| >O00462 (141 residues) ICHLNYFTFSPIYDKSAQEWNLEIESTFDVVSSKPVGGQVIVAIPKLQTQQTYSIELQPG KRIVELFVNISKNITVETWWPHGHGNQTGYNMTVLFELDGGLNIEKSAKVYFRTVELIEE PIKGSPGLSFYFKINGFPIFL |
| Sequence |
20 40 60 80 100 120 140 | | | | | | | ICHLNYFTFSPIYDKSAQEWNLEIESTFDVVSSKPVGGQVIVAIPKLQTQQTYSIELQPGKRIVELFVNISKNITVETWWPHGHGNQTGYNMTVLFELDGGLNIEKSAKVYFRTVELIEEPIKGSPGLSFYFKINGFPIFL |
| Prediction | CCCSSSSSSSSSCCCCCCSSSSSSSSSSSSCCCCCSSSSSSSSSCCCCSSSSSSSSSCCCCCSSSSSSSCCCCCCCCCCCCCCCCCCCCSSSSSSSSSCCSSSSSSSSSSSSSSSSSSSCCCCCCCCCSSSSSSCCSSSSC |
| Confidence | 941324689871269998899999999996358714399999983786599999996499608999971477776565788999998756999999969928999999986799999972689999966999998998559 |
| H:Helix; S:Strand; C:Coil | |
| Sequence |
20 40 60 80 100 120 140 | | | | | | | ICHLNYFTFSPIYDKSAQEWNLEIESTFDVVSSKPVGGQVIVAIPKLQTQQTYSIELQPGKRIVELFVNISKNITVETWWPHGHGNQTGYNMTVLFELDGGLNIEKSAKVYFRTVELIEEPIKGSPGLSFYFKINGFPIFL |
| Prediction | 612054031210326655403030303040345563504030304646354435040555553141314145645241010233263424503020347643334443421122031234536456132010204634124 |
| Values range from 0 (buried residue) to 8 (highly exposed residue) | |
| Rank | PDB hit | ID1 | ID2 | Cov | Norm. Zscore | Downloadalignment | 20 40 60 80 100 120 140 | | | | | | | | |||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| SS Seq | CCCSSSSSSSSSCCCCCCSSSSSSSSSSSSCCCCCSSSSSSSSSCCCCSSSSSSSSSCCCCCSSSSSSSCCCCCCCCCCCCCCCCCCCCSSSSSSSSSCCSSSSSSSSSSSSSSSSSSSCCCCCCCCCSSSSSSCCSSSSC ICHLNYFTFSPIYDKSAQEWNLEIESTFDVVSSKPVGGQVIVAIPKLQTQQTYSIELQPGKRIVELFVNISKNITVETWWPHGHGNQTGYNMTVLFELDGGLNIEKSAKVYFRTVELIEEPIKGSPGLSFYFKINGFPIFL | |||||||||||||||||||
| 1 | 2vmfB | 0.20 | 0.19 | 6.12 | 1.33 | DEthreader | IATISDYYVRQLSLT-DENARLSNELIVNQIVPQKIPAEVRVNVSLTVTEVKQQVTLQPGINHITLPAEV-T--NPVRWMPNGWGTPTLYDFSAQIACGDRIVAEQSHRIGLRTIRVVEKDKD--GE-SFYFEVNIPMAMG | |||||||||||||
| 2 | 2vzvA1 | 0.16 | 0.15 | 4.96 | 1.44 | SPARKS-K | AVALRSAHVIQKLNSALDHADLTVKADVRNDSANAVQTTVAGTVA--GKPISQTVSLAAKER-KTVTFPLVGLDRPNVWWPAGMGGQHRYDLDLTASVGGTPSDAAKSKFGVRDVKATLNSSG-----GRQYSVNGKPLLI | |||||||||||||
| 3 | 6bycA | 0.23 | 0.22 | 6.88 | 0.74 | MapAlign | AVRVDGLHIAQQRV-DAHSAQVQAQLDLQAGR--SGPVQVTLDVLGPVGQFTQDAVVDPGQNRVDLAVRIAN---PKRWFPAGYGAQDRYTFVASVRDADGDSQQIKRVTGLRSVELRREKD--RFGKSMEIVINGIPIFA | |||||||||||||
| 4 | 2vmfB | 0.23 | 0.22 | 6.89 | 0.70 | CEthreader | IATISDYYVRQLSL-TDENARLSNELIVNQIVPQKIPAEVRVNVSLNGTEVKQQVTLQPGINHITLPAEVT---NPVRWMPNGWGTPTLYDFSAQIACGDRIVAEQSHRIGLRTIRVVNEK--DKDGESFYFEVNGIPMFA | |||||||||||||
| 5 | 2vzvA | 0.15 | 0.14 | 4.77 | 1.40 | MUSTER | AVALRSAHVIQKLNSALDHADLTVKADVRNDSANAVQTTVAGTVAG--KPISQTVSLAAKE-RKTVTFPLVGLDRPNVWWPAGMGGQHRYDLDLTASVGGTPSDAAKSKFGVRDVKATLNS-----SGGRQYSVNGKPLLI | |||||||||||||
| 6 | 2vzvA | 0.18 | 0.16 | 5.33 | 1.78 | HHsearch | AVALRSAHVIQKLNSALDHADLTVKADVRNDSANAVQTTVAGTV-AG-KPISQTVSLAAKERTVTFPVG---LDRPNVWWPAGMGGQHRYDLDLTASVGGTPSDAAKSKFGVRDVKATLNS-----SGGRQYSVNGKPLLI | |||||||||||||
| 7 | 2vmfB6 | 0.18 | 0.13 | 4.40 | 1.45 | FFAS-3D | IATISDYYVRQ-LSLTDENARLSNELIVNQIVPQKIPAEVRVNVSLNGTEVKQQVTLQPGINHITLPAEVT---NPVRWMPNGWGTPTLYDFSAQIACGDRIVAEQSHRIGL----------------------------- | |||||||||||||
| 8 | 3k71G4 | 0.11 | 0.10 | 3.62 | 0.63 | EigenThreader | LWVGVSMQFIPSAFECSEQTLVQSNICLYIDRDLQSSVTLDLALDPGRLSLSRVRVLGLKAHCENFNLLLPSCVEDS---------VTPITLRLNFTLVGKPLLAFTASLPFQDNLGISFSFPGLKSLEVMVWNDGEDSYG | |||||||||||||
| 9 | 2vzoA | 0.16 | 0.15 | 4.96 | 2.17 | CNFpred | AVALRSAHVIQKLNSALDHADLTVKADVRNDSANAVQTTVAGTVA--GKPISQTVSLAA-KERKTVTFPLVGLDRPNVWWPAGMGGQHRYDLDLTASVGGTPSDAAKSKFGVRDVKATLNS-----SGGRQYSVNGKPLLI | |||||||||||||
| 10 | 6bycA | 0.19 | 0.18 | 5.73 | 1.33 | DEthreader | DVRVDGLHIAQQRVD-AHSAQVQAQLDLQAG-R-SGPVQVTLDVLGKVGQFTQDAVVDPG-QNRVDLAVRIA--NPKRWFPAGYGAQDRYTFVASVRDADGDSQQIKRVTGLRSVELRREKDRF-G-KSMEIVINGIPIAG | |||||||||||||
| ||||||||||||||||||||
|
Top 10 structural analogs in PDB (as identified by
TM-align)
|
|
Top 5 enzyme homologs in PDB
|
Template proteins with similar binding site:
|
| References: | |
| 1. | Wei Zheng, Qiqige Wuyun, Yang Li, Quancheng Liu, Xiaogen Zhou, Yiheng Zhu, P. Lydia Freddolino, Yang Zhang. Integrating deep learning potentials with I-TASSER for single- and multi-domain protein structure prediction. Submitted. 2023. |