| >P13797 (140 residues) ELSRNEALAALLRDGETLEELMKLSPEELLLRWANFHLENSGWQKINNFSADIKDSKAYF HLLNQIAPKGQKEGEPRIDINMSGFNETDDLKRAESMLQQADKLGCRQFVTPADVVSGNP KLNLAFVANLFNKYPALTKP |
| Sequence |
20 40 60 80 100 120 140 | | | | | | | ELSRNEALAALLRDGETLEELMKLSPEELLLRWANFHLENSGWQKINNFSADIKDSKAYFHLLNQIAPKGQKEGEPRIDINMSGFNETDDLKRAESMLQQADKLGCRQFVTPADVVSGNPKLNLAFVANLFNKYPALTKP |
| Prediction | CCCHCHHHHHHCCCCCCHHHHHCCCHHHHHHHHHHHHHHHCCCCCCCCCCCHHHHHHHHHHHHHHHCCCCCCCCCCCCCCCCCCCCCCCHHHHHHHHHHHHHHHCCCCCCCHHHHCCCCCHHHHHHHHHHHHHCCCCCCC |
| Confidence | 90118589986235778899863999999999999996324997478852111333999999999786666654445677744477001999999999999991997657888821699515899999999973488999 |
| H:Helix; S:Strand; C:Coil | |
| Sequence |
20 40 60 80 100 120 140 | | | | | | | ELSRNEALAALLRDGETLEELMKLSPEELLLRWANFHLENSGWQKINNFSADIKDSKAYFHLLNQIAPKGQKEGEPRIDINMSGFNETDDLKRAESMLQQADKLGCRQFVTPADVVSGNPKLNLAFVANLFNKYPALTKP |
| Prediction | 84662440040145764264137241443014303420574645404302520440300010022124644555445342435415564226004400520561705420406202533440100000100342474668 |
| Values range from 0 (buried residue) to 8 (highly exposed residue) | |
| Rank | PDB hit | ID1 | ID2 | Cov | Norm. Zscore | Downloadalignment | 20 40 60 80 100 120 140 | | | | | | | | |||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| SS Seq | CCCHCHHHHHHCCCCCCHHHHHCCCHHHHHHHHHHHHHHHCCCCCCCCCCCHHHHHHHHHHHHHHHCCCCCCCCCCCCCCCCCCCCCCCHHHHHHHHHHHHHHHCCCCCCCHHHHCCCCCHHHHHHHHHHHHHCCCCCCC ELSRNEALAALLRDGETLEELMKLSPEELLLRWANFHLENSGWQKINNFSADIKDSKAYFHLLNQIAPKGQKEGEPRIDINMSGFNETDDLKRAESMLQQADKLGCRQFVTPADVVSGNPKLNLAFVANLFNKYPALTKP | |||||||||||||||||||
| 1 | 1rt8A | 0.45 | 0.38 | 11.06 | 1.17 | DEthreader | GKI------------TLDQFLRL-PPEKILLRWFNYHLKAANWPRTVSNSKDVSDGENYTVLLNQLAPE---LC-SRAPLQT-T----DVLQRAEQVLQNAEKLDCRKYLTPTAMVAGNPKLNLAFVAHLFNTHP-GLEP | |||||||||||||
| 2 | 1aoaA2 | 1.00 | 0.83 | 23.20 | 2.01 | SPARKS-K | ----------------TLEELMKLSPEELLLRWANFHLENSGWQKINNFSADIKDSKAYFHLLNQIAPKGQKEGEPRIDINMSGFNETDDLKRAESMLQQADKLGCRQFVTPADVVSGNPKLNLAFVANLFN-------- | |||||||||||||
| 3 | 1pxyB | 0.22 | 0.21 | 6.53 | 0.89 | MapAlign | -KKLILGLLWQLMRFHMLQLLKGKEMDADILSWANRKVRTMGRLQIESFKDSLSSGLFFLNLLWAVEPRV-----VNWNLVTKGETDDEKRLNATYIVSVARKLGCSVFLLPEDIVEVNQKMILILTASIMYWSLQR--- | |||||||||||||
| 4 | 1pxyB3 | 0.41 | 0.36 | 10.71 | 0.61 | CEthreader | NLKKTPQLV------EDVEELLRLPPEKVLLKWMNFHLKKGGYKTVSNFSADLKDAQAYAFLLNVLAPEHCDPATLDAK---------DPLERAELVLSHAERMNCKRYLTAEEIVEGSSTLNLAFVAQIFHERNGLN-- | |||||||||||||
| 5 | 1aoaA2 | 1.00 | 0.83 | 23.20 | 1.95 | MUSTER | ----------------TLEELMKLSPEELLLRWANFHLENSGWQKINNFSADIKDSKAYFHLLNQIAPKGQKEGEPRIDINMSGFNETDDLKRAESMLQQADKLGCRQFVTPADVVSGNPKLNLAFVANLFN-------- | |||||||||||||
| 6 | 1sjjA | 0.18 | 0.16 | 5.37 | 2.07 | HHsearch | NVKMTLGMIWTIILRFAIQDISETSAKEGLLLWYQRKTAPYKNVNIQNFHISWKDGLGFCALIHRHRPELIDYG---------KLRKDDPLTNLNTAFDVAEKLDIPKMLDAEDIVRPDEKAIMTYVSSFYHAFSGAQKA | |||||||||||||
| 7 | 1aoaA2 | 1.00 | 0.82 | 23.00 | 1.84 | FFAS-3D | ----------------TLEELMKLSPEELLLRWANFHLENSGWQKINNFSADIKDSKAYFHLLNQIAPKGQKEGEPRIDINMSGFNETDDLKRAESMLQQADKLGCRQFVTPADVVSGNPKLNLAFVANLF--------- | |||||||||||||
| 8 | 2wa5A1 | 0.20 | 0.18 | 5.73 | 1.13 | EigenThreader | MAPVTEKDLAED---APWKKI----QQNTFTRWCNEHLKCVNKRIGN-LQTDLSDGLRLIALLEVLSQK-----RMYRKYHQRPTFRQMQLENVSVALEFLDRESILVSIDSKAIVDGNLKLILGLVWTLILHYSISMPV | |||||||||||||
| 9 | 1aoaA | 0.87 | 0.82 | 23.12 | 1.27 | CNFpred | KPHLVLGLLWQIIKIGLFEELMKLSPEELLLRWANFHLENSGWQKINNFSADIKDSKAYFHLLNQIAPKGQKEGEPRIDINMSGFNETDDLKRAESMLQQADKLGCRQFVTPADVVSGNPKLNLAFVANLFN-------- | |||||||||||||
| 10 | 1pxyB3 | 0.38 | 0.34 | 9.95 | 1.17 | DEthreader | ADLNL--TPQ-L-VEDV-EELLRLPPEKVLLKWMNFHLKKGGYKKTVSNSADLKDAQAYAFLLNVLAPE---H--CDPATLDAK----DPLERAELVLSHAERMNCKRYLTAEEIVEGSSTLNLAFVAQIFHER--NGLN | |||||||||||||
| ||||||||||||||||||||
|
Top 10 structural analogs in PDB (as identified by
TM-align)
|
|
Top 5 enzyme homologs in PDB
|
Template proteins with similar binding site:
|
| References: | |
| 1. | Wei Zheng, Qiqige Wuyun, Yang Li, Quancheng Liu, Xiaogen Zhou, Yiheng Zhu, P. Lydia Freddolino, Yang Zhang. Integrating deep learning potentials with I-TASSER for single- and multi-domain protein structure prediction. Submitted. 2023. |