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ABSTRACT Recent single-macromolecule observations revealed that the force/extension characteristics of single-stranded
DNA (ssDNA) are closely related to solution ionic concentration and DNA sequence composition. To understand this, we
studied the elastic property of ssDNA through the Monte Carlo implementation of a modified freely jointed chain (FJC), with
electrostatic, base-pairing, and base-pair stacking interactions all incorporated. The simulated force-extension profiles for
both random and designed sequences have attained quantitative agreements with the experimental data. In low-salt solution,
electrostatic interaction dominates, and at low forces, the molecule can be more easily aligned than an unmodified FJC. In
high-salt solution, secondary hairpin structure appears in ssDNA by the formation of base pairs between complementary
bases, and external stretching causes a hairpin-coil structural transition, which is continuous for ssDNA made of random
sequences. In designed sequences such as poly(dA-dT) and poly(dG-dC), the stacking potential between base pairs
encourages the aggregation of base pairs into bulk hairpins and makes the hairpin-coil transition a discontinuous (first-order)
process. The sensitivity of elongation to the base-pairing rule is also investigated. The comparison of modeling calculations
and the experimental data suggests that the base pairing of single-stranded polynucleotide molecules tends to form a nested
and independent planar hairpin structure rather than a random intersecting pattern.

INTRODUCTION

Throughout recent years, the new micromanipulation tech-
niques combining high-force sensitivity (on the order of
piconewtons (pN) and below) with accurate positioning
(with precision on the order of angstroms) have offered
researchers opportunities to directly manipulate individual
biological macromolecules such as DNA and protein and to
measure both intermolecular and intramolecular forces with
high accuracy (see Smith et al., 1992, 1996; Cluzel et al.,
1996; Strick et al., 1996; Rief et al., 1997; Lu et al., 1998;
for recent reviews see Bustamante et al., 2000; Clausen-
Schaumann et al., 2000). One of the main concerns of these
experimental processes is the elastic response of a single
biopolymer to an externally applied force field, i.e., the
force/extension characteristic. Thanks to the intensive ef-
forts from both experimentalists and theorists, it is now well
established that the double-stranded DNA (dsDNA) exists
with different force/extension regimes, stemming from its
unique double-helix structures. For example, in the low-
force regime, the elasticity of dsDNA is entropy dominated
and the experimental force-extension data obtained with the
magnetic bead method can be excellently described by the
standard entropic worm-like chain model (Bustamante et
al., 1994; Vologodskii, 1994; Marko and Siggia, 1995); in
the high-force regime (starting as several tens of piconew-

tons), which is accessible with optical tweezers or atomic
force microscopy, when the external force is comparable
with the base-pair stacking interaction in dsDNA the poly-
mers can be suddenly stretched to about two times its
B-form length in a very narrow force range (Cluzel et al.,
1996; Smith et al., 1996). An explanation of this regime is
attributed to the short-ranged nature of base-pair stacking
interaction. At large forces, the stacking potential can no
longer stabilize the B-form configuration of dsDNA and the
(optimally) stacked helical pattern is severely distorted
(Zhou et al., 1999, 2000), and therefore a structural transi-
tion from canonical B-form to a new overstretched confor-
mation called S-DNA is triggered.

With the mechanical features of dsDNA considerably un-
derstood, much attention was recently turned to single-stranded
(ss)DNA or RNA molecules. As a linear chain of nucleotides
with thin diameter and high flexibility, ssDNA (or RNA) is
more contractile than dsDNA at low forces; however, it can be
stretched to a greater length at high force because it no longer
forms a helix. In 150 mM NaCl solution, the force/extension
curve of a ssDNA melted froml-phage DNA can be fit with
a simple freely jointed chain (FJC) of Kuhn length 1.5 nm with
an additional stretch modulus (Smith et al., 1996). Recent
measurements showed that the elongation characteristics of
ssDNA are very sensitive to the ionic concentration of solution,
and the FJC model is not valid in both high ionic (e.g., 5 mM
MgCl2) and low ionic (e.g., 2 mM NaCl) solutions (Wuite et
al., 2000; Bustamante et al., 2000; Maier et al., 2000). To
explain the high-salt data, Montanari and Mezard (2000) pro-
posed that secondary structure (hairpins) can be formed when
ssDNA bends onto itself and its complementary bases are
connected into base pairs, and it therefore needs a slightly
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larger external force to pull open hairpinned ssDNA in the
high-salt condition than that expected in FJC. Their calculation
(Montanari and Mezard, 2000) showed that the hairpin-coil
transition, when the pairing interaction is incorporated into
FJC, is a continuous (second-order) process.

On the other hand, the measurement of Rief et al. (1999)
shows that the force/extension characteristic of ssDNA is se-
quence dependent. When a (designed) poly(dA-dT) or
poly(dG-dC) strand is pulled with an atomic force microscope,
they found that at some stretched force (9 pN for poly(dA-dT)
and 20 pN for poly(dG-dC)), the end-to-end distance of the
designed molecules suddenly changes from nearly zero to a
value comparable to its total contour length. This is drastically
different from the gradual elongation of a ssDNA chain with a
relatively random base composition (Maier et al., 2000). The
present authors noticed that there is a higher probability for the
paired bases to be neighboring in the designed ssDNA than
that in the random sequence, and thus a strong vertical base-
pair stacking interaction may exist in the designed ssDNA
chain (Zhou et al., 2001). By including the effect of both base
pairing and base-pair stacking interactions in the hairpinned
FJC, it is has been showed that the force-induced hairpin-coil
transition can be converted from a second-order into a first-
order process (Zhou and Zhang, 2001).

Despite the partial success of FJC in describing the elastic
property of ssDNA in the high-salt condition, no quantitative
account of the experimental data of ssDNA in the low-salt
condition (e.g., 2 mM NaCl) was performed in the above
mentioned theoretic calculations. A major difficulty comes
from how to appropriately take into account the (excluded
volume) effects caused by the electrostatic interactions be-
tween charged phosphate groups along the ssDNA chain. In-
deed, ssDNA is a highly negatively charged polyelectrolyte
and the long-range electrostatically repulsive potential between
segments may largely influence the conformations of stretched
ssDNA, especially in the low-salt condition. Even in high ionic
conditions as in the above experimental measurements in
which electrostatic potential is considerably shielded, the res-
idue repulsive potential may still influence the probability of
formation of hairpin structure. So neglecting electrostatic in-
teraction in high ionic conditions will also result in inaccurate
estimations of important features of ssDNA, e.g., the magni-
tude and distance of pairing and stacking interactions of com-
plementary bases.

In this work, our goal was a unified understanding of re-
ported force/extension data of ssDNA molecules in different
ionic atmospheres and for different nucleotide sequences
through a Monte Carlo (MC) implementation of a modified
FJC. Our treatment offers a computational rather than an
analytical framework as previous approaches (Montanari and
Mezard, 2000; Zhou and Zhang, 2001), thereby permitting a
quantitative study of the effect of the long-range electrostatic
interaction and various aspects of critical behaviors and the
base-pairing rule of ssDNA systems. Our results show that,
besides the inherent entropic elasticity in FJC, all of the other

three interactions of electrostatics, base pairing, and base-pair
stacking are necessary to be taken into account to gain a
comprehensive understanding of the elastic behavior of
ssDNA molecules in different environments.

In the next section, we at first determine the electrostatic
interaction along the ssDNA through numerically solving the
nonlinear Poisson-Boltzmann equation. We then describe the
model of ssDNA and the MC procedure and present a direct
comparison of our computed results and the experimental data
concerned with the force/extension profile of ssDNA. The
detailed discussions of the force-induced phase transition in the
poly(dA-dT)/(dG-dC) system and the sensitivity of elongation
characteristics to the base-pairing rule are also presented. We
conclude with a brief summary of the main results of this work.

Electrostatic interaction between
ssDNA segments

Under the assumptions that 1) the solute in a solution of
strong electrolyte completely dissociates into ions and 2) all
deviations of the solution from an ideal one (in which the
ions distribute uniformly) are due to the electrostatic forces
that exist between the ions, the electrostatic potentialc(r ) of
the solution at positionr can be submitted to the Poisson-
Boltzmann equation (Rice and Nagasawa, 1961):

¹2c~r ! 5 2
4p

D O
i51

n

vieci exp~2 viec~r !/kBT! (1)

Here the solution is assumed to containn different types of
ions. Theith species has valencevi, and the total number of
ions of theith type isNi, with ci 5 Ni/V (V is the volume)
being the bulk concentration of this species.D is the dielec-
tric constant of the solution, ande denotes the protonic
charge.

Equation 1 cannot be solved in closed form. Here we cal-
culate the electrostatic potential of a ssDNA cylinder immersed
in the solution of NaCl or MgCl2 through numerically solving
Eq. 1 according to the series expansion method that was first
used by Pierce (1958). As an illustrative example, we show in
Fig. 1 the electrostatic potentials of a ssDNA cylinder in 2 mM
NaCl and 5 mM MgCl2 solutions, where the potential function
is expanded up to the 17th order for the symmetrical electrolyte
(NaCl) and the 14th order for the asymmetrical electrolyte
(MgCl2) in our calculations (see Appendix).

However, such a numerical solution for a charged straight
cylinder cannot be directly used on ssDNA, because this poly-
mer actually takes a variety of irregular configurations in
solution. One approach to the problem is to take the first-order
approximation of Eq.1, i.e., Debye-Hu¨kel form (see Eq. 12),
the solution of which can be implicitly expressed. Around a
point chargeq, the electrostatic potential in Debye-Hu¨kel ap-
proximation can be written as

cDH~r ! 5
q

Dur u exp~2kur u!, (2)
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where r is the position vector from this charge, and the
inverse Debye lengthk is equal to (8pc0e

2/DkBT)1/2 (for
NaCl solution) or (24pc0e

2/DBT)1/2 (for MgCl2).
To count the influence of higher expansion terms of the

Poisson-Boltzmann equation, one can phenomenologically
change the amplitude of the Debye-Hu¨kel potential of Eq. 2 to
match the precise solution of the Poisson-Boltzmann equation
(Brenner and Parsegian, 1974; Stigter, 1977). According to Eq.
2, at radial distancer the electrostatic potential of a uniformly
charged straight cylinder of infinite length is

cDH~r! 5 E
2`

` ndl

D

exp~2 kÎl2 1 r2!

Îl2 1 r2 5
2n

D
K0~kr!, (3)

wherel is arc length along the cylinder axis,n is effective
linear charge density, andK0 is the first-order modified
Bessel function (Gradshteyn and Ryzhik, 1980). By com-
paring Eq. 3 with the Poisson-Boltzmann solution in the
overlap region far from the cylinder surface as shown in Fig.
1, we can determine the effective linear charge densityn in
different bulk ionic concentrationc for both the NaCl and
the MgCl2 solution (see Table 1). In Table 1 we also show
the effective charge density of dsDNA.

As shown in Fig. 2, all the data ofn can be very well fitted
by the formula of

n 5 exp~a 1 bc2/5!, (4)

with the fitting parametersa andb listed also in Table 1.
It should be mentioned that the full linear charge density has

been assumed in our calculation; i.e., the effect of counterion
charge is not taken into account here. For dsDNA, this effect
can lead a reduction of the real charge of the polymer in NaCl
solution by a factor of;0.73 according to Stigter’s electro-
phoresis theory (Schellman and Stigter, 1977; Stigter, 1977).
As a comparison, we also show in Fig. 2 Stigter’s calculation
for dsDNA in NaCl solution, where 73% of electrophoretic
charge was assumed (Stigter, 1977; Stigter and Dill, 1993).
These results show that the value ofn here is not very sensitive
to the uncertainties of the electrophoretic charge.

MODEL AND METHOD OF CALCULATIONS

Model of single-stranded DNA

In the simulation, the ssDNA molecule is modeled as a FJC withN elastic
bonds. The conformation of the chain is specified by the space positions of
its vertices,r i 5 (xi,yi,zi), i 5 0,1,. . . ,N, in a three-dimensional Cartesian
coordinate system withr0 fixed at the original point. The equilibrium
features of a ssDNA in solution is determined by the interplay of the
following five energies.

The first energy,Eele, is the electrostatic interaction energy among the
negatively charged phosphate groups along the ssDNA chain. As discussed in
the last section, the electrostatic energy of ssDNA can be calculated according
to the Debye-Hu¨kel approximation:

Eele

kBT
5

n2

kBTD E dli E dlj

exp~2 kur i 2 r ju!
ur i 2 r ju

, (5)

where the effective charge densityn is taken from Table 1 and the
integrations are done along the chain;ur i 2 r ju is the distance between two
charges at arc length parametersli andlj along the chain.

The second energy,Epair, results from the pairing potential between com-
plementary bases. Two elementary pairings are the G-C and A-T base pairs of

FIGURE 1 Electrostatic potential of ssDNA cylinder versus the radial
distance from the cylinder axis in the solutions of 2 mM NaCl and 5 mM
MgCl2. The solid and dashed curves are, respectively, the numerical
solutions of Poisson-Boltzmann equation (P-B) up to the expansion order
m 5 17 for NaCl andm 5 14 for MgCl2 in Eq. 13; the dotted and
dash-dotted curves denote corresponding Debye-Hu¨kel approximations
(D-H) with effective linear charge densityn along the axis listed in Table
1. The vertical dotted-line atr0 5 0.5 nm corresponds to the surface of the
ssDNA cylinder.

TABLE 1 The effective linear charge density n (in unit of
e/nm) of DNA molecules, calculated from the comparison of
the Poisson-Boltzmann solution and the modified Bessel
function

Ionic
concentration

c0 (M)

ssDNA dsDNA

NaCl MgCl2 NaCl MgCl2

1. 4.18 9.50 91.85 993.16
0.75 3.50 6.74 56.15 410.67
0.5 2.84 4.51 31.22 144.10
0.2 2.04 2.31 11.73 24.52
0.15 1.89 1.97 9.29 16.22
0.1 1.73 1.64 7.02 9.82
0.05 1.53 1.27 4.78 4.98
0.02 1.37 0.99 3.29 2.66
0.01 1.29 0.86 2.66 1.91
0.005 1.23 0.78 2.26 1.45
0.002 1.17 0.71 1.93 1.13
0.001 1.14 0.67 1.76 1.00

a 0.0338 20.577 0.300 20.505
b 1.36 2.80 4.18 7.33

a andb are the parameters of Eq. 4 fitted to the data ofn (see Fig. 2).
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Watson and Crick. As a G-C pair is formed through the formation of three
hydrogen bonds whereas an A-T one involves only two hydrogen bonds, the
base-pairing potential is sequence dependent. Because the Kuhn length of
ssDNA (;1.5 nm) is longer than the length of the sugar-phosphate backbone
between two adjacent bases, each node (vertex) in our model actually includes
several bases. We approximate the base-pairing interaction by the node-pairing
energy ofEpair 5 (i51

NP Vp, whereNP is the number of node pairs andVP is a
sequence-dependent parameter denoting the intensity of a certain pairing
mode. The pairing rule in our following simulation is similar to the standard
one that keeps only nested structure (Bundschuh and Hwa, 1999; Higgs, 1996;
Montanari and Mezard, 2000; Zhou and Zhang, 2001): 1) two nodes (i, j) can
be paired only when their distanceur i 2 r ju is less than 2 nm, which corre-
sponds approximately to the interaction range of Watson-Crick hydrogen bond
in dsDNA (Saenger, 1984); 2) each node can be paired to at most one other
node; 3) two node pairs (i, j) and (k, l) can coexist only when they are either
nested (i.e.,i , k , l , j) or independent (i.e.,i , j , k , l); and 4)uj 2iu
$ 4; this restriction permits flexibility of the chain and it is also necessary to
rule out entirely the influence of phase space on the number of pairings, as
confirmed by our following MC simulations. Condition 3 rules out the possi-
bility of formation of pseudo-knots that belong to the tertiary structure of
polynucleotides. As we will show, it also takes an important role in the
determination of the force/extension feature of ssDNA.

The third energy,Esta, comes from the vertical stacking interactions be-
tween neighboring base pairs. We calculate the stacking energy by
Esta 5 (i51

NS Vs, whereNS is the number of stacked node pairs andVS is the
interactive potential between two neighboring node pairs. Two node pairs are
considered as stacked only when they are nearest neighbors to each other,
namely, (i, j) and (i 1 1, j 2 1).

The fourth energy in our model is that needed to make the bond length
between two consecutive vertices to deviate from the equilibrium value. It can
be written as

Eela 5
1

2 O
i51

N

Y~ur i 2 r i21u 2 b!2, (6)

where b is the Kuhn length for ssDNA andY characterizes the stretch
stiffness of the ssDNA backbone

The fifth energy, i.e., work done by the external forceF, is written asEfor

5 2FzN, wherezN is thez-coordinate of the last vertex. (In the simulation we
choose the orientation of the external forceF to be along thez axis.)

Monte Carlo procedure

To investigate the equilibrium thermodynamics of stretched ssDNA mol-
ecules, we produce by computer a canonical ensemble of DNA conforma-
tions for each given force, through the realization of a Markov process by
the Metropolis procedure (Metropolis et al., 1953). The conformation of
the ssDNA chain is initially generated by a random walk with step length
of b and afterwards is driven by the following four types of movements.

Movement I involves a rotation of an interval subchain containing an
arbitrary amount of linkers around the straight line connecting the vertices
bounding the subchain by an angleh1. In movement II, a subchain between a
chosen vertex and the free end is rotated around an axis with arbitrary
orientation by an angleh2. In movement III, the bond lengthli of a randomly
chosen linker is changed into a new value ofli(1 1 h3). The value ofhi (i 5
1, 2, 3) is uniformly distributed over the interval (2hi

0, hi
0), wherehi

0 is chosen
to guarantee that about half of the trial moves of theith type are accepted
(Zhang et al., 2000).

The fourth type of movement (movement IV) involves a permutation of a
randomly chosen two-segment subchain (e.g., the subchain from nodesi to i 1
2) and another randomly chosen three-segment subchain (e.g., the subchain
from nodej to j 1 3), which was first adopted by Vologodskii et al. (1992) in

FIGURE 2 The effective linear charge densityn for
ssDNA and for dsDNA at different ionic concentra-
tions of NaCl or MgCl2: F, results of the present
work; E, Stigter’s results (Stigter, 1977; Stigter and
Dill, 1993), where electrophoretic charge of20.73e
were used (which was required to fit the electrophore-
sis theory to experimental data). In the present calcu-
lation, the full charge per phosphate group is as-
sumed. The curves are drawn according to Eq. 4 with
parameters listed in Table 1.
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the MC calculation of supercoiled dsDNA. Because the length of doublet
subchain (ur i 2 r i12u) and the length of triplet subchain
(ur j 2 r j13u) are usually unequal, to perform the permutation, we should at first
deform the conformations of both doublet and triplet subchains so that the
length of these subchains could be incorporated to their new positions. More
specifically, the doublet subchain should be deformed and shifted to the
position [r j, r j13] and the triple subchain to the position [r i, r i12]. The net
result of this permutation is a translation of the randomly chosen subchain
(between nodei and nodej) by one segment along the chain axis. Even though
the acceptance probability of this movement can be quite low, it can substan-
tially increase the probability of extrusion and resorption of hairpinned struc-
tures and help the simulation to go out of some local traps.

All of the above four types of movements satisfy the basic requirement of
the Metropolis procedure of microscopic reversibility; i.e., the probability of
trial conformationB when current conformation isA must be equal to the
probability of trial conformationA when current conformation isB. A trial
move from a conformationA to another conformationB is accepted on the
basis of the probabilitypA3B 5 min[1, r(EB)/(r(EA)], where EA(B) and
r(EA(B)) are, respectively, the total energy and probability weight factor of
conformationA(B). In the canonical Metropolis algorithm, the energetic im-
portance sampling is realized by choosing the probability weight factorr(E) as
the Boltzmann weight factor:r(E) 5 exp(2E/kBT), where the total energy is
E 5 Eele 1 Epair 1 Esta 1 Eela 1 Efor in our model. However, the energy
landscape of ssDNA with hairpin structures is characterized by numerous local
minima separated by energy barriers, and the probability of the canonical
Metropolis procedure to cross the energy barrier of heightDE is proportional
to exp(2DE/kBT). When the pairing and stacking energies are rather large,
e.g., in the case of poly(dG-dC), the energy barriers around some special
conformations can be very high so that the simulation tends to get trapped in
these conformations, although they are by no means of the lowest energy.
During the finite CPU time, only small parts of the canonical ensemble of
DNA conformations can therefore be explored, rendering the calculation of
physical quantities unreliable.

To overcome this problem of ergodicity breaking of poly(dG-dC) ssDNA,
we produce an artificial ensemble according to a modified weight factor
(Zhang, 2000):

r~E! 5 expFS2E 1
Î2

s
uE 2 ^E&uDYkBTG, (7)

wheres2 5 nF/2 is the mean squared derivation of energy of the canonical
thermodynamic system, andnF the number of degrees of freedom of the
chain,^E& is the averaged energy of the system that can be calculated in a
simple iteration procedure (Hansmann and Okamoto, 1997; Zhang, 2000).
In Eq. 7, the probabilities of both high and low energy are exponentially
reinforced, and the sharp peak of the canonical ensemble around^E& is
damped, which can efficiently help the simulation to jump out from local
energy basins.

Because one configuration in the artificial ensemble of Eq. 7, in fact,
representsn(E) 5 exp[2=2 uE 2 ^E&u/(kBTs)] configurations in canonical
system, we should reweight the artificial sample to obtain the expectation
value of considered quantity. For example, the averaged extensionzN should
be calculated by

^zN& 5
Oi51

NMC zN~Ei!n~Ei!

Oi51
NMC n~Ei!

, (8)

whereNMC is the number of sweeps of the artificial sample.

RESULTS AND DISCUSSION

Force/extension of ssDNA

There are three groups who have pulled ssDNA of both
random and designed sequences and presented their force/

extension data in different salt environments (Smith et al.,
1996; Rief et al., 1999; Wuite et al., 2000; Maier et al.,
2000; Bustamante et al., 2000). These data offer us good
opportunity to check the theoretical model and meanwhile
determine the four main parameters in our model, i.e., Kuhn
length b, stretching modulusY, pairing potentialVP, and
stacking potentialVS (see Table 2). In the following pre-
sented calculations, we make 20,000,000 MC runs withN 5
100 nodes at each given external force for each case. We
have also confirmed that using a larger value ofN, e.g.,N 5
200, with more MC runs does not lead to different results.

We first calculate the force/extension characteristics of FJC
with elastic bonds but without pairing and stacking interac-
tions. As shown in Fig. 3a, the electrostatic interaction tends
to swell the volume occupied by the chain and make the
segments more easily aligned along the force direction. This is
equivalent to enlarging the Kuhn length of ssDNA. The lower
the ionic concentration becomes, the larger the effective Kuhn
length is and the more rigid the molecule looks. However, at
large forces where the polymer comes to be straight enough,
the force/extension curves for a FJC with and without electro-
static interaction coincide with each other, indicating that in
this region the electrostatic interaction is no longer important
and the extension is mainly caused by elongation of the elastic
bonds. By a direct comparison with experimental data, we can
determine the stretching modulus of the sugar-phosphate back-
bone of ssDNA to beY 5 123.5kBT/nm2.

Now consider the effects of pairing interaction in ssDNA. In
Fig. 3 b is the force/extension data of a plasmid ssDNA
fragment of 10.4 kb in 5 mM MgCl2 or 2 mM NaCl solution.
Bearing in mind that the sequence is relatively random and the
formed base pairs in ssDNA are usually separated spatially
from each other along the molecule, the stacking interaction is
negligible in this case. We therefore take the stacking potential
VS5 0. The best fit to the data isVP5 4.6kBT andb 5 1.6 nm.
In lower salt concentration, 2 mM NaCl, the force-elongation
curve is not influenced much by the pairing potential with the
comparison of Fig. 3a, because the dominant electrostatic
repulsive potential excludes the bases from getting close to
pairing interaction range and the node-pairing probability is
very rare. However, in a high-salt solution of 5 mM MgCl2, the
force/extension property is the result of completion of two
opposite interactions of pairing and electrostatic repulsive in-
teractions. The experimental data suggest that the pairing effect
is slightly larger at low force in this case.

In the cases of designed poly(dA-dT) or poly(dG-dC)
ssDNA, the unitary base pairs of A-T or G-C can be formed in

TABLE 2 Parameters used in our modeling calculation to fit
the data presented in Fig. 3

Sequence VP (kBT) VS (KBT) b (nm) Y (kBT/nm2)

Random 4.6 0 1.6 123.5
Poly(dA-dT) 4.1 4.0 1.6 123.5
Poly(dG-dC) 10.4 6.0 1.6 123.5
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respective sequences. Because it is possible for the formation
of long stems of stacked base pairs, stacking potential should
be included in discussing its configurational properties. As
shown in Fig. 4, the stacking potential can dramatically change

the conformation of ssDNA at low force. When the stacking
potential is absent, the base pairs are formed quite randomly
with formation of many interior loops and branched structures.
So the dispersed hairpin structure can be easily pulled open in

FIGURE 3 External force as the function of dis-
tance of two ends of ssDNA, scaled by its B-form
lengthLB. LB 5 Nb/1.58769 in the modeling cal-
culation, and other model parameters used in our
Monte Carlo calculation are listed in Table 2. (a)
Monte Carlo results of pure freely jointed chain
(FJC) without electrostatic, pairing and stacking
potential (dash-dotted line) and that with electro-
static interaction considered in 2 mM NaCl (- - -)
and 5 mM MgCl2 (——) solutions, butVP 5 VS 5
0. (b) l-Phage DNA in 2 mM NaCl and 5 mM
MgCl2 solutions. Data are taken from Bustamante
et al. (2000) (‚ and M) and from Maier et al.
(2000) (E). (c and d) For designed poly(dA-dT)
and poly(dG-dC) sequences, respectively, in 150
mM NaCl solution. Data are taken from Rief et al.
(1999), where the extension of ssDNA is obtained
by zN/LB 5 1.58769(L 2L1)/(L2 2L1). HereL is
the total extension of both dsDNA and ssDNA
(see Fig. 3 in Rief et al. (1999)). For poly(dA-dT),
L1 5 60 nm andL2 5 545 nm; for poly (dG-dC),
L1 5 257 nm andL2 5 525 nm.

FIGURE 4 The typical conformations of
ssDNA chains with random sequence (left)
and designed poly(dA-dT) sequence (right) in
150 mM NaCl solution stretched at different
external forces, which are produced in the
Monte Carlo simulations ofN 5 60. The fic-
titious bases and backbone are expressed by
green nodes and lines, with the nodes of two
ends denoted by two bigger red globes. The
hydrogen bonds of base pairs are denoted by
magenta short lines.
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a medium force (see the left column of Fig. 4). When the
stacking interaction exists, on the other hand, the base pairs are
encouraged energetically to be neighboring and therefore lead
to the formation of bulk hairpin structure (see the right column
of Fig. 4). A threshold force is needed to pull back the bulk
hairpin structure (see Fig. 3,c andd), and the transition from
hairpin to coil is abrupt. The value of threshold force, i.e., the
height of the plateau in the force/extension curve, is dependent
on the pairing and stacking potentials of the nodes. The best fit
to the data, as in Fig. 3, c and d, are
VP 5 4.1kBT and VS 5 4kBT in poly(dA-dT) sequence,
VP 5 10.4kBT andVS 5 6kBT in poly(dG-dC) sequence.

Transition criticality in designed ssDNA

It has been shown from force/extension data that the elon-
gation of natural ssDNA with a random sequence under
external force is gradual, but that of designed sequence is in
a cooperative and discontinuous manner when a stacking
interaction is involved. This first-order-like phase transition
of the designed ssDNA system can also manifest itself in
other aspects.

In Fig. 5a we present the average number of pairings scaled
by the maximum pairing number of (N 2 2)/2 for poly(dA-dT)
sequence in 150 mM NaCl. When the external force is smaller
than the critical force (Fc ' 9.5 pN), the number of pairing
2NP/(N 2 2) ' 1, suggesting that almost all the bases are
paired. The number of stacked pairsNS also reaches its max-
imum value and signifies that all the pairs aggregate into a
compact pattern. Around the external forceFc, the bulk hairpin
is pulled back abruptly (in the sense that during this process the
force keeps constant), and the numbers of pairings and stack-
ings sharply decrease from their maximum to zero. This be-
havior is a reminiscence of temperature-induced discontinuous
transition in, e.g., a two-dimensional spin system as described
by the Ising model. But there the order parameter is magneti-
zation or number of spins with specified orientation (see, e.g.,
Wilde and Singh, 1998). And here the order parameter is
number of paired bases, and the transition is force induced and
takes place in a one-dimensional system.

The electrostatic energy of ssDNA also changes with exter-
nal force in a cooperative manner (Fig. 5b) because of the
discontinuous jump of the averaged distance between charged
nodes at the critical point. One can notice that there are irreg-
ular doglegs for the values of the average extension, the num-
ber of pairings, and the value of the electrostatic energy as the
external force approaches the critical point. This is because of
the so-called critical fluctuation in our simulations at the crit-
ical point. In Fig. 6 is shown the time series of some order
quantities such as the extensionzN and number of pairings.
These quantities stay around their values of thermodynamic
equilibrium when the external force is away from the critical
point. When the external force approachesFc, however, the
fluctuations of their value sharply enlarge, because the corre-
lation length is expected to diverge at this point.

To confirm this point, we calculate the integrated autocor-
relation timet of the extensionzN:

t 5 E
0

` x~t!

x~0!
dt, (9)

where timet, i.e., MC steps, is scaled by the magnitudeN of
the chain, and the time-displaced autocorrelation function
x(t) is calculated as

x~t! 5 E
0

tmax2t

dt9@zN~t9! 2 ^zN&#@zN~t9 1 t! 2 ^zN&#. (10)

In Eq. 10,tmax is the total time sweeps of MC simulation,
and ^. . .& denotes the time average along the MC series.

Fig. 5 c shows how the correlation timet changes with
external force. At a critical point, the correlation time indeed
diverges. So the number of independent measurements,n 5
tmax/2t, is very small in the simulation, which renders the MC
calculation at the critical point unreliable. This effect, known
as critical slowing down, is an inherent property of the MC
algorithm used to perform the simulation for a phase transition

FIGURE 5 The order parameters and autocorrelation time as the func-
tion of external force for poly(dA-dT) sequence in 150 mM NaCl solution.
(a) Number of node-pairs (NP), stackings (NS), and the ratio of pairings and
stackings, all of which are scaled be the maximum value of pairings of
(N 2 2)/2. (b) Electrostatic Debye-Hu¨kel potential. (c) The autocorrelation
time of extension of ssDNA polymer calculated by Eqs. 9 and 10. The MC
time is scaled by the number of nodesN.

Pulling ssDNA 1139

Biophysical Journal 81(2) 1133–1143



system. Some techniques, such as the cluster-flipping algo-
rithm (Swendsen and Wang, 1987; Wolff, 1989), have been
proposed to alleviate the problem of critical slowing down for
a number of spin systems. However, an efficient algorithm for
a biopolymer system is still lacking. Keeping in mind the
pronounced double-peak structure of the sample action density
near the critical point, which is the main reason for the critical
slowing down in our simulation, it is possible to construct a
new weight factor and enhance the tunneling between these
two metastable states at the critical point. The detail into this
problem is discussed elsewhere (Y. Zhang and H. Zhou, in
preparation).

Sensitivity to pairing rule

In the above calculations, the bases of ssDNA are assumed
to be paired according to the so-called standard pairing rule;
i.e., the coexisting base pairs are restricted to be either
nested or independent (see condition 3 above). It is of
interest to see whether and how the mechanical property of
the ssDNA chain changes if the bases are allowed to be
paired randomly (i.e., neglecting restriction 3 but keeping
conditions 1, 2 and 4 above unchanged).

In Fig. 7 a we show the comparison of the typical confor-
mations of random sequence at external forceF 5 0 pN, with
different pairing rules. Within the random pairing rule, the
ssDNA tends to form a locally intersecting base-pairing pat-
tern; within the standard pairing rule, because of the limitation

of phase space the conditions of nest and independence lead to
the formation of base pairs from spatially distant bases along
the strand, which makes the two ends of the chain quite close
to each other. So to pull slightly apart the two termini of
ssDNA with the standard pairing rule, an additional force is
needed to overcome the base-pairing potential at low force.
However, this additional force is not necessary for ssDNA with
the random pairing rule, because its two ends are usually
spatially separated even atF 5 0 pN (see right column of Fig.
7 a).

The processes of stretching the designed sequence can be
also different within standard and random pairing rules. In Fig.
7 b is the comparison of the poly(dA-dT) chain at external
forceF 5 9 pN with different pairing rules. Unlike the inde-
pendent and nested base-pair pattern with the standard rule (the
left column of Fig. 7b), the locally intersecting base pairs can
be formed by the random pair rule (see the right column of Fig.
7 b). This multiple base-pairing mode makes a larger external
force necessary to entirely draw open the secondary structure
of ssDNA, and therefore the process of pulling the design
ssDNA chain with the random pairing rule should be less
incorporative.

As a confirmation, we present the force/extension result of
ssDNA within the random pairing rule in Fig. 8. In Fig. 8a is
the result of the random sequence in 5 mM MgCl2 solution.
Compared with the corresponding result of the standard pairing
rule in Fig. 3b, the distance of the two ends of the molecule
with the random pairing rule is larger at low external force

FIGURE 6 Monte Carlo time se-
ries of scaled extensionzN/LB,
scaled pairing numbers 2NP/(N 2
2), scaled stacking pairs 2NS/(N 2
2), and the ratio of pairs and stack-
ing numbersNS/NP for poly(dA-dT)
sequence in 150 mM NaCl solution.
All the order parameters fluctuate
around their thermal equilibrium
values when force is far away from
critical force Fc 5 9.42 pN; how-
ever, the fluctuations diverge around
the critical point.
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(F , 5 pN); however, it is smaller at an intermediate force (5
pN , F , 11pN) because of the formation of the local
multiple base pairings; the force/extension curves of the two
types of pairing rules coincide with each other at high force

(F . 11 pN) because the chain is relatively straight in this
region and little basepair can be formed. In Fig. 8b is the result
of poly(dA-dT) ssDNA in 150 mM NaCl solution. As ex-
pected, a larger external force was needed to entirely pull open
the molecule, and the pulling process is much less incorpora-
tive, with the comparison of the standard pairing rule shown in
Fig. 3 c.

It is obvious that the modeling calculation of the standard
pairing rule can fit better to the experimental data of the
force/extension characteristics of ssDNA (comparing Figs. 3
and 8). An important difference between these two pairing
rules is that the standard rule allows only the planar hairpin
structure and therefore avoids the formation of a tertiary pseu-
do-knot that is allowed by the random rule. This feature is also
shared in the three-dimensional arrangement of the RNA mol-
ecule. To date, the largest RNA molecule that has been crys-
tallized and whose structure has been determined is the 160-
nucleotide P4-P6 domain of the group I ribozyme (Cate et al.,
1995). This structure and all other RNA structures that have
been solved thus far (see Gutell, 1994) have one thing in
common: they are all free of topological knots (VanLoock et
al., 1998). We believe that this may be a general property of
formed secondary structures of single-stranded polynucleotide
molecules.

Concluding remarks

We report a detailed study of MC simulation of pulling
ssDNA, in which long-range electrostatic repulsive poten-
tial, base pairing, and base-pair stacking interaction are
taken into account. To determine the amplitude, or effective
linear charge density, of Debye-Hu¨kel electrostatic poten-
tial, we first performed a numerical solution of a nonlinear
Poisson-Boltzmann equation in both mono- and double-
valent electrolytes and match the first-order modified Bessel
function with the Poisson-Boltzmann potential in the over-
lap region. It is found that the effective charge density of
both ssDNA and dsDNA molecules in all kinds of salt
solution can be well fitted by a simple experience formula,

FIGURE 7 Comparison of typical conformations of ssDNA chain with
standard and random pairing rules, with model parameters as shown. (a)
For random DNA sequence in 5 mM MgCl2 solution; (b) For poly(dA-dT)
DNA sequence in 150 mM NaCl solution. The bases and backbone and
hydrogen bonds are expressed in the similar way as that in Fig. 4.

FIGURE 8 External force as the function of dis-
tance of two ends of ssDNA. Data are taken from
Bustamante et al. (2000), Maier et al. (2000), and
Rief et al. (1999). Curves are the modeling results
with random pairing rule (see text). The modeling
parameters are the same as that shown in Fig. 7.
(a) For random DNA sequence in 5 mM MgCl2

solution; (b) For poly(dA-dT) DNA sequence in
150 mM NaCl solution.

Pulling ssDNA 1141

Biophysical Journal 81(2) 1133–1143



which can be conveniently used in other corresponding
studies of electrostatic interactions.

In low-salt solution, the electrostatic repulsive interaction
dominates, and there are few formed base pairs because the
strong electrostatic repulsive potential excludes the bases from
getting close into the Watson-Crick base-pair range. This re-
pulsive interaction makes the chain more easily aligned and
more subject to stretching, which is formally equivalent to
enlarging the stiffness of the chain. In high-salt solution, the
elasticity of the chain is the result of the competition of
electrostatic and base-pairing interactions. The pairing in-
teraction can make the secondary structure more difficult to
be pulled open than that expected by a pure FJC.

For a designed poly(dA-dT)/poly(dG-dC) chain, the stack-
ing interaction between base pairs encourage base pairs to
aggregate into a compact pattern, and a threshold force is
necessary to pull back the bulk hairpin structure, characterized
by a plateau in the force/extension curve. The height of the
plateau is determined by the pairing potentialVP and stacking
potentialVS in our model. The best fit to the experimental data
shows thatVP 5 4.1kBT andVS 5 4kBT for the poly(dA-dT)
sequence,VP 5 10.4kBT andVS 5 6kBT for the poly(dG-dC)
sequence. Bearing in mind that each Kuhn length (;1.6nm)
contains about three nucleotide bases, we can infer that the
pairing energy of each A-T base pair is;1.37kBT and that for
each G-C base-pair is;3.47kBT. These values are comparable
with the measurements of Bockelmann et al. (1997) when they
pulled apart the two strands of a dsDNA helix.

In contrast to the gradual elongating of ssDNA of random
sequence, the hairpin-coil transition of designed ssDNA is
discontinuous. The calculated thermodynamics of stretching a
designed ssDNA sequence shows typical critical characteris-
tics. All the order parameters, such as the distance of the two
ends of the ssDNA chain, number of pairings, and electrostatic
potential, discontinuously jump when the external force passes
through the critical force. At the critical point, the fluctuation
of the order parameters and the autocorrelation time diverge.
This effect, known as critical slowing down, renders the ca-
nonical Metropolis MC calculations unreliable. All these fea-
tures make the designed ssDNA an excellent laboratory for the
study of first-order phase transition in a one-dimensional sys-
tem.

The sensitivity of elongation of ssDNA to the base-pairing
rule was also investigated. The release of the restriction of nest
(or independence) in the standard pairing rule leads to forma-
tion of a tertiary pseudo-knot structure in ssDNA. This locally
intersecting base-pairing pattern makes the stretching process
of designed DNA sequence less incorporative than that ob-
served in the experimental measurement of Rief et al. (1999).
The theoretical calculation of random ssDNA sequence with
the random pairing rule also disagrees with the experimental
data at low and intermediate external force. These calculations,
coinciding with the findings in the three-dimensional arrange-
ment of RNA molecules in the cell, indicate that the nested (or
independent) pairing restriction may be a general essential

condition for all single-stranded polynucleotide molecules in
the process of formation of their secondary structures.

APPENDIX: NUMERICAL SOLUTION OF
POISSON-BOLTZMANN EQUATION

Here we outline the general power series technique of solving numerically
Poisson-Boltzmann Eq. 1 (Pierce, 1958; Rice and Nagasawa, 1961) for a
uniformly charged cylinder immersed in solutions.

By expanding the exponential term on the right-hand side of Eq. 1, the
Poisson-Boltzmann equation can written as

¹R
2 f~R! 5 O

l51

`

Alf~R!l, (11)

wheref(R) 5 ec(r )/kBT, R 5 kr , k 5 4p/DkBT) (i51
n ci(vie)2, andAl 5

(i51
n (21)l11civi

l11/(i51
n l!civi

2. In case the electrostatic potential is rather
small relative tokBT, terms higher than the square in the expansion may be
neglected, and Eq. 11 assumes the Debye-Hu¨kel form:

¹R
2 f~R! 5 f~R!, (12)

which can be solved explicitly.
Let’s assume thatf(R) of Eq. 11 can be expressed in a series of

f~R! 5 O
m51

`

Cmfm~R!, (13)

whereC is a constant to be determined from the boundary condition of the
ssDNA molecule. For 1:1 electrolytes such as NaCl, because the terms
containing even powers off(R) in Eq. 11 cancel out, only odd terms need
to be preserved in Eq. 13. However, for solutions containing asymmetrical
electrolytes such as MgCl2, all of the sequential terms of expansion must
be retained up to the required order.

Substituting Eq. 13 into Eq. 11, we have

¹R
2 fm~R! 5 fm~R! 1 gm~R!, (14)

where gm(R) is a function of lower orderfi(R) (i 5 1, . . . , m 2 1).
Becauseg1(R) 5 0, the initial equation ofF1(R) corresponds the Debye-
Hükel Eq. 12. Its solution in the cylinder coordinate system is the zero-
order modified Bessel functionK0(R) of the second kind (see also Eq. 3),
whereR 5 kr and bothR and r are radial distance from the axis of the
cylinder. Higher-orderFm(R) in the cylinder coordinate system can be
calculated iteratively (Sugai and Nitta, 1973):

fM~R! 5 I0~R! ÈR

tK0~t!gm~t!dt 2 K0~R! ÈR

tI0~t!gm~t!dt,

(15)

whereI0(R) is the first kind modified Bessel function.
To determine the constantC in Eq. 13, we notice that the electrical

equilibrium between the DNA cylinder and electrolyte should be reached
under the strong electrostatic forces. According to the Poisson-Boltzmann
equation, the excess charge density of electrolyte isr(r) 5 (i51

n vieci
exp(2vic(r)). For the ssDNA cylinder, there is one phosphate group along
each base length of;h 5 0.6 nm. So we have (Delrow et al., 1997)

E
t0

`

2prhr~r!dr 1 Q 5 0, (16)

where we have takenQ 5 2e and r0 5 0.5nm (Saenger, 1984). For the
dsDNA cylinder, the corresponding parameters areh 5 0.34 nm,Q 5 22e,
and r0 5 1.2 nm.
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