| >Q86Y01 (140 residues) TQPPGKMEFHLIPHSLPGFPDTQTIRIVYDIPTGIQGPEHPNPGKKFTARGFPRHCYLPN NEKGRKVLRLLITAWERRLIFTIGTSNTTGESDTVVWNEIHHKTEFGSNLTGHGYPDASY LDNVLAELTAQGVSEAAAKA |
| Sequence |
20 40 60 80 100 120 140 | | | | | | | TQPPGKMEFHLIPHSLPGFPDTQTIRIVYDIPTGIQGPEHPNPGKKFTARGFPRHCYLPNNEKGRKVLRLLITAWERRLIFTIGTSNTTGESDTVVWNEIHHKTEFGSNLTGHGYPDASYLDNVLAELTAQGVSEAAAKA |
| Prediction | CCCCCSSSSSSSCCCCCCCCCCCSSSSSSSCCCCCCCCCCCCCCCCCCCCCCCSSSSCCCCHHHHHHHHHHHHHHHCCCSSSSSSCSCCCCCCSSSSCCCCCCCCCCCCCCCCCCCCHHHHHHHHHHHHHHCCCCCCCCC |
| Confidence | 98896599998568899999987799999848875578899999867679821589779997899999999999980976897101026999779968854325778997778999908999999999981987211459 |
| H:Helix; S:Strand; C:Coil | |
| Sequence |
20 40 60 80 100 120 140 | | | | | | | TQPPGKMEFHLIPHSLPGFPDTQTIRIVYDIPTGIQGPEHPNPGKKFTARGFPRHCYLPNNEKGRKVLRLLITAWERRLIFTIGTSNTTGESDTVVWNEIHHKTEFGSNLTGHGYPDASYLDNVLAELTAQGVSEAAAKA |
| Prediction | 84371504143355404226634203020303523457612433441545314220002227504401620450074412020233444447220303604031434334643112135105302630463315556668 |
| Values range from 0 (buried residue) to 8 (highly exposed residue) | |
| Rank | PDB hit | ID1 | ID2 | Cov | Norm. Zscore | Downloadalignment | 20 40 60 80 100 120 140 | | | | | | | | |||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| SS Seq | CCCCCSSSSSSSCCCCCCCCCCCSSSSSSSCCCCCCCCCCCCCCCCCCCCCCCSSSSCCCCHHHHHHHHHHHHHHHCCCSSSSSSCSCCCCCCSSSSCCCCCCCCCCCCCCCCCCCCHHHHHHHHHHHHHHCCCCCCCCC TQPPGKMEFHLIPHSLPGFPDTQTIRIVYDIPTGIQGPEHPNPGKKFTARGFPRHCYLPNNEKGRKVLRLLITAWERRLIFTIGTSNTTGESDTVVWNEIHHKTEFGSNLTGHGYPDASYLDNVLAELTAQGVSEAAAKA | |||||||||||||||||||
| 1 | 6y22A | 0.74 | 0.71 | 20.26 | 1.33 | DEthreader | TQPQGKMEVLRFQMSLPGHEDCGTILIVYSIPHGIQGPEHPNPGKPFTARGFPRQCYLPDNAQGRKVLELLKVAWKRRLIFTVGTSSTTGETDTVVWNEIHHKTEMDRNITGHGYPDPNYLQNVLAELAAQGVTED---- | |||||||||||||
| 2 | 6y5nA2 | 1.00 | 0.96 | 27.00 | 5.13 | SPARKS-K | TQPPGKMEFHLIPHSLPGFPDTQTIRIVYDIPTGIQGPEHPNPGKKFTARGFPRHCYLPNNEKGRKVLRLLITAWERRLIFTIGTSNTTGESDTVVWNEIHHKTEFGSNLTGHGYPDASYLDNVLAELTAQGVSE----- | |||||||||||||
| 3 | 6y5nA2 | 1.00 | 0.96 | 27.00 | 1.58 | MapAlign | TQPPGKMEFHLIPHSLPGFPDTQTIRIVYDIPTGIQGPEHPNPGKKFTARGFPRHCYLPNNEKGRKVLRLLITAWERRLIFTIGTSNTTGESDTVVWNEIHHKTEFGSNLTGHGYPDASYLDNVLAELTAQGVSE----- | |||||||||||||
| 4 | 6y5nA2 | 1.00 | 0.96 | 27.00 | 1.80 | CEthreader | TQPPGKMEFHLIPHSLPGFPDTQTIRIVYDIPTGIQGPEHPNPGKKFTARGFPRHCYLPNNEKGRKVLRLLITAWERRLIFTIGTSNTTGESDTVVWNEIHHKTEFGSNLTGHGYPDASYLDNVLAELTAQGVSE----- | |||||||||||||
| 5 | 3pg6A | 0.49 | 0.46 | 13.48 | 3.36 | MUSTER | NQPEGSMVFTVSRDSLPGYESFGTIVITYSMKAGIQTEEHPNPGKRYP--GIQRTAYLPDNKEGRKVLKLLYRAFDQKLIFTVGYSRVLGVSDVITWNDIHHKTSRFGGPEMYGYPDPSYLKRVKEELKAKGIE------ | |||||||||||||
| 6 | 6y22A2 | 0.74 | 0.71 | 20.26 | 4.81 | HHsearch | TQPQGKMEVLRFQMSLPGHEDCGTILIVYSIPHGIQGPEHPNPGKPFTARGFPRQCYLPDNAQGRKVLELLKVAWKRRLIFTVGTSSTTGETDTVVWNEIHHKTEMDRNITGHGYPDPNYLQNVLAELAAQGVTED---- | |||||||||||||
| 7 | 6y5nA2 | 1.00 | 0.96 | 27.00 | 2.57 | FFAS-3D | TQPPGKMEFHLIPHSLPGFPDTQTIRIVYDIPTGIQGPEHPNPGKKFTARGFPRHCYLPNNEKGRKVLRLLITAWERRLIFTIGTSNTTGESDTVVWNEIHHKTEFGSNLTGHGYPDASYLDNVLAELTAQGVSE----- | |||||||||||||
| 8 | 6y22A2 | 0.74 | 0.71 | 20.26 | 1.50 | EigenThreader | TQPQGKMEVLRFQMSLPGHEDCGTILIVYSIPHGIQGPEHPNPGKPFTARGFPRQCYLPDNAQGRKVLELLKVAWKRRLIFTVGTSSTTGETDTVVWNEIHHKTEMDRNITGHGYPDPNYLQNVLAELAAQGVTED---- | |||||||||||||
| 9 | 3pg6A | 0.49 | 0.46 | 13.48 | 3.09 | CNFpred | NQPEGSMVFTVSRDSLPGYESFGTIVITYSMKAGIQTEEHPNPGKRYP--GIQRTAYLPDNKEGRKVLKLLYRAFDQKLIFTVGYSRVLGVSDVITWNDIHHKTSRFGGPEMYGYPDPSYLKRVKEELKAKGIE------ | |||||||||||||
| 10 | 6y22A2 | 0.74 | 0.71 | 20.26 | 1.33 | DEthreader | TQPQGKMEVLRFQMSLPGHEDCGTILIVYSIPHGIQGPEHPNPGKPFTARGFPRQCYLPDNAQGRKVLELLKVAWKRRLIFTVGTSSTTGETDTVVWNEIHHKTEMDRNITGHGYPDPNYLQNVLAELAAQGVTED---- | |||||||||||||
| ||||||||||||||||||||
|
Top 10 structural analogs in PDB (as identified by
TM-align)
|
|
Top 5 enzyme homologs in PDB
|
Template proteins with similar binding site:
|
| References: | |
| 1. | Wei Zheng, Qiqige Wuyun, Yang Li, Quancheng Liu, Xiaogen Zhou, Yiheng Zhu, P. Lydia Freddolino, Yang Zhang. Integrating deep learning potentials with I-TASSER for single- and multi-domain protein structure prediction. Submitted. 2023. |