| >Q68D85 (141 residues) MTWRAAASTCAALLILLWALTTEGDLKVEMMAGGTQITPLNDNVTIFCNIFYSQPLNITS MGITWFWKSLTFDKEVKVFEFFGDHQEAFRPGAIVSPWRLKSGDASLRLPGIQLEEAGEY RCEVVVTPLKAQGTVQLEVVA |
| Sequence |
20 40 60 80 100 120 140 | | | | | | | MTWRAAASTCAALLILLWALTTEGDLKVEMMAGGTQITPLNDNVTIFCNIFYSQPLNITSMGITWFWKSLTFDKEVKVFEFFGDHQEAFRPGAIVSPWRLKSGDASLRLPGIQLEEAGEYRCEVVVTPLKAQGTVQLEVVA |
| Prediction | CCCCCCHHHHHHHHHHHHHHCCCCCSSSSSCCCCCSSSSCCCCSSSSSSSCCCCCCCCCCSSSSSSSSCCCCCCSSSSSSSCCCCCCCCCCCSSSSCCCCCCCSSSSSSCCCCSCSCSSSSSSSSSCCCCCSSSSSSSSSC |
| Confidence | 997500578999986766532676189999389839996697499996843899998641499999906899843899998499254325858996345667738999846524016599999997798518999999949 |
| H:Helix; S:Strand; C:Coil | |
| Sequence |
20 40 60 80 100 120 140 | | | | | | | MTWRAAASTCAALLILLWALTTEGDLKVEMMAGGTQITPLNDNVTIFCNIFYSQPLNITSMGITWFWKSLTFDKEVKVFEFFGDHQEAFRPGAIVSPWRLKSGDASLRLPGIQLEEAGEYRCEVVVTPLKAQGTVQLEVVA |
| Prediction | 754433332021223101213343434040436643403144503030304454615274040202145576553220022357446534531403464165140103047043524340313033456454130403048 |
| Values range from 0 (buried residue) to 8 (highly exposed residue) | |
| Rank | PDB hit | ID1 | ID2 | Cov | Norm. Zscore | Downloadalignment | 20 40 60 80 100 120 140 | | | | | | | | |||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| SS Seq | CCCCCCHHHHHHHHHHHHHHCCCCCSSSSSCCCCCSSSSCCCCSSSSSSSCCCCCCCCCCSSSSSSSSCCCCCCSSSSSSSCCCCCCCCCCCSSSSCCCCCCCSSSSSSCCCCSCSCSSSSSSSSSCCCCCSSSSSSSSSC MTWRAAASTCAALLILLWALTTEGDLKVEMMAGGTQITPLNDNVTIFCNIFYSQPLNITSMGITWFWKSLTFDKEVKVFEFFGDHQEAFRPGAIVSPWRLKSGDASLRLPGIQLEEAGEYRCEVVVTPLKAQGTVQLEVVA | |||||||||||||||||||
| 1 | 3pv6A | 0.99 | 0.83 | 23.24 | 1.33 | DEthreader | ----------------------A-DLKVEMMAGGTQITPLNDNVTIFCNIFYSQPLNITSMGITWFWKSLTFDKEVKVFEFFGDHQEAFRPGAIVSPWRLKSGDASLRLPGIQLEEAGEYRCEVVVTPLKAQGTVQLEVVA | |||||||||||||
| 2 | 3pv6A1 | 0.99 | 0.82 | 23.04 | 1.22 | SPARKS-K | -----------------------ADLKVEMMAGGTQITPLNDNVTIFCNIFYSQPLNITSMGITWFWKSLTFDKEVKVFEFFGDHQEAFRPGAIVSPWRLKSGDASLRLPGIQLEEAGEYRCEVVVTPLKAQGTVQLEVV- | |||||||||||||
| 3 | 3pv6A | 0.99 | 0.83 | 23.24 | 0.50 | MapAlign | -----------------------ADLKVEMMAGGTQITPLNDNVTIFCNIFYSQPLNITSMGITWFWKSLTFDKEVKVFEFFGDHQEAFRPGAIVSPWRLKSGDASLRLPGIQLEEAGEYRCEVVVTPLKAQGTVQLEVVA | |||||||||||||
| 4 | 3pv6A | 0.99 | 0.83 | 23.24 | 0.54 | CEthreader | -----------------------ADLKVEMMAGGTQITPLNDNVTIFCNIFYSQPLNITSMGITWFWKSLTFDKEVKVFEFFGDHQEAFRPGAIVSPWRLKSGDASLRLPGIQLEEAGEYRCEVVVTPLKAQGTVQLEVVA | |||||||||||||
| 5 | 3pv6A1 | 0.99 | 0.82 | 23.04 | 1.21 | MUSTER | -----------------------ADLKVEMMAGGTQITPLNDNVTIFCNIFYSQPLNITSMGITWFWKSLTFDKEVKVFEFFGDHQEAFRPGAIVSPWRLKSGDASLRLPGIQLEEAGEYRCEVVVTPLKAQGTVQLEVV- | |||||||||||||
| 6 | 3pv6A1 | 0.99 | 0.82 | 23.04 | 0.41 | HHsearch | -----------------------ADLKVEMMAGGTQITPLNDNVTIFCNIFYSQPLNITSMGITWFWKSLTFDKEVKVFEFFGDHQEAFRPGAIVSPWRLKSGDASLRLPGIQLEEAGEYRCEVVVTPLKAQGTVQLEVV- | |||||||||||||
| 7 | 3pv6A1 | 0.99 | 0.82 | 23.04 | 1.84 | FFAS-3D | -----------------------ADLKVEMMAGGTQITPLNDNVTIFCNIFYSQPLNITSMGITWFWKSLTFDKEVKVFEFFGDHQEAFRPGAIVSPWRLKSGDASLRLPGIQLEEAGEYRCEVVVTPLKAQGTVQLEVV- | |||||||||||||
| 8 | 3pv6A1 | 0.99 | 0.82 | 23.04 | 0.35 | EigenThreader | -----------------------ADLKVEMMAGGTQITPLNDNVTIFCNIFYSQPLNITSMGITWFWKSLTFDKEVKVFEFFGDHQEAFRPGAIVSPWRLKSGDASLRLPGIQLEEAGEYRCEVVVTPLKAQGTVQLEVV- | |||||||||||||
| 9 | 4zsoE | 1.00 | 0.83 | 23.23 | 1.69 | CNFpred | ------------------------DLKVEMMAGGTQITPLNDNVTIFCNIFYSQPLNITSMGITWFWKSLTFDKEVKVFEFFGDHQEAFRPGAIVSPWRLKSGDASLRLPGIQLEEAGEYRCEVVVTPLKAQGTVQLEVVA | |||||||||||||
| 10 | 3pv6A1 | 0.99 | 0.82 | 23.04 | 1.17 | DEthreader | ----------------------A-DLKVEMMAGGTQITPLNDNVTIFCNIFYSQPLNITSMGITWFWKSLTFDKEVKVFEFFGDHQEAFRPGAIVSPWRLKSGDASLRLPGIQLEEAGEYRCEVVVTPLKAQGTVQLEVV- | |||||||||||||
| ||||||||||||||||||||
|
Top 10 structural analogs in PDB (as identified by
TM-align)
|
|
Top 5 enzyme homologs in PDB
|
Template proteins with similar binding site:
|
| References: | |
| 1. | Wei Zheng, Qiqige Wuyun, Yang Li, Quancheng Liu, Xiaogen Zhou, Yiheng Zhu, P. Lydia Freddolino, Yang Zhang. Integrating deep learning potentials with I-TASSER for single- and multi-domain protein structure prediction. Submitted. 2023. |