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We have developed TAsser, a hierarchical approach to protein
structure prediction that consists of template identification by
threading, followed by tertiary structure assembly via the rear-
rangement of continuous template fragments guided by an opti-
mized C, and side-chain-based potential driven by threading-
based, predicted tertiary restraints. TAsseR was applied to a
comprehensive benchmark set of 1,489 medium-sized proteins in
the Protein Data Bank. With homologues excluded, in 927 cases,
the templates identified by our threading algorithm prosPECTOR 3
have a rms deviation from native <6.5 A with ~80% alignment
coverage. After template reassembly, this number increases to
1,172. This shows significant and systematic improvement of the
final models with respect to the initial template alignments.
Furthermore, significant improvements in loop modeling are dem-
onstrated. We then apply TAssEr to the 1,360 medium-sized ORFs in
the Escherichia coli genome; ~920 can be predicted with high
accuracy based on confidence criteria established in the Protein
Data Bank benchmark. These results from our unprecedented
comprehensive folding benchmark on all protein categories pro-
vide a reliable basis for the application of TAsser to structural
genomics, especially to proteins of low sequence identity to solved
protein structures.

D espite considerable effort, the prediction of the native
structure of a protein from its amino acid sequence remains
an outstanding unsolved problem. In this postgenomic era,
because protein structure can assist in functional annotation, the
need for progress is even more crucial (1, 2). Historically, protein
structure prediction divides into three categories: comparative
modeling (CM) (3, 4), threading (5, 6), and new fold prediction
(7-9). In CM, the protein structure is predicted by aligning the
target sequence to an evolutionarily related, solved template
structure. Threading goes beyond CM in that it is designed to
match sequences to proteins adopting similar folds, where the
target and template sequences need not be evolutionarily re-
lated. Finally, for new folds, the target sequence could adopt a
structure not seen before and modeling should be done ab initio.
This is the hardest category with the lowest prediction accuracy.

As the most robust of the protein structure prediction ap-
proaches, there are three main issues involved in CM/threading
methods. First, a necessary precondition for their success is the
completeness of the library of solved structures in the Protein
Data Bank (PDB) (10). Recently, it was demonstrated that the
PDB library is most likely complete for single domain protein
structures at low to moderate resolution (11); e.g., for any given
protein up to 100 residues, regardless of whether it is evolution-
arily related to other solved protein structures, there is at least
one already solved structure existing in the PDB that has a rms
deviation (rmsd) from native <4 A for 90% of its residues. This
strongly suggests that the protein structure prediction problem
can in principle be solved by using CM/threading methodologies
and that new fold approaches may not be necessary. However, an
effective fold recognition algorithm must be developed to iden-
tify these correct template proteins and alignments.

Second, having a threading template with gapped alignments
and average coverage, it is nontrivial to build a complete model
that is useful for functional studies. Most successful structure
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predictions are still dictated by the evolutionary relationship
between target and template proteins. For proteins having
>50% sequence identity to their templates, models built by CM
techniques (3, 4) can have up to a 1-A rmsd from native for their
backbone atoms. For proteins with 30-50% sequence identity to
their templates, the models often have ~85% of their core
regions within a rmsd of 3.5 A from native, with errors mainly
in loops (2, 4). When the sequence identity drops below 30%, the
“twilight” zone (about two-thirds of known protein sequences),
modeling accuracy sharply decreases because of the lack of
significant threading hits and substantial alignment errors. Until
recently, for all sequence identity ranges, improvement from the
initial alignment has not been consistently demonstrated (12)
and the ability to accurately predict the conformation of the
intervening loops between aligned regions has been rather
limited (4, 12). Therefore, the development of an effective
automated technology that can deal with proteins in the twilight
zone of sequence identity and then build refined models that are
closer to the native structure than their initial template align-
ments with reasonably accurate loop conformations is essential.

Third, the large-scale benchmarking and validation of any
given structure prediction methodology are of key importance.
Previously, most approaches treated a relatively small number of
proteins, which made it difficult to establish their generality.
Indeed, one of the goals of CASP (13), the Critical Assessment
of Techniques for Protein Structure Prediction, has been to
introduce objectivity into the protein structure prediction field.
However, the number of CASP targets has been relatively small,
making it difficult to fully establish general trends.

To address these issues, we develop a structure prediction
methodology called threading assembly refinement (TASSER)
that has the capacity to recognize the majority of nonevolution-
arily related folds in the PDB library, to significantly refine the
structures with respect to their initial template, and to generate
good predictions for the loops. To assess its generality, we
present folding results based on a large-scale benchmark of all
representative single-domain proteins in the PDB where struc-
tural templates of >30% sequence identity to the targets are
excluded. To demonstrate the generality of the conclusions and
as an example of TASSER’s application to structural genomics, we
describe the structure prediction results on all small and medium
size ORFs in the Escherichia coli genome.

Methods

The TASSER methodology consists of template identification,
structure assembly, and model selection; an overview is pre-
sented in Fig. 1.

Threading. The structure templates for a target sequence are
selected from the PDB library (10) by our iterative threading
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Fig. 1. Overview of the TASSER structure prediction methodology that con-
sists of template identification by the prospecTor 3 threading algorithm (6), CAS
fragment assembly, and fold selection by spicker clustering (18). The entire
process for 1ayyD is shown as an example.

program PROSPECTOR_3 (6), designed to identify analogous as
well as homologous templates. The scoring function of PROS-
PECTOR_3 includes close and distant sequence profiles, secondary
structure predictions from PSIPRED (14), and side chain contact
pair potentials extracted from the alignments in previous thread-
ing iteration. Alignments are generated by using a Needleman—
Wunsch global alignment algorithm (15). Based on score signif-
icance, target sequences are classified into three categories: if
PROSPECTOR_3 has at least one significant hit with Z score (the
energy in standard deviation units relative to mean) >15 or if it
has at least two consistent hits of Z score >7, these templates
have high confidence to be correct and the target is assigned to
the “easy set.” In practice, the majority of “easy” cases have a
correct template and good alignments. [We note that easy does
not mean that they are trivially identified; indeed, in the bench-
mark set, see below, PROSPECTOR_3 correctly assigns more than
twice the number of targets to their correct templates as
PSI-BLAST (16) does.] Those sequences that either hit a single
template with 7 < Z < 15 or hit multiple templates lacking a
significant consensus region are assigned to the “medium set”;
these have the correct fold identified in most cases, but the
alignment may be incorrect. Finally, those sequences that cannot
be assigned by PROSPECTOR_3 to a template belong to the “hard
set,” and from the point of view of the algorithm are new folds,
although according to the finding of the completeness of the
PDB (11), (almost) all proteins should be assigned to either the
easy or medium set by a “perfect” threading algorithm.

On-and-Off Lattice C-Alpha Side Chain Based (CAS) Model. A protein
is represented by its C, atoms and side chain centers of mass
(SG), called the CAS model. Based on the threading alignment,
the chain is divided into continuous aligned regions (more than
five residues) whose local conformation is unchanged during
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Fig. 2.

Schematic representation of a piece of polypeptide chain in the on-
and off-lattice CAS model. Each residue is described by its C, and side chain
center of mass (SG). Whereas C, values (white) of unaligned residues are
confined to the underlying cubic lattice system with a lattice space of 0.87 A,
C, values (yellow) of aligned residues are excised from templates and traced
off-lattice. SG values (red) are always off-lattice and determined by using a
two-rotamer approximation (9).

assembly and gapped ab initio regions. For computational effi-
ciency, the C, values of these ab initio residues lie on an
underlying cubic lattice, whereas the C, values of aligned
residues are excised from the threading template and are off-
lattice for maximum accuracy. SGs are always off-lattice. A
representative chain fragment is shown in Fig. 2. The CAS
potential includes predicted secondary structure propensities
from PSIPRED (14), backbone hydrogen bonds, consensus pre-
dicted side chain contacts from PROSPECTOR_3, and statistical
short-range correlations and hydrophobic interactions (9). The
combination of energy terms was optimized by maximizing the
correlation between the rmsd of decoy structures to native and
energy for 100 nonhomologous training proteins (extrinsic to the
benchmark set used here), each with 60,000 decoys. Optimiza-
tion resulted in a funnel-like energy landscape for training
proteins, with an average correlation coefficient of 0.69 between
the energy and rmsd to native (9).

Template Assembly and Refinement. For a given threading tem-
plate, an initial full-length model is built by connecting the
continuous template fragments by a random walk of C,-C,
lattice bond vectors. If a template gap region cannot be spanned
by the unaligned residues, a long C,~C, bond remains, and a
spring-like external force that draws sequential fragments to-
gether is used until a physically reasonable bond length is
achieved. Initial models are submitted to parallel hyperbolic
Monte Carlo sampling (17) for assembly/refinement with two
kinds of conformational updates: off-lattice movements involve
rigid fragment translations and rotations whose amplitude is
normalized by the fragment length so that the acceptance rate
is approximately constant for different size fragments. Lattice
confined residues are subject to two to six bond movements and
multibond sequence shifts (9).

Certainly, the idea of assembling tertiary structure from
protein fragments pieces is not new. For example, ROSETTA (8)
uses small fragments (approximately three to nine residues).
Because the conformational search is carried out by using
large-scale moves (by switching between different local seg-
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Table 1. Summary of threading results from prospECTOR 3 and optimization by TAsSErR

(rmsd to native), AS Nroig"
Ntargets* Template selected’ (COVaIi>: %* Taii Maii Ment Taii Maj; Ment
Easy set 877 (59%) Top-2 + consensus 87 4.4 3.1 3.7 736 (84%) 819 (93%) 769 (88%)
Medium set 605 (40.5%) Top-5 (Z score > 7) 62 9.7 6.3 8.0 191 (32%) 348 (58%) 216 (36%)
Hard set 7 (0.5%) Top-20 75 11.3 6.0 6.3 0 (0%) 5(71%) 5(71%)
Total 1,489 (100%) 77 6.7 4.4 5.5 927 (62%) 1,172 (79%) 990 (66%)

*Number and percentage of the target proteins in each category.

"Number of templates used in the assembly procedure. For easy targets, we used the top-2 templates of highest Z score and an artificial template consisting of
the consensus region of these two templates if identified; for medium targets, up to five hits with Z score > 7; for hard targets, up to 20 templates, all having

weak scores.

*Alignment coverage on average for the best template that has the lowest rmsd to native.

Srmsd to native on average for the best initial templates and the best of top five models. T,j;, template structures with rmsd calculated over aligned residues;
Maii, model with rmsd calculated over the aligned residues; Ment, model with rmsd calculated over the entire chain.

INumber of targets with rmsd to native < 6.5 A. The value in parentheses is the fraction of targets in the specific category set.

ments), the acceptance rate significantly decreases with increas-
ing fragment size. Here, movement consists of scaled continuous
translations and rotations, allowing for the successful movement
of all size substructures. Because our threading-based fragments
are much longer (=20.7 residues on average), the conforma-
tional entropy is significantly reduced and more native-like
interactions are retained.

Structure Selection. The Monte Carlo simulations employ 40
replicas, and the structures generated in the 14 lowest temper-
ature replicas are submitted to an iterative structural clustering
program, SPICKER (18). The final models are combined from the
clustered structures and ranked by structure density.

Folding Results on a Comprehensive PDB Benchmark. To undertake
a comprehensive test of the methodology, we developed an
exhaustive benchmark set of all PDB structures with 41-200
amino acids. This set contains 1,489 nonhomologous single
domain proteins with a maximum 35% pairwise sequence iden-
tity to each other. A total of 448, 434, and 550 targets are «, S3,
af proteins, respectively (the remaining 57 targets either have
only C, atoms in their solved structures or irregular secondary
structures). Twenty targets are transmembrane proteins

Among the 1,489 target sequences, PROSPECTOR.3 assigns 877
to the easy set, with an average rmsd to native of 4.4 A, and 87%
alignment coverage (Table 1); 84% of these templates have a
rmsd to native <6.5 A (a statistically significant cutoff; ref. 19).
In 799 cases, the top two scoring templates have a consensus
region with 67% coverage and an average rmsd of 3.3 A. This
consensus region serves as an additional artificial template in the
structure assembly of easy set proteins. There are 605 proteins
assigned to the medium set, with an average rmsd to native of 9.7
A and 62% alignment coverage. Of these, 191 have a rmsd <6.5
A. For both the easy and medium sets, the average target/
template sequence identity is ~22%.

Combining the easy and medium set results, 63% (927 of
1,482) of the targets have an acceptable template on the basis of
the PROSPECTOR.3 alignment (with rmsd <6.5 A over 80%
average coverage). Furthermore, if we ask whether a related fold
is identified on the basis of structure alignment, 91% (1,348 of
1,482) of the proteins have a rmsd <6.5 A with 72% average
coverage. Thus, with respect to the ability of PROSPECTOR_3 to
identify related folds, it fails in ~10% of the target sequences,
although the alignment accuracy needs to be improved for
one-third of the targets. Note that there are only seven proteins
in the hard set where no global template is predicted. The
average results for the threading templates, as well as the
corresponding final models, are summarized in Table 1.

In Fig. 34, we show the rmsd to native of the best model in the
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top five clusters selected by SPICKER compared to the initial
alignments provided by PROSPECTOR_3. Exactly the same aligned
regions are used in both rmsd calculations. There are obvious
improvements for almost all quality templates, with the biggest
absolute rmsd improvement for the poorer quality targets (initial
rmsd >8 A), which mainly belong to the medium (Fig. 34, red
triangles) and hard (Fig. 34, green circles) sets. These substantial
rmsd reductions are mainly caused by the conversion from
unphysical template alignments given by PROSPECTOR_3 to geo-
metrically acceptable models. A medium set example, 1fjfT, is
shown in Fig. 4 4 and B. Here, the template has substantial gaps

25F T T 71 2 T |
5 ©Easy-set . Medium-Set = Hard-set
3 A | Easy | B.
E 20
]
=
=
5 151
o
2
= 10
20 o0 10 20
RMSD of best template
» d>0.5A od>1A = d>2A ©d>3A s d>4A & d>5A I
100 F - —T ; T ; T =

40

Percentage of proteins
[-:]
o

20

0 2 & 6 8 10 0 2 & 6 8 10
RMSD of best template

Fig.3. (A)Scatter plot of rmsd to native for final models by TASSER versus rmsd
to native for the initial templates from PROSPECTOR 3 (6). The same aligned
region is used in both rmsd calculations. (B) Similar data asin A, but the models
are from MODELLER. (C) Fraction of targets with a rmsd improvement d by TASSER
approach greater than some threshold value. Here, d = “rmsd of template’” —
“rmsd of final model.” Each point in Cis calculated with a bin width of 1 A;
however, the last point includes all templates with rmsd > 10 A. (D) Similar
data as in C, but the models are from MODELLER.
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Fig. 4. Representative examples showing the improvement of final models with respect to the initial templates. The thin lines are native structures; the thick
lines signify initial templates or final models. Blue to red runs from the N terminus to the C terminus. To guide the eye, the thinner lines connect contiguous
template segments. (A and B) Medium/hard set example. (A) The template (from 1a5kC) superimposed on native structure of 1fjfT with an initial rmsd of 17.2
A. (B) The optimized model for 1fjfT superposed on the native with rmsd of 3.1 A (3.12 A over aligned residues). (C and D) Easy set example. (C) The template
(from 1b4aA) superimposed onto the native structure of 1aoy._, with an initial rmsd of 6.12 A. (D) The optimized model for 1aoy._ superimposed on native with

rmsd of 2.42 A (2.1 A over aligned residues).

(Fig. 44) with high-quality local substructures, but a large
deviation of global topology from native. By moving these rigid
fragments and reassembling them into physically realistic mod-
els, a dramatic reduction of rmsd results (Fig. 4B).

As shown in the Fig. 3C, the fraction of targets having a rmsd
improvement above the given threshold value is plotted as a
function of the initial rmsd of the aligned residues. For initial
models with an ~4- to 5-A rmsd, 58% of targets improve by at
least 1 A. Similarly, 43% of very good templates, ~2- to 3-A
initial rmsd, have at least a 0.5-A improvement. Thus, many
distant CM targets are brought into the range of more traditional
CM results (30-50% identity) on a systematic basis. For most
initially good templates, mainly from the easy set (Fig. 34, open
cyan circles), with an initioal rmsd of =~2-6 A to native, there is
consistently an ~1- to 3-A improvement because of the better
packing of local structures and side chain groups after CAS
optimization. A representative example, laoy_, is shown in Fig.
4 C and D. Here, the global topology of the initial template is
quite similar to the native structure (6.1-A rmsd with 83%
coverage) with local fragments in the initial alignment having
different orientations from native. After TASSER refinement, the
final model has a rmsd of 2.4 (2.1) A over the entire chain
(aligned regions).

There are a few cases where refinement made the models
worse (see Fig. 34). Most are nonglobular proteins. For example,
1g12C, the worst case spoiled by CAS refinement, is a 60-residue
long single helix from a coiled coil. PROSPECTOR_3 has a weak hit
(Z = 4.9) to a gapped long helical template, 1bu0C, with a rmsd
of 2.8 A to native. Ideally, there should be no tertiary contacts
in this protein. However, because of some spurious contact
predictions (47 in total) collected from other weak scoring
templates, the assembly procedure drives the structure to a
two-helix bundle with a rmsd of 9.4 A to native. A simple solution
is to perform in parallel a pure ab initio simulation without
restraints (9); this gives a final model having a rmsd of 2.9 Ato
native.

In Fig. 3 B and D, we also show the comparison of the initial
templates and optimized final models from a widely used CM
tool, MODELLER (3, 4). As expected, because the structure given
by MODELLER is obtained by optimally satisfying tertiary re-
straints from templates, threading template quality mainly dic-
tates the final result (see Fig. 3D). In contrast, in TASSER, because
the relative orientations of template fragments are allowed to
move, the strong reliance on the initial alignment is alleviated,
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and the final models can be significantly different, especially
when the alignment is very gapped and the CAS potential does
not favor the initial alignment. For good templates (mostly easy
set targets), the alignments are much less gapped and the tertiary
contact restraints from PROSPECTOR_3 are much more consistent.
This way, TASSER tends to automatically “select” better tem-
plates and “refine” worse templates. Overall, for 1,349 targets,
the final model is closer (with smaller rmsd) to native compared
to the initial template within the aligned region, often signifi-
cantly so.

There are 6,101 continuous regions (ranging from 1 to 170
residues long and mainly on loops and tails) in the 1,489 targets
where PROSPECTOR_3 does not have coordinates aligned, and
TASSER needs to build the fragments by ab initio CAS ap-
proaches. In Fig. 54, we show the average rmsd of the unaligned/
loop regions as a function of length. Here, the rmsd between
modeled loops and native was calculated based on the superpo-
sition of up to five neighboring stem residues on both sides of the
loops. Although modeling accuracy decreases with increasing
loop length in both MODELLER and TASSER, the TASSER ab initio
procedure has on average a better control of the loop configu-
rations, especially for the longer loops. In Fig. 5B, we show the
histogram of 1,968 unaligned/loop regions that have length =4
residues. The average rmsd for these loops by TASSER and
MODELLER are 6.7 A and 14.9 A, respectively. If we consider for
example a rmsd cutoff of <4 A, MODELLER gives successful
results in 12% (245 of 1,968) of the cases, whereas TASSER ab
initio modeling is successful in 35% (686 of 1,968) of the cases.

Fig. 6 summarizes the rmsd distribution of the full-length
models by TASSER and MODELLER, both starting from the same
PROSPECTOR_3 alignments. For the easy targets, TASSER outper-
forms MODELLER, although the differences are smaller, as
compared to the medium and hard sets, where the difference is
even more pronounced. This comparison may not be entirely fair
because MODELLER was designed to fold homologous proteins,
and homologous templates have been excluded from our tem-
plate library. However, this difference shows the utility of using
TASSER. Overall, the average rmsd of the best models to native
are 12.16 A and 5.49 A for MODELLER and TASSER, respectively
(this significant difference is partially due to the fact that
MODELLER generates random structures in some hard targets
that have very short alignment templates); in 1,403 cases, TASSER
has a lower rmsd, and in 85 cases, MODELLER does.

If we define foldable cases as those where one of the top five
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Fig. 5. (A) Average rmsd to native of all unaligned/loop regions by TAsSEr
and MODELLER (3) as a function of loop length. The rmsd is calculated based on
the superposition of up to five neighboring stem residues on both sides of the
loop. (B) Histogram of the rmsd for the unaligned/loop regions with =4
residues (1,968 in total) modeled by TASSER and MODELLER.

structures has a rmsd to native <6.5 A, as shown in the last
column of Table 1, the overall success rate for TASSER full-length
models is 66% (990 of 1,489). The total number of templates
having an rmsd <6.5 A in the aligned regions increases from 927
(62%) to 1,172 (79%) after TASSER refinement. Among the 20
transmembrane proteins, nine (45%) of them (1a91_, 1bccH,
1f16A, 1fftC, 1jb0J, 1k3kA, 1lkzuB, 1ighB, and 1qleD) are
foldable, with an average rmsd of 3.8 A. Furthermore, in contrast
to many previous approaches (7-9), TASSER does not show
significant bias to secondary structure class: the success rates for
a, B, and af proteins are 311 of 448 (69%), 265 of 434 (61%),

O Medium/Hard-Set

I MODELLER I

Number of Proteins
g

<20 <25 <30 <35 <40 <45 <50 <55 <60 <65 <20 <25 <30 <35 <40 <45 <60 <55 <60 <65

RMSD (A)

Fig. 6. Histograms of foldable proteins using MODELLER (3) and TAssEr based
on the same templates and alignments from PROSPECTOR 3 (6).
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and 380 of 550 (69%), respectively. Nevertheless, a weak de-
pendence on protein size exists. For targets <120 residues, the
success rate is 73% (642 of 884); but for targets >120 residues,
it is 58% (348 of 605). All results, including threading templates,
structure trajectories, and final combined models for each of
targets, are available on our web site, www.bioinformatics.buf-
falo.edu/abinitio/1489.

Structure Predictions for the E. coli Genome. As an example of a
genomic application of TASSER, we apply here the approach to
all 1,360 ORFs in the E. coli genome (20) =200 residues in
length. PROSPECTOR 3 assigns 829 (61%) to the easy set, 521
(38%) to the medium set, and 10 (0.7%) to the hard set. These
threading assignment results are quite similar to that of the PDB
benchmark, with a slightly larger portion of targets assigned to
the easy set in E. coli, which may be due to the fact that
homologues are not excluded.

It should also be mentioned that genome scale structure
predictions have been performed by many authors on different
organisms (21-27). Most are based on homology modeling or
sequence comparison techniques, which require solved homol-
ogous structures. For example, the study by Peitsch et al. (22)
produced comparative models for ~10-15% of proteins in the
entire E. coli genome. Using PSI-BLAST (16), Hegyi et al. (25)
assigned 28% of all E. coli ORFs to SCOP domains. In the
PEDANT database (27), Frishman et al. showed that 50% of E.
coli ORFs have a PSI-BLAST hit to PDB structures, but the
assignment rate is 31% for ORFs of <200 residues. In GTOP
(26), Kawabata et al. used the reverse PSI-BLAST (28) and aligned
53% of all E. coli ORFs (35% for those <200 residues) to the
solved structures in PDB. Thus, PROSPECTOR_3 alone is seen to
perform significantly better than PSI-BLAST.

As an indicator of likelihood of success for blind structure
predictions, we noticed that: (i) the Z score of the template
indicates the significance of the threading alignment; (ii) the
degree of structure convergence in CAS assembly strongly
correlates with the quality of models in SPICKER clustering (18).
Thus, we define a confidence score, C-score, for TASSER models
by

M Z>
(rmsd)M o 1]

where M is the multiplicity of structures in a SPICKER cluster, Mot
is the total number of structures submitted for clustering, and
(rmsd) denotes the average rmsd of the structures to the cluster
centroid.

In Fig. 7, we show the C-score distribution of rank-one clusters
generated for E. coli ORFs as well as that for the PDB
benchmark proteins. The benchmarking data indeed show the
significant sensitivities of the C score to the prediction success
rate. For example, if we use a C-score threshold of —0.5 for the
rank-one clusters, the false positive (negative) rate is 12.4%
(14.7%). The C-score distribution of E. coli ORFs is consistent
with the PDB benchmark, except for the slightly more targets
distributed at high negative C-score regions for E. coli ORFs due
to the fact that we did not exclude homologous proteins. If we
assume that TASSER has similar C-score sensitivity in E. coli as
that in the PDB benchmark, we would expect ~920 (68%) ORFs
to have acceptable models.

Around 23% (309 of 1,360) of these ORFs belong to mem-
brane proteins according to MEMSAT (29) predictions. This rate
is slightly lower than the estimate of 26% by Jones (30) for the
entire set, which may be due to the fact that we here only focus
on the small ORFs with length =200 residues. In all rank-one
models of transmembrane proteins, there is at least one long
(putative transmembrane) helix occurring, which shows the
consistency of our modeling with the MEMSAT prediction. If we

C-score = ln(
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Fig. 7. Histogram distributions of the C-score (defined in Eq. 1) for the PDB

benchmark proteins and E. coli genome. The targets of the best rmsd in top
five clusters below and above 6.5 A for PDB benchmark are shown in different
color.

define the confidence level based on the C-score of the predicted
models, there are 56% (174 of 309) of the membrane proteins
that have >60% probability for the predicted models to have
rmsd <6.5 A; 47% (146 of 309) have >80% probability for the
models with a rmsd <6.5 A. The predicted models for all of the
ORFs with corresponding C-scores and confidence indexes are
available on our web site: www.bioinformatics.buffalo.edu/
genome/ecoli.

We did not mask out signal peptide residues from the ORF
sequences in our modeling. Actually, we found 149 cases having
annotated signal peptides in the swissS-PROT database (31).
Because of their distinct sequences, the majority of the signal
peptide residues are not aligned in the PROSPECTOR_3 align-
ments. In all of the resulting, full-length, rank-one models, the

1. Skolnick, J., Fetrow, J. S. & Kolinski, A. (2000) Nat. Biotechnol. 18, 283-287.
2. Baker, D. & Sali, A. (2001) Science 294, 93-96.
3. Sali, A. & Blundell, T. L. (1993) J. Mol. Biol. 234, 779-815.
4. Fiser, A., Do, R. K. & Sali, A. (2000) Protein Sci. 9, 1753-1773.
5. Bowie, J. U., Luthy, R. & Eisenberg, D. (1991) Science 253, 164-170.
6. Skolnick, J., Kihara, D. & Zhang, Y. (2004) Proteins, in press.
7. Liwo, A., Lee, J., Ripoll, D. R., Pillardy, J. & Scheraga, H. A. (1999) Proc. Natl.
Acad. Sci. USA 96, 5482-5485.
8. Simons, K. T., Strauss, C. & Baker, D. (2001) J. Mol. Biol. 306, 1191-1199.
9. Zhang, Y., Kolinski, A. & Skolnick, J. (2003) Biophys. J. 85, 1145-1164.
10. Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H.,
Shindyalov, I. N. & Bourne, P. E. (2000) Nucleic Acids Res. 28, 235-242.
11. Kihara, D. & Skolnick, J. (2003) J. Mol. Biol. 334, 793-802.
12. Tramontano, A. & Morea, V. (2003) Proteins 53, Suppl. 6, 352-368.
13. Moult, J., Fidelis, K., Zemla, A. & Hubbard, T. (2003) Proteins 53, Suppl. 6,
334-339.
14. Jones, D. T. (1999) J. Mol. Biol. 292, 195-202.
15. Needleman, S. B. & Wunsch, C. D. (1970) J. Mol. Biol. 48, 443-453.
16. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W.
& Lipman, D. J. (1997) Nucleic Acids Res. 25, 3389-3402.
17. Zhang, Y., Kihara, D. & Skolnick, J. (2002) Proteins 48, 192-201.
18. Zhang, Y. & Skolnick, J. (2004) J. Comp. Chem. 25, 865-871.

Zhang and Skolnick

signal peptide segments are outside the compact core structure
because of the lack of predicted contact restraints between the
signal peptide and the core regions. Therefore, the signal peptide
sequence does not exert much of an influence on the core regions
of TASSER modeling. Indeed, one possibility to be pursued is to
use this method to predict signal sequences.

Conclusions

We have developed TASSER, an algorithm for protein tertiary
structure assembly that spans the range from CM to ab initio
folding. To establish its generality, we applied the methodology
to a comprehensive benchmark set of 1,489 medium-sized
proteins that covers the whole PDB at the level of 35% sequence
identity. Consistent with our finding that the PDB is a complete
set of single domain protein structures at low resolution (11), we
can identify significant templates for >90% of such proteins.
Furthermore, in a large-scale test, the results presented here
demonstrate that threading alignments can be significantly im-
proved by moving and rearranging rigid fragments. Three factors
contribute to this success: the requirement of chain connectivity,
improved tertiary structure packing of the native like secondary
fragments due to an optimized force field, and the set of
predicted tertiary contacts from threading. A success rate of
around two in three is expected for the proteins of sequence
identity <30% (on average 22% identity) to known structures.
Based on TASSER’s confidence criteria established in the PDB
benchmark, comparable performance is obtained for the E. coli
genome. Although significant improvements in TASSER are still
being developed, nevertheless the ability to fold two-thirds of all
non- and weakly homologous proteins of <200 residues repre-
sents encouraging progress on the protein structure prediction
problem.
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