| >Q6PF05 (142 residues) DHHWKCARALANLAYGYLTLRGLPVQAKKHATSAKNTLLTWKANTTSNKEKEEILEALVK LYYTLGVAWLLQNRGREAYFNLQKAERNMKELKELYKGGVCELQVSENDLTLALGRASLA IHRLNLALAYFEKAIGDVIAAK |
| Sequence |
20 40 60 80 100 120 140 | | | | | | | DHHWKCARALANLAYGYLTLRGLPVQAKKHATSAKNTLLTWKANTTSNKEKEEILEALVKLYYTLGVAWLLQNRGREAYFNLQKAERNMKELKELYKGGVCELQVSENDLTLALGRASLAIHRLNLALAYFEKAIGDVIAAK |
| Prediction | CCHHHHHHHHHHHHHHHHHHCCCHHHHHHHHHHHHHHHHHHCCCCCCCHHHHHHHHHHHHHHHHHHHHHHHHCCCHHHHHHHHHHHHHHHHHHHHCCCCCCCHHHHHHHHHHHHHHHHHHCCCHHHHHHHHHHHHHHHHHCC |
| Confidence | 9168999999999999999728649999999999999995036766531478899999999999999999861414789999999999999998515653552456799999999999824878999999999999887339 |
| H:Helix; S:Strand; C:Coil | |
| Sequence |
20 40 60 80 100 120 140 | | | | | | | DHHWKCARALANLAYGYLTLRGLPVQAKKHATSAKNTLLTWKANTTSNKEKEEILEALVKLYYTLGVAWLLQNRGREAYFNLQKAERNMKELKELYKGGVCELQVSENDLTLALGRASLAIHRLNLALAYFEKAIGDVIAAK |
| Prediction | 8621410400040020102146244404520640441034234434456534511410131031102012326625503531550451054147145354364422424033423402352632730151034015404568 |
| Values range from 0 (buried residue) to 8 (highly exposed residue) | |
| Rank | PDB hit | ID1 | ID2 | Cov | Norm. Zscore | Downloadalignment | 20 40 60 80 100 120 140 | | | | | | | | |||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| SS Seq | CCHHHHHHHHHHHHHHHHHHCCCHHHHHHHHHHHHHHHHHHCCCCCCCHHHHHHHHHHHHHHHHHHHHHHHHCCCHHHHHHHHHHHHHHHHHHHHCCCCCCCHHHHHHHHHHHHHHHHHHCCCHHHHHHHHHHHHHHHHHCC DHHWKCARALANLAYGYLTLRGLPVQAKKHATSAKNTLLTWKANTTSNKEKEEILEALVKLYYTLGVAWLLQNRGREAYFNLQKAERNMKELKELYKGGVCELQVSENDLTLALGRASLAIHRLNLALAYFEKAIGDVIAAK | |||||||||||||||||||
| 1 | 3sf4A | 0.19 | 0.16 | 5.23 | 1.33 | DEthreader | EDLKTLSAIYSQLGNAYFYL-HDYAKALEYHHHDLTLARTIG-----------DQLGEAKASGNLGNTLKVLGNFDEAIVCCQRHLDISRELN---------DKVGEARALYNLGNVYHAKGALQAAVDFYEENLSLVTALG | |||||||||||||
| 2 | 4gyoA3 | 0.07 | 0.06 | 2.38 | 1.26 | SPARKS-K | LTGLLEYYFYYFRGMYEFKQ-KNFILAIDHYKHAEEKLEYVED-----------EIEKAEFLFKVAEVYYHIKQTYFSMNYASQALDIYTKYELYGR--------RRVQCEFIIAGNLTDVYHHEKALTHLCSALEHARQLE | |||||||||||||
| 3 | 3ulqA2 | 0.15 | 0.13 | 4.27 | 1.83 | FFAS-3D | -DRIEKAEFFFKMSESYYY-MKQTYFSMDYARQAYEIYKEHEAY----------NIRLLQCHSLFATNFLDLKQYEDAISHFQKAYSMAEAEKQPQL---------MGRTLYNIGLCKNSQSQYEDAIPYFKRAIAVFEES- | |||||||||||||
| 4 | 5jheA | 0.11 | 0.10 | 3.57 | 1.33 | DEthreader | GKALEAANIIKESGTLLFKK-KDYSNAFFKYRKSLNYINEYMPEPVDKERNIQFINLKMKIYLNLSLVLFNLERYDDAIMYATYLLEM--DNV---------PNRDQAKAYYRRGNSYLKKKRLDEALQDYIFCKEKNPDD- | |||||||||||||
| 5 | 4yvoA | 0.14 | 0.12 | 4.07 | 1.22 | SPARKS-K | -PKKQELISKLKTGKTFLRN-QEPEKAYTEFKIALELAQSLKD-----------PTEEKKAARGLGASLQRQGKYREAIQYHSMVLAISKRES---------EDSGITEAYGAIADCYTELGDLEKAGKFYDTYIARLETD- | |||||||||||||
| 6 | 5jheA | 0.11 | 0.10 | 3.56 | 0.63 | MapAlign | GKALEAANIIKESGTLLFK-KKDYSNAFFKYRKSLNYINEYMPEPVDKERNIQFINLKMKIYLNLSLVLFNLERYDDAIMYATYLLEMV-------------PNRDQAKAYYRRGNSYLKKKRLDEALQDYIFCKEKNPDD- | |||||||||||||
| 7 | 4gyoA | 0.13 | 0.11 | 3.90 | 0.34 | CEthreader | EDEIEKAEFLFKVAEVYYHI-KQTYFSMNYASQALDIYTKYE----------LYGRRRVQCEFIIAGNLTDVYHHEKALTHLCSALEHARQLE---------EAYMIAAAYYNVGHCKYSLGDYKEAEGYFKTAAAIFEEHN | |||||||||||||
| 8 | 5o09C | 0.19 | 0.17 | 5.45 | 0.99 | MUSTER | EESDKVATIKNNLAMIFKQL--KFERAEGYYCEALETFQRLDGEQS---------ARVASVYNNLGVLYYSHMDVDRAQVMHERALAIRQNLHE-----GQMDPADLSQTFINLGAVYKAAGDFQKAEACVDRAKRIRAAMN | |||||||||||||
| 9 | 5o09C | 0.16 | 0.15 | 5.18 | 0.66 | HHsearch | MDPADLSQTFINLGAVYKA-AGDFQKAEACVDRAKRIRAAMNGDTARYREALKQDPDLTGIYSLLAHLYDRWGRMDKAAEFYELALKISAENGLEESLAMLETSARVASVYNNLGVLYYSHMDVDRAQVMHERALAIRQNLH | |||||||||||||
| 10 | 4yvoA | 0.14 | 0.11 | 3.87 | 1.73 | FFAS-3D | -PKKQELISKLKTGKTFLR-NQEPEKAYTEFKIALELA-----------QSLKDPTEEKKAARGLGASLQRQGKYREAIQYHSMVLAISKRE---------SEDSGITEAYGAIADCYTELGDLEKAGKFYDTYIARLET-- | |||||||||||||
| ||||||||||||||||||||
|
Top 10 structural analogs in PDB (as identified by
TM-align)
|
|
Top 5 enzyme homologs in PDB
|
Template proteins with similar binding site:
|
| References: | |
| 1. | Wei Zheng, Qiqige Wuyun, Yang Li, Quancheng Liu, Xiaogen Zhou, Yiheng Zhu, P. Lydia Freddolino, Yang Zhang. Integrating deep learning potentials with I-TASSER for single- and multi-domain protein structure prediction. Submitted. 2023. |