribution with the other
energy terms, including the inherent knowledge and physics-based potentials, in
order to guide the structure assembly simulations. The primary components in the
C-QUARK pipeline are described below.

Multi-program contact prediction. Starting from a query sequence, MSAs are
generated by DeepMSA32, which performs sequential searches through two whole-
genome sequence databases (UniClust30 and UniRef90) and a metagenome
sequence database (Metaclust)53. Next, contact predictions are generated using ten
state-of-the-art contact predictors: NeBcon37 (v1.0), ResPRE29 (v1.0), DeepPLM33

(v1.0), DeepCov34 (v1.0), Deepcontact35 (v1.0), DNCON236 (v1.0),
MetaPSICOV238 (v1.0), GREMLIN26 (v2.01), CCMpred39 (v1.0) and
FreeContact40 (v1.0.21). We found that instead of using contacts from a single
predictor, it is advantageous to use multiple predictors to improve the accuracy of
the overall contact-maps. For instance, while the accuracies for the top L and L/2
long-range predicted contacts by the best predictor, ResPRE, as shown in Sup-
plementary Tables S11 and S12, are 0.538 and 0.685, respectively, these accuracies
increase to 0.561 and 0.692, respectively, when contacts are ranked based on the
consensus from multiple predictors. As a result, the modeling accuracy also
increases when contacts from multiple predictors are used as restraints, as shown in
Supplementary Fig. S15.

Contact-map combination and selection. The selection of correct contacts from
different programs is essential for C-QUARK. To train the procedure, we collected a
non-redundant set of 243 training proteins that had sequence identities below 30% to
the 247 test proteins in this study (see Supplementary Data S1). Based on the average
performance of the training proteins (Supplementary Tables S13 and S14), we
classified the contact predictors into four categories: (i) NeBcon, ResPRE and
DeepPLM as “very high”, (ii) DeepCov, Deepcontact and DNCON2 as “high”,
(iii) MetaPSICOV2 as “medium”, and (iv) GREMLIN, CCMpred and FreeContact as
“low”. Accordingly, C-QUARK selects more contacts from the predictors with higher
accuracies. In addition, C-QUARK requires that any of the selected contacts must
have a confidence score higher than a certain cutoff, which corresponds to an average
accuracy of 50% in the training dataset. This cutoff is predictor-specific and depends
on the effective number of sequences (Nf) in the MSAs32 and the length of the query
sequence (see Texts S1 and S2 in SI). On average, around 2.4*L contacts are selected
for each target and used as restraints in the fragment assembly simulations.

Fragment generation and REMC simulations. Similar to QUARK5,30, the query
sequence is scanned through a non-redundant set of 29,156 high-resolution PDB
structures by gapless threading to create a set of position-specific fragment struc-
tures with continuous lengths ranging from 1 to 20 residues. A histogram of
distances dij for each residue pair (i and j) of the query is derived from the top 200
fragments at the ith and jth positions if the fragments are from the same PDB
structure. The histogram that has a peak at the position of dij<9 Å is converted to a
distance profile for the residue pair. The distance profile and contact-map restraints
are combined with the inherent knowledge-based and physical energy terms and
used to guide the fragment assembly simulations to construct full-length models.
We note that to exclude potential contamination from homologous proteins, we
removed all protein structures that had >30% sequence identities to the query from
the template library during the generation of position-specific fragments.

For each target, five REMC simulations starting from different random
numbers are run in C-QUARK. Forty replicas are implemented in each simulation,
and the conformations in adjacent replicas are swapped following the Metropolis
criterion after a cycle comprised of (30*L1/2) MC movements. The MC movement
set consists of 11 local movements that can further be divided into three levels:
residue level (M1–M4), segmental level (M5–M8), and topology level (M9–M11) as
shown in Supplementary Fig. S16. Five hundred cycles are performed in the
simulations by default. However, the simulations are forcefully terminated after 50
CPU hours even if the assigned cycles are not completed to ensure models are
generated within a reasonable amount of time. Next, “Decoy” conformations from
the simulation trajectories are clustered by SPICKER41 to identify the largest
clusters, which correspond to the lowest free-energy states. The cluster centroids
are further refined by fragment-guided molecular dynamics (FG-MD)54 to obtain
the final models.

C-QUARK force field. The C-QUARK force field contains twelve energy terms as
described in Eq. S2 in Supplementary Text S3. While most of the energy terms were
extended from the QUARK force field with appropriate re-parameterization, the
major term accounts for the predicted contact-map restraints and is defined with a

3-gradient (3 G) form (Supplementary Fig. S17):
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where dij is the Cβ-distance between the residue pair (i, j). The depth of the
potential, Uij , is proportional to the confidence score of the contact prediction and
calculated by Eq. S4 in Supplementary Text S4.

Overall, the 3 G potential contains a negative well at an 8 Å cutoff, with a strong
force from 8 Å to D (=8þ db), followed by a weaker force from D to 80 Å being
introduced to push the target residue pairs towards the well when they are a long
distance apart (Supplementary Fig. S17). Here, the gradient width (db) of the
contact well is the only free parameter of the 3 G potential which depends on the
protein size and determines the convergence speed and satisfaction rate of the
contact-maps in combination with the inherent QUARK potential. As shown in
Supplementary Table S15, db is typically narrow, e.g., 6 Å, when the length of the
target is relatively small, e.g., < 100. On the other hand, the gradient width increases
to 12 Å when the length is >200, since simulations with larger proteins are more
difficult to converge and C-QUARK needs to use a wider well to draw the candidate
residue pairs that are further apart in distance to the well smoothly and bring the
residues pairs within 8 Å quickly. It is important that Eq. (1) is designed in a way
that the potential curve is continuous and smooth (with ∂E=∂d ¼ 0) at all three
transition points of dij ¼ 8, D and 80Å, so that the contact restraints can be
implemented smoothly without singularities. Furthermore, since contact prediction
can only tell whether the distance between a residue pair i-j is below 8 Å or not, we
designed the 3 G potential as a constant when the distance is < 8 Å. As almost all of
the residue-residue distances in a normal size protein are lower than 80 Å, the
potential is also designed as flat beyond the maximal distance threshold (80 Å).
However, between 8 Å and 80 Å, we set the potential as two regions split at the
transition point ðdij ¼ DÞ. In the region above D, a relatively weaker force is used to
avoid structural overpacking due to false positive contact predictions, while in the
region below D, a stronger force is used to quickly satisfy the contact restraints since
in this region the contact accuracy of the target residue pairs should be higher than
that in the longer-distance regions (-because most of the adjacent residue pairs in
the structure decoys should be more consistent with the inherent QUARK potential
after the equilibrium obtained by the Monte Carlo simulations). Two trigonometric
function style potentials are selected in the two regions to connect the flat areas,
since trigonometric functions are simple, continuous, smooth, and differentiable.

Besides the developed contact energy term (3 G potential), the other energy
terms have also been adjusted to maximize the folding performance of the 243
training proteins. For instance, the weight (w7) of the distance-profile energy term
(Edp in Eq. S2) was increased from 0.60 to 3.00 in the C-QUARK force field to
allow the fragment-based potential to help filter out false positive contacts.
Furthermore, we added an energy term, which accounts for the distance between
adjacent Cα atoms (Ecα in Eq. S2 and Eq. S3), to penalize adjacent residue pair with
Cα-Cα distances > 4 Å. This term is specifically designed to penalize backbone
breaks that can occur after fragment movements, as a stronger trend of bond-
breaking was seen after the introduction of contact predictions in C-QUARK.

Statistics and reproducibility. All experiments can be reproduced by running the
different software. The C-QUARK results can be reproduced by using our server
https://zhanggroup.org/C-QUARK/ or similar results can be obtained using the
standalone package https://github.com/jlspzw/C-QUARK. The statistical data
analysis is produced by R (4.0.3).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All datasets used in this study, including training, testing and CASP13 proteins are
available in the PDB database (https://www.rcsb.org) and CASP official website (https://
www.predictioncenter.org) under the accession codes provided in Supplementary Data
S1–3 accompanying this manuscript. The datasets can also be downloaded from https://
zhanggroup.org/C-QUARK/ or https://github.com/jlspzw/C-QUARK.

Code availiability
The online server and standalone package of C-QUARK are made freely available at
https://zhanggroup.org/C-QUARK/ and GitHub55 (https://github.com/jlspzw/C-
QUARK).
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