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I. INTRODUCTION

Since the first direct measurement of the elasticity of single DNA at 1992 [1], mechanical

properties of individual DNA and RNA macromolecules and interactions between DNA and

various proteins have been extensively investigated by single-molecule methods (see, for ex-

ample, review articles [2–8]). These single-molecule manipulation techniques include atomic

force microscopy, magnetic beads, micropipettes, optical tweezers, and many others. Many

new mechanical characteristics of DNA and RNA molecules were revealed by applying these

unprecedented instruments. Inspired by this huge experimental revolution, there were a lot

of theoretical modeling efforts in recent years. These theoretical and computational studies,

combined with single-molecule observations, have resulted in greatly improved understand-

ing on the elastic and statistical mechanical properties of DNA and RNA polymers.

This chapter tries to give a comprehensive review of the methods used in these theoretical

researches and the insights gained from them. In this introductory section, we first summa-

rize some basic knowledge of DNA and RNA for those readers who are not yet familiar with

these molecules. It is followed by a brief survey of recent single-molecule experiments. In

§ I C we outline the main topics covered in this chapter.

A. Basics of DNA and RNA

Molecular biology becomes the main focus of modern biological studies ever since the

discovery of the double-helix structure of DNA in 1953 by Watson, Crick, Wilkins, Franklin

and co-workers [9–11]. Deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and protein

are the main themes of molecular biology; they constitute the components of the central

dogma (see, for example, books [12, 13]). .

DNA is a polymer made of deoxyribonucleotides and RNA is a polymer of ribonucleotides.

In biological cells, DNA is usually very long. For example, the DNA sequence of Escherichia

coli bacterium contains more than nine million nucleotides, and the total number of nu-

cleotides in one cell of our body is of the order of ten billion (1010). Nucleotides in DNA

polymer are organized into two polynucleotide linear chains of equal length (Fig. 1). A nu-

cleotide monomer is an asymmetric molecule, with a 3′-end and a 5′-end. In each of the two

strands of DNA, the 3′-end of one nucleotide is connected to the 5′-end of another nucleotide
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by a phosphate-diester covalent bond [14]. A polynucleotide chain therefore has a direction

defined from its 5′-end to its 3′-end. There are four different types of nucleotide residues

(bases), namely Adenine (A), Guanine (G), Cytosine (C), and Thymine (T). For most or-

ganisms, DNA is the molecule where the hereditary information is stored and maintained.

The genetic information of an organism is recorded by the particular order of appearances

of the four types of bases A, C, G, and T along each strand of DNA.

In DNA, the two poly(deoxyribon)nucleotide strands are anti-parallel to each other and

are twisted around a common central axis to form a right-handed double-helix structure,

with the genetic information (the nucleotide residues) buried in the interior of the cylindri-

cal molecule and the highly negatively charged sugar-phosphate back-bones exposed outside.

Such a structure has the benefit of prohibiting genetic information from being lost or de-

stroyed, but it causes severe constraints on the access of genetic information and the transfer

of it from one generation to another. Over billions of years of evolution and selection, bio-

logical organisms have developed complicated mechanisms to facilitate gene duplication and

transcription [12].

In physiological conditions, the double-helix structure of DNA is very stable. This sta-

bility is the result of the following three contributions.

Firstly, the two strands of DNA are bound together by many hydrogen-bonded base-

pairs. The two polynucleotide strands of DNA are complementary to each other. Suppose

each strand has n nucleotides, complementarity means that, if at position i of one strand

(counting from its 5′-end) the nucleotide is A, then at position n− i of the other strand the

nucleotide is T (the same rule holds for nucleotides G and C). Adenine and Thymine can

form a planar A-T base-pair through the formation of two hydrogen bonds between them,

Cytosine and Guanine could form a planar G-C base-pair through the formation of three

hydrogen bonds between them [14]. The sugar-phosphate backbone length of DNA between

two consecutive base-pairs is about 0.68 nm.

Secondly, the folded double-helix is stabilized by base-pair stacking interactions between

adjacent nucleotide base-pairs [14]. The base-pair stacking potential is a short-ranged at-

tractive interaction, with a maximum strength when the two DNA base-pair planes are

separated by about 0.34 nm. Therefore, in its natural conditions, DNA is a right-handed

double-helix, each peach of which contains about 10.5 base-pairs, and two neighboring base-

pairs are separated vertically about 0.34 nm, the pitch length of the double-helix along the
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central axis is about 3.6 nm [15].

Thirdly, the existence of high concentration of counter-ions in biological cells screens out

the negative charges of DNA. Therefore, electrostatic repulsive interactions among negatively

charged phosphate groups are weak and can not destroy the compact double-helix structure.

DNA is transferred from a parent cell to its daughter cells through a replication process

[12]. The parent DNA is duplicated into two identical copies. When the parent cell divides

into two daughter cells, each of them contains a copy of the duplicated DNA molecule. Dur-

ing each cell cycle, the DNA sequence is read by RNA polymerases and genetic information

is transcribed into a message RNA (mRNA) linear chain. This process is called transcrip-

tion. The mRNA chain is then transmitted to another part of the cell and read by a protein

synthesis machine called the ribosome. This last step is a translation process, where each

word (of three nucleotides) in the input mRNA corresponds to an amino acid in the product

protein chain.

During the replication and transcription processes, the DNA molecule is severely de-

formed: the double-helix is locally bended, untwisted, stretched, compressed, and the base-

pair patterns are locally destroyed. The ability of DNA to perform reversible structural

transitions in response to various external conditions is very important for the biological

function of DNA as a hereditary material. DNA has a bending persistence length of about

50 nm [16], which means that if the bending deformation occurs over a length scale less

than 150 base-pairs, a considerable bending energy must be overcome. DNA could also

be twisted by applying a torsional stress on the molecule. The twist modulus of DNA is

recently measured to be 440 ± 40 pN nm2 [17] (pN means piconewton or 10−12 N). The

stretching modulus of DNA is about 1000 pN [18]. However, when DNA is stretched with a

force larger than 70 pN, its end-to-end extension suddenly increases to 1.7 times its relaxed

contour length [18, 19]. The double-helix structure of DNA can also be severely changed by

external torque [20–23].

The biological role of RNA is more versatile compared to that of DNA. Besides mRNA,

there are tRNA (transfer-RNA), which brings amino acids to the protein-assembly machine,

and rRNA (ribosomal RNA), which resides in the ribosome and is involved in protein syn-

thesis. Some RNA chains can also have catalytic functions. Furthermore, in some kinds of

viruses the hereditary information is stored in RNA rather than in DNA.

RNA exists as a single-stranded polymer. The nucleotide residues of RNA are also com-
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posed of four types as in the case of DNA, but with Uracil (U) replacing Thymine. Although

RNA is a single-stranded polymer, it can contain local right-handed double-helix structures.

To form a local double-helix segment, one part of the RNA chain must bend at certain

position to form a hairpin loop, and the hairpin structure is then stabilized by base-pairing

and base-pair stacking interactions (for an example, see Fig. 2). Besides G-C base-pairs, an

Adenine could form a A-U base-pair with a Uracil, and G-U base-pairs can also be formed.

The ability for some RNA chains (such as tRNA) to fold into stable three-dimensional

structures are very important for their biological functions. Given a RNA sequence, a com-

putational challenge is to predict its stable structures. On the other hand, for mRNA, it

might be unfavorable to have stable three-dimensional configurations. If a mRNA forms

a hairpin pattern with two distinct RNA segments bind to each other, this hairpin con-

figuration may restrict the passage of mRNA through the ribosome molecule, leading to a

blockage of protein synthesis. For a mRNA sequence, it is possible to have many transient

hairpin patterns. These hairpin patterns may not be stable, therefore they can be destroyed

by the force generated by the ribosome on mRNA during translation. In eukaryotes, it is

also conceivable that these hairpin patterns might play some role in RNA intron splicing

and alternative gene expression. The links between RNA sequence and biology is still not

quite clear.

B. A brief survey of single-molecule experimental studies on DNA and RNA

Prior to the advent of single-molecule methods, properties of polynucleotides were in-

ferred from bulk thermodynamic measurements. An example along this line is measuring

DNA denaturation curves based on light absorption or calorimetry (see, for example, review

article [24] and book [25]). Many thermodynamic parameters of DNA double-helix were

estimated by these ways. However, bulk experiments with a certain concentration of macro-

molecules can only measure the polymer’s average behavior. Fluctuations due to molecular

individuality can not be traced. There is another drawback: it is not always easy to sepa-

rate the effects due to intramolecular interactions from those resulting from intermolecular

interactions.

Single-molecule methods, which can work in the broad force range of 10−15-10−9 N, di-

rectly record the response of a macromolecule under the action of environmental stimuli.
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It enables researchers to gain detailed view of a macromolecule’s mechanical properties. It

also stimulates the need to perform theoretical modeling efforts on single-molecule systems

with the aim of quantitatively reproducing experimental observations.

In 1992, the three authors S. B. Smith, L. Finzi and C. Bustamante [1] fixed one end of

a lambda-phage DNA to a glass slide and attached a magnetic bead to the other end. They

then recorded the force-extension of DNA by applying a magnetic force on the attached

bead. Very novel elastic response of DNA was observed [1]. This research has stimulated

a lot of efforts in single-molecule investigation on polynucleotides. Here we briefly mention

some of these studies to give the reader an overview of the present experimental situations.

For other recent experimental reviews, see [2–8].

Elasticity of double-stranded DNA Smith and co-workers [1] found that the force-

extension curves of lambda-phage DNA do not follow predictions based on standard Gaussian

polymer model or freely-jointed-chain model. Later it was realized that semiflexible worm-

like-chain polymer could reproduce the observation of Smith et al. to a large extent [16].

Bensimon and co-workers [26] used a receding meniscus to measure the elasticity of DNA.

They found that DNA could be stretched up to 2.14 times its relaxed contour length before

breaking. Bustamante and co-workers also announced briefly in a conference abstract [27]

that DNA could stretched to 1.85 times its B-form length before breaking and that the

over-stretching was initiated suddenly at about 50 pN. In the experimental setup of Smith

et al. [27] the ends of a lambda-DNA were attached to two micro-bead and moved by

micropipettes. Later, Bustamante and co-workers repeated this experiment by using optical

tweezers [18]. The unzipping force was more precisely measured to be about 65 pN and the

over-stretched DNA was found to be 1.7 times its B-form length. Caron and co-workers [19]

performed a similar experiment but with an optical fiber as the force level, their result was

consistent with that of Smith et al. [18].

Croquette and co-workers [20] fixed the two strands of an lambda-DNA to a glass slide

at one end and to a magnetic bead at the other end. They then applied a magnetic field to

rotate and stretch the bead, thereby adding torsional as well as elongational stress in DNA

double-helix [20]. Very interesting behaviors of DNA were observed in this and subsequent

experiments [20–23]. The elastic response of an under-twisted DNA is quite different from

that of an over-twisted DNA. Over-twisting might cause B-form DNA to transit into a new

P-form DNA with exposed nucleotide bases [23], while under-twisted DNA might be in a
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strand-separated form [21] or a left-handed Z-form [28–30].

The dynamics of single DNA macromolecules in elongational or shear flows were studied

by Chu and co-workers [31–33].

Elasticity of single-stranded DNA Smith and co-workers [18] studied the elastic re-

sponse of single-stranded (ss) lambda-phage DNA at the action of an external force. They

found that the elasticity of ssDNA could be well modeled by a freely-jointed-chain model

with Kuhn length 1.5 nm and stretching modulus 800 pN, or by a worm-like-chain model.

Croquette and co-workers [34] also studied the elastic response of ssDNA using magnetic

bead and magnetic force. At high salt conditions, both the modified freely-jointed-chain

model and the worm-like-chain model could not reproduce the force-extension curve of ss-

DNA when the external force is less than 5 pN. Bustamante and co-authors [18, 35, 36] also

observed similar behavior. This discrepancy between theory and experiment was attributed

to the formation of hairpins in ssDNA chain.

At low salt conditions and low external forces, Bustamante et al. [2] also observed that

the force-extension curve of ssDNA is much deviated from that of a freely-jointed-chain.

This was caused by strong electrostatic repulsive interaction between negatively charged

nucleotide monomers.

DNA unzipping and rupture Heslot and co-workers [37] separated the two strands of

a lambda-phage DNA by fixing the 5′-end of one strand to a glass slide and the 3′-end of

the other strand to a soft force level and moving the force level at constant velocity. They

found that the resulting force-extension is directly related to DNA sequence [37–40]. DNA

unzipping experiment were also performed by Danilowicz et al. [41] under the condition of

fixed external force.

Lee and co-authors [42] fixed the 5′-end of one strand of a DNA oligomer of 12 base-pairs

to a surface and the 5′-end of the other strand to the tip of an atomic force microscopy

and then stretched the molecule. The rupture force between the two strands was measured

to be 410 pN in 0.1 M NaCl [42, 43]. Similar experiments on DNA oligomers of various

lengths and sequences were undertaken by Noy and co-workers [44], Strunz and co-workers

[45], and Pope and co-workers [46] under different ionic conditions. Very surprisingly, the

rupture forces for DNA oligomers are typically much lower than the melting forces of long

DNA polymers. Rief and co-workers [47, 48] measured the melting force for lambda-phage

DNA at room temperature to be about 150 pN. This dramatic difference may be due to the
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following fact: In lambda-phage DNA there are many single-stranded breaks, these nicks

enable DNA’s torsional strain induced by stretching to be released. However, single-stranded

breaks are absent in the DNA oligomers studied in Refs. [42–46].

The unzipping kinetics of short DNA chains was studied by Sauer-Budge et al. [49]

by letting single-stranded but not double-stranded DNA segment to pass through a nano-

pore. They found that the strand separation for perfectly matched DNA double-helices

of tens of base-pairs an all-or-nothing process. However, there are unzipping intermediate

states when a DNA oligomer with a single mismatch was forced to traverse the nano-pore.

The experimental setup of Ref. [49] is therefore capable of discriminate between minute

differences in DNA sequences.

Even the unzipping forces between single nucleotide base-pairs were measured by atomic

force microscopy. Boland and Ratner [50] found that the force to separate a single A-T

base-pair is 54 pN. This value, however, is much higher than the unzipping force of 9-12 pN

measured in Refs. [37, 47].

RNA unfolding The unfolding processes of several native RNA molecules were studied

by many authors [51–54]. These non-equilibrium force-extension measurements were used

to construct the energy landscape of RNA unfolding [52, 55, 56]

DNA-protein interactions The interaction between DNA and RNA polymerases were

studied by Block and co-workers [57–60] and also by Bustamante and co-authors [61]. These

authors found that, at low external forces, RNA polymerases move along DNA template with

an average velocity of 16 nucleotides per second. The stalling force for RNA polymerases is

about 25 pN.

DNA replication dynamics was studied by Maier, Bensimon, and Croquette [34] and by

Bustamante and co-workers [36] using single-molecule methods. It was found that the rate

of DNA replication depends strongly on the applied force. When the external force exceeds

40 pN, DNA polymerase began to move back along the DNA template [36].

The working mechanisms of DNA topoisomerases were probed in Refs. [62].

The mechanical property of single chromatin fibers were studied by Cui and Busta-

mante [63]. One of the findings is that, at physiological ionic conditions, condensation-

decondensation transition could be induced by an external force of 5 pN, suggesting the

chromatin fiber to be in a dynamic structure because of thermal fluctuations. The dy-

namic structure of individual nucleosomes was also explored by Wang and co-authors [64]
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by stretching an tandem array of nucleosomes. The typical force needed to destroy the

nucleosome structure was measured to be about 25 pN. The kinetics of chromatin assembly

was recorded by Viovy and co-authors [65].

Poirier and Marko [66] demonstrated convincingly that, in a mitotic chromosome there

is no contiguous protein scaffold. Covalent connection in a chromosome is therefore due to

the DNA chain.

The interaction of RecA protein with double-stranded and single-stranded DNA were

studied experimentally by Chatenay and co-authors [67]. These researchers found that

structural fluctuations in double-stranded DNA are coupled to the RecA-DNA binding re-

action. Related experiments were also undertaken by Libchaber and co-workers [68, 69] and

by Bustamante and co-authors [35].

DNA sequencing Quake and co-workers [70] reported that sequence information of

DNA could be obtained by performing experiments on just one single DNA molecule. The

four types of nucleotides are labeled with four kinds of fluorescent agents. The incorporation

of these nucleotides by a DNA polymerase which moves along the DNA chain is then recorded

in real-time. The authors [70] found that single-nucleotide resolution could be reached by

this method.

It is anticipated that more and more single-molecule experimental observations on the

interaction between protein and DNA will be reported in the near future.

C. Outline of this chapter

On the theoretical side, analytical as well as computational methods have been developed

in understanding single-molecule experimental observations. In §II we outline some models

on the melting phenomenon of double-stranded DNA. In § III theoretical work on the struc-

tural transitions in RNA secondary structures will be mentioned in detail. In § IV we review

the entropic elasticity theory of DNA. In § V we discuss DNA over-stretching transition.

In section § VI we briefly review works done on the supercoiling property of DNA. Finally,

§ VII is reserved for conclusion.

There is a huge theoretical literature on the study of DNA and its interaction with

proteins. The materials presented in this chapter by no means are complete. They are

inevitably biased by our own expertise and taste. For example, theoretical investigations on
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the interaction between DNA and protein are completely neglected in this chapter. Recent

theoretical reviews include Refs. [71, 72].
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II. DNA DENATURATION AND UNZIPPING

As mentioned in § IA, DNA is a double-stranded polymer, with the two strands bound

together by hydrogen bonds. Compared to a covalent bond, a hydrogen bond is very weak.

The energy needed to break a hydrogen bond is comparable to thermal energy kBT at room

temperature of T ' 300 K, where kB is Boltzmann’s constant. An A-T base-pair contains

two hydrogen bonds and a G-C pair contains three. Because of thermal fluctuations, at

physiological temperatures a base-pair may transit frequently between its paired state and

the unpaired open state. Researchers are now quite interested in the biological significance

of such local dynamical behavior of DNA double-helix (see, for example, [73–75]). Here we

focus on the global equilibrium properties of DNA double-helix and review theoretical works

on the denaturation transition in long DNA chains.

Experimentally, it has been known for many years that when a solution of DNA macro-

molecules is heated to about 80 ◦C, the base-pairs in the DNA double-helix break up cooper-

atively and the two DNA strands dissociate from each other to form two separated random

coils. This phenomenon is referred to as DNA denaturation or thermal DNA melting [14].

Even at relatively low temperature where thermal DNA melting does not occur, the two

strands of DNA could be separated by applying an oppositely directed force on the two

strands at the DNA terminal point [37, 41]. This phenomenon is called force-induced DNA

melting or DNA unzipping. DNA unzipping is also referred to as directional DNA melting

[37], because the strand separation propagates from one end of the polymer chain to the

other end.

The two strands of a DNA can also be separated by pulling its two opposite 5′ ends with

a force (see, for example, Ref. [42–46]). This process is called DNA rupture. A theoretical

investigation of DNA rupture could be found in Ref. [76]. In this section, we discuss only

DNA unzipping and will not treat DNA rupture.

We investigate the statistical mechanics of thermal and directional DNA melting. In

§ IIA we discuss the de Gennes-Peyrard-Bishop model. In § II B we introduce the Montanari-

Mézard model and outline its main results. In § II C the renowned Poland-Scheraga model is

recalled, followed by reviewing the calculations of Kafri and co-workers on the order of DNA

denaturation transition. In § IID we discuss how the sequence information in DNA will be

manifested in the force-extension curves in an equilibrium DNA unzipping experiment. In
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§ II E, we discuss kinetic issues related to DNA unzipping.

Earlier reviews on DNA thermal melting could be found in Refs. [24, 25, 77]

A. DNA denaturation: de Gennes-Peyrard-Bishop model

A simplified continuous model of DNA denaturation was investigated first by de Gennes

[78] and later by Peyrard and Bishop [79]. This model regards that base-pairing and base-

pair stacking interaction both to be important to understand DNA denaturation. This two

types of interactions are considered by the following Hamiltonian:

H =
N
∑

n=1

V (xn) +
N−1
∑

n=1

k

2
(xn+1 − xn)2. (1)

In Eq. (1), xn denotes the bond length of the n-th base-pair, and V (x) is the base-pairing

potential. V (x) is a short-ranged potential, and Peyrard and Bishop modeled it by a Morse

potential for analytical convenience:

V (x) = D
[

e−ax − 1
]2
. (2)

D is set to 5.29×10−22 J and a−1 = 1.8 Å, which corresponds to mean value for the hydrogen

bonds in A-T and G-C base-pairs.

The second term of Eq. (1) models couplings between two adjacent base-pairs caused by

base-pairing stacking. The coupling strength k is of the order of 4.5 × 10−24 J/Å [79]. In

general, the values of the parameters D, a, and k should all be sequence-dependent.

The partition function is

Z(N) =

∞
∫

−∞

N
∏

n=1

dxn exp[−βH(N)], (3)

where β = 1/kBT . Because base-pair stacking introduces only nearest-neighbor coupling in

Eq. (1), the partition function Eq. (3) could be evaluated by transfer-matrix method [79].

Denote εi and φi(x) as, respectively, the i-th eigenvalue and eigenfunction of the integral

equation
+∞
∫

−∞
dx′ exp

[

−k
2
(x− x′)2 + V (x)

]

φi(x
′) = e−βεiφi(x), (4)

then Eq. (3) is re-written as

Z(N) =
∞
∑

i=0

e−(N−1)βεi

+∞
∫

−∞
dxNφi(xN )

+∞
∫

−∞
dx1e

−βV (x1)φi(x1). (5)
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As long as the temperature T is low enough such that d = (β/a)(2kD)1/2 > 1
2
, Eq. (4) has

a confined ground-state eigenfunction of

φ0(x) = a1/2 (2d)d−1/2

[Γ(2d− 1)]1/2
exp

(

−de−ax
)

exp
(

−(d− 1

2
)ax

)

. (6)

In the thermodynamic limit of N → ∞, Eq. (4) reduces to Z(N) ∝ exp[−βNε0]. The

average separation of a base-pair is equation to

〈x〉 =

+∞
∫

−∞
x′φ2

0(x
′)dx′ (7)

Peyrard and Bishop [79] calculated the average separation between a DNA base-pair

based on Eq. (7). They found that when the temperature is increased, the hydrogen-bond

stretching has a sigmoidal form and changes gradually from about 2 Å to about 10 Å over

a temperature range of about 50 K. They also found that the transition temperature is

greatly influenced by the coupling constant k in Eq. (1). The work of Peyrard and Bishop

[79] suggested that base-pair stacking interactions as well as the short-ranged nature of base-

pairing interactions are quite important to understand DNA denaturation. More refined

models following Ref. [79] were also constructed and investigated detailedly [80–87].

The experimentally observed DNA denaturation is much more cooperative than that

predicted in Ref. [79]. For this purpose, Dauxois and co-authors [81, 86] introduced

non-harmonic nearest-neighbor stacking interactions. This was achieved by assuming the

coupling k in Eq. (1) to be a separation-dependent quantity. Their calculations leads to a

much sharper behavior than the original model [81, 86]. In Ref. [85], twisting degrees of

freedom are also incorporated into the model to improve the agreement between theory and

experiment.

The original calculations of Ref. [79] considered only the (localized) ground-state eigen-

vector of Eq. (4). For short DNA molecules where the thermodynamic limit does not hold, it

is necessary to consider both the localized and extended eigenfunctions of Eq. (4). Extensive

numerical work of Zhang and co-authors [84] demonstrated that, after this improvement,

actually the Peyrard-Bishop model could reproduce the melting curves of some naturally

occurring short DNA chains with high precision.

Zhou discussed the phase-transition issue of DNA denaturation based on the de Gennes-

Peyrard-Bishop model. In his calculation, the Morse potential Eq. (2) was replaced by an
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asymmetric δ potential for analytical convenience

V (x) =











+∞, x < 0;

−γδ(x− a), x ≥ 0.
(8)

In addition, an energy term −fxN is added into Eq. (1) to mimic the effect of external

unzipping. By taking into all the eigenstates of this model system, the Laplace transform

of the partition function is exactly worked out [87]

G(z) =
∞
∑

N=0

exp(−zN)Z(N) =
8
√

z(2kβ)3a[exp(βfa/2) − exp(−
√

2zkβa)]

[8zkβ − β2f 2][2
√

2zkβa− τ(1 − exp(−2
√

2zkβa))]
(9)

where τ = 2akγβ2. The largest solution of the equation 1/G(z) = 0 corresponds to the

linear free energy density of the polymer system.

Reference [87] showed that denaturation is a localization-delocalization transition process.

When T < Tm =
√

2kγa/kB, there is one localized eigenstate, corresponding to base-paired

DNA. The phase-transition occurs at Tm when the localized ground-state disappears. When

there is no external force, the denaturation transition is second-order, provided that the

hydrogen-bonding interaction V (x) is asymmetric (for symmetric potential V (x) there is no

true phase-transition). When the external force is non-zero, the denaturation is first-order.

The phase-diagram based on this simplified model is shown in Fig. 3.

The de-Gennes-Peyrard-Bishop model is essentially one-dimensional. The configurational

fluctuations in DNA strands are all neglected. In the next section, we discuss a more realistic

model of DNA denaturation which considers DNA as a three-dimensional object.

B. DNA denaturation: Montanari-Mézard model

Montanari and Mézard [88] constructed a three-dimensional polymer model to study the

secondary structures in RNA polymers (see § III). However, as we show here, this model is

also suitable to study DNA denaturation and unzipping.

In the Montanari-Mézard model, each DNA strand is regarded as a deformable freely-

jointed chain of N bonds and N + 1 beads (see Fig. 4). The 2(N + 1) beads along the two

strands are located at spatial positions {rα
0 , r

α
1 , . . . , r

a
N}, with α = 1 for the first strand and

α = 2 for the second strand. In each strand, the bond linking two consecutive beads i and
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i+ 1 has the following bond length distribution [88]:

µ(ui) ∝ exp

(

−(|ui| − b)2

2l20

)

(10)

where ui = rα
i+1 − rα

i is the bond vector, b is the intrinsic length of the bond, and l0 is the

typical magnitude of bond length fluctuations. For single-stranded DNA, b ' 1.7 nm [2, 18]

and l0 ∼ 0.1 nm.

A bead of the model is an effective interaction unit and corresponds to about three

nucleotide bases of a real DNA strand. If the distance ri = r1
i − r2

i between the i-th pair of

beads is within some range a, there is an attractive interaction εi. The attractive interaction

is base-pair dependent, a G-C pair is stronger than an A-T pair. We are interested here in the

general physics, so we assume all the pairing interactions to be sequence-independent: εi ≡
−ε0, with ε0 being the average pairing energy between two complementary DNA segments

of length corresponding to one bead of the model. The effect of sequence heterogeneity to

DNA unzipping will be discussed later. Cule and Hwa have also performed Monte-Carlo

simulation to study the changing of denaturation behavior due to sequence heterogeneity,

see Ref. [83].

Apart form this kind of “on-site” base-pairing interactions, the stacking interaction be-

tween two consecutive base-pairs is also considered. If both |ri| ≤ a and |ri+1| ≤ a, then

there is an additional stacking energy gain of −εs. In principal, εs should also depend on

sequence, but this complication is dropped here.

In the following theoretical treatment, excluded volume effect is neglected, and the local

helical structure of DNA is not considered. The model could be investigated by many means.

Here we follow the graph-counting and generating-function method used in Refs. [88–93].

§ II B 1 investigates DNA denaturation and § II B 2 treats unzipping.

1. DNA thermal melting

The partition function of a double-stranded polymer of 2n bonds is denoted by Zds(n, r),

where r is the separation between the last [(n + 1)-th] pair of beads (see Fig. 4 (left)). We

need to distinguish between two situations: (i) the last pair of beads are not base-paired,

i.e., |r| > a; (ii) the last pair of beads are base-paired, i.e., |r| ≤ a. Denote the partition

function for the first case as Z
(u)
ds (n, r) and that of the second case as Z

(p)
ds (n, r). The total
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partition function is

Zds(n, r) = Θ(a− |r|)Z(p)
ds (n, r) + [1 − Θ(a− |r|)]Z(u)

ds (n, r). (11)

In Eq. (11), Θ(x) is the Heaviside step function: Θ(x) = 1 for x ≥ 0 and Θ(x) = 0 if x < 0.

Based on the graph representation of Fig. 4 (left), the following recursive equations are

written down for n ≥ 1:

Z
(p)
ds (n, r) = Θ(a− |r|)eβε0

∫

[

3
∏

i=1

dui

]

µ(u1)µ(u2)δ

(

3
∑

i=1

ui − r

)

×

×
[

Z
(u)
ds (n− 1,u3) + eβεsZ

(p)
ds (n− 1,u3)

]

, (12)

Z
(u)
ds (n, r) = [1 − Θ(a− |r|)]

∫

[

3
∏

i=1

dui

]

µ(u1)µ(u2)Zds(n− 1,u3)δ

(

3
∑

i=1

ui − r

)

. (13)

Equations (12) and (13) are supplemented with the initial condition Z
(p)
ds (0, r) = δ(r) and

Z
(u)
ds (0, r) = 0.

Hydrogen-bonding is a short-ranged interaction, with its range of interaction a much

shorter than the Kuhn length b of a single-stranded DNA chain: a � b. Take into account

this fact, a good approximation is to write Θ(a−|r|) ' 4π
3
a3δ(r). This approximation makes

our following analytical calculations much easier to perform.

The Fourier transform of a function f(r) is indicated by an over-tilde and is defined as

f̃(p) =
∫

dr exp(ip · r)f(r). (14)

Equations (11), (12) and (13) are Fourier transformed to

Z̃
(p)
ds (n,p) =

a3

6π2
eβε0

∫

dqµ̃2(q)Z̃ds(n − 1,q) +

+
a3

6π2
eβε0(eβεs − 1)

∫

dqµ̃2(q)Z̃
(p)
ds (n − 1,q), (15)

Z̃
(u)
ds (n,p) = µ̃2(p)Z̃ds(n− 1,p) − a3

6π2

∫

dqµ̃2(q)Z̃ds(n − 1,q), (16)

Z̃ds(n,p) = Z̃
(p)
ds (n,p) + Z̃

(u)
ds (n,p). (17)

In the above equations, µ̃ is the Fourier transform of the bond vector distribution Eq. (10),

µ̃(p) =
∫

dr exp(ip · r)µ(r) =
sin b|p|

b|p| exp

(

− l20|p|2
2

)

. (18)

The generating function G(z,p) of Zds(n,p) is defined by

G(z,p) =
+∞
∑

n=0

Z̃ds(n,p)zn. (19)
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Based on Eqs. (15), (16), and (17) we arrive at the following expression:

G(z,p) =
1

1 − zµ̃2(p)
×

× 1

1 − za3

6π2 eβε0(eβεs − 1)
∫

dqµ̃2(q)
[

1 + za3

6π2

∫

dq µ̃2(q)
1−zµ̃2(q)

]

− za3

6π2 (eβε0 − 1)
∫

dq µ̃2(q)
1−zµ̃2(q)

. (20)

The total partition of a double-stranded polymer of 2n bonds is

Zds(n) =
∫

drZds(n, r) = Z̃ds(n, 0). (21)

The generation function of Zds(n) is nothing but G(z, 0). For a linear polymer system with

only short-range interactions, the total free energy is a linear function of system size n, plus

correlation terms which scale logarithmically with n in leading order [89]. We expect to find

the following asymptotic expression for the partition function Zds(n) when n� 1:

Z(n) ∼ n−γ exp
(

− ng

kBT

)

, (22)

where g is the free energy linear density of the system and γ is a scaling constant. From

Eq. (19) and Eq. (22) we know that g = kBT ln zc, where zc is the smallest positive singular

point of the function G(z, 0).

Function G(z, 0) has a singular point at z = zcoil = 1 and another singular point at the

point znative determined by y(znative) = 0, with

y(z) = 1 − za3eβε0(eβεs − 1)

6π2

∫

dqµ̃2(q)

[

1 +
za3

6π2

∫

dq
µ̃2(q)

1 − zµ̃2(q)

]

−za
3(eβε0 − 1)

6π2

∫

dq
µ̃2(q)

1 − zµ̃2(q)
. (23)

Function y(z) monotonously decreases with z in the range 0 ≤ z ≤ 1, with y(0) = 1. Because

1 − µ̃2(q) ∝ q2 as |q| → 0, we know from Eq. (23) that, for three-dimensional systems of

our interest, y(1) is finite but dy(z)
dz

∣

∣

∣

z=1
= −∞.

When environment temperature T is low, y(1) < 0 and y(0) > 0. There must be a root

of y(znative) = 0 with 0 < znative < 1. The smallest positive singularity of G(z, 0) is at znative.

When T is high enough such that T > Tm (the melting temperature), y(1) > 0 and y(0) > 0.

There is no root of y(z) = 0 in the range 0 ≤ z ≤ 1. The smallest singularity of G(z, 0) is

at zcoil = 1. There is a phase transition at the melting temperature Tm when y(1) = 0.
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At any temperature T , the fraction of hydrogen-bonded base-pairs nbp(T ) is determined

by

nbp(T ) = −kBT
d ln zc

dε0
=











−kBT
d ln znative

dε0
, (T ≤ Tm)

0. (T > Tm)
(24)

In Fig. 5 the number of intact base-pairs nbp as a function of T is shown for a double-stranded

DNA made of 50% G-C base-pairs and 50% A-T base-pairs (the sequence is assumed to be

random). The melting temperature is set to Tm = 363.82 K. Different curves correspond to

different (ε0, εs) values, while the sum of ε0 + εs is fixed to about 11.0 kJ/mol.

When temperature T < Tm, DNA is in the native phase, the fraction of intact base-pairs

is non-zero. As the temperature approaches Tm from below, the number of intact base-pairs

vanishes to zero; and when T > Tm DNA is in the denatured phase, with very few hydrogen-

bonded base-pairs. Figure 5 shows that the cooperativity of this denaturation transition

depends on the relative importance of base-pairing and base-pair stacking interactions. If

the energy of double-stranded DNA is mainly contributed by base-pairing interactions, then

the denature transition will be a gradual processes (the bottom curve of Fig. 5); while if

base-pair stacking energies contribute the main part of the energy, then the transition will

be very cooperative (the top curve of Fig. 5). Experimentally, it was observed that the

DNA thermal melting is a highly cooperative transition process [24, 94, 95], with a melting

curve resembling the upper curves Fig. 5. When the temperature is slightly below Tm, most

of the base-pairs in DNA is intact, while when T is slightly above Tm, most of the base-

pairs are denatured. The Montanari-Mézard model with base-pair and base-pair stacking

interactions is able to explain this highly cooperative phenomenon, if we assume that in

DNA double-helix, base-pair stacking interactions are more important than base-pairing

interactions.

One way to separate the contributions of base-pairing and base-pair stacking to the sta-

bility of DNA double-helix is to observe the melting curves of an ensemble of DNA molecules

of the same nucleotide composition but different sequences. The total base-pairing interac-

tion in these molecules are the same. Therefore, different melting behaviors must be due

to differences in the base-pair stacking interactions. Recently, Montrichok and co-workers

[96] combined UV spectroscopy and rapid quenching to demonstrate that the cooperativity

of DNA denaturation is strongly sequence-dependent. For two DNA oligomers with similar

A, T, G, and C compositions but with different sequence orders, one oligomer melts in a
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two-state way, while the other melted through many intermediates.

A question of academic interest is the order of the denature transition. Although the

transition could be very cooperative as shown in Fig. 5, it is predicted to be continuous

according to the model of this subsection. No latent heat is needed to complete the melting

transition process. This is also consistent with the result of Ref. [87] based on the de

Gennes-Peyrard-Bishop model of the preceding subsection. The transition is continuous

because both the free energy and its first-order derivative with respect to temperature T

are continuous at Tm. DNA thermal melting is driven by the competition between energy

and entropy. A denaturation bubble (which is composed of two unpaired segments) could

have many different configurations and hence are entropy-favored; while base-paired regions

are energy-favored. When temperature is high enough, the gain in configurational entropy

out-performs the loss in pairing energy and the two strands are therefore separated.

In § II C we will show that if self-avoidance effect is properly taken into account in the

theoretical calculations, the melting transition could become first-order. Before doing this,

however, let us first discuss force-induced DNA melting based on the present model.

2. Force-induced DNA melting

When there is an external force F pulling apart the double-stranded polymer (see Fig. 4

(right)), the total partition function Eq. (11) should be changed to exp(βF · r)Zds(n, r). The

generating function of the new system has the same form as the expression in Eq. (20). The

only difference is that p in Eq. (20) is replaced with iβF.

For the new system, zcoil = µ̃−2(iβF) < 1, and znative is still given by the root of Eq. (23).

When either the force or the temperature or both are large enough, the system is in the

stretched coil state with two separated strands; when both the force and the temperature is

small, the system is in the native paired state. The phase diagram in the force-temperature

plan for a model DNA polymer made of 50% G-C pairs is shown in by the dashed line of

Fig. 6. In this phase diagram, there is a critical force-temperature curve separating the

native and the denatured phase. This phase diagram is determined by the equation

y(zcoil) = 1. (25)

When the external force is nonzero, there exists a discontinuous first-order phase struc-
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tural transition when the critical force-temperature curve is crossed. The phase transition

is first-order because the free energy density is continuous, while its first-order derivative

respect to temperature or force is discontinuous. The force-induced first-order phase tran-

sition is consistent with the de Gennes-Peyrard-Bishop model [87, 97]. Marenduzzo and

co-authors [98] have studied an elegant three-dimensional directed lattice model of DNA

force-induced unzipping. They also predicted a first-order phase transition.

According to the the phase-boundary (the dashed line) of Fig. 6, one would anticipate

that that room temperature of T = 300 K, an stretching force of about 4 pN is enough to

pull the two strands of DNA apart. This is not the case. According to the experimental

work of Essevaz-Roulet et al. [37] and Rief et al. [47], at room temperature, an external

force in the range 9 − 20 pN is needed to separated the DNA double-helix.

There are many reasons that may related to this quantitative disagreement between

theory and experiment. For example, in the model we mentioned earlier, there is only an

energetic contribution to base-pair stacking, this is denoted by the constant energy parameter

εs. However, in the actual case, for the two consecutive base-pairs to stack onto each other,

the DNA backbones must be twisted and folded. This confinement costs entropy, but this

entropic effect is not considered in the model. Similarly, the free energy contribution to base-

pairing is also assumed to be enthalpic in nature in our previous calculations. Unfortunately,

to separate the enthalpic and entropic contributions to the free energy of pairing and stacking

has not been an easy task and much work still needs to be done (see, for instance, Refs. [14,

25, 99, 100] and references cited therein). Here, to demonstrate the effect of taking into

account of entropic contribution to base-pair stacking free energy, we separate the free energy

of base-pair stacking into two parts, one part comes from the average stacking energy, and

the other part comes from entropic penalties:

εs = δHs − TδSs. (26)

In the above equation, δHs is the enthalpic difference between a stacked and an un-stacked

pair of base-pairs, and δSs is the entropic difference between a stacked and un-stacked pair

of base-pairs [14, 25]. Under this modification, the new phase boundary is shown by the

solid line of Fig. 6, which is in better agreement with experimental observations. In general,

one should also consider the temperature dependence of the pairing free energy ε0.

A method of combining external force and temperature to measure various thermody-
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namic parameters of DNA could be suggested. One can fix the environment at various tem-

peratures and measure the unzipping critical force of DNA. The resulting phase-diagram

can then be fitted with theoretical results based on the model of this section to determine

a set of free energy parameters that leads to a good fit to the experimental phase-diagram.

We anticipate to see such progress in the near future.

C. Poland-Scheraga model and excluded-volume effect

It is quite difficult to consider excluded-volume interactions in the de Gennes-Peyrard-

Bishop model and the Montanari-Mézard model. To incorporate the effect of excluded

volume on the melting transition of DNA, we first mention a simplified two-state model,

which is due to Poland and Scheraga [77, 90]. In the the Poland-Scheraga model, each base-

pair exists either in a base-paired state or in an un-paired open state. A segment of DNA

that contains only paired base-pairs is called a double-helical segment, and a segment that

is composed completely of opened base-pairs is referred to as a denatured segment. DNA

could be regarded as a linear chain of double-helical segments and denatured segments, with

these two types of segments occur in alternative order. When two DNA segments come close

together each other, there are excluded volume interactions. Excluded volume interactions

also exist between nucleotide bases in a single denatured DNA segment.

At first, let us discard any excluded volume effect and focus only on the base-pairing and

base-pair stacking interactions. Without loss of generality, we assume the first and the last

pair of bases are always in the paired state. Denote the partition function of a DNA double-

helical segment of of i (i ≥ 1) base-pairs by Zhelix(i), and that of a denatured segment

of j (j ≥ 1) base-pairs as Zbubble(j). The whole DNA polymer may in the double-helix

configuration, or there may be many double-helix segments and denaturation bubbles (see

Fig. 7). The total partition function of a DNA of N base-pairs is obtained by summarizing

the contributions from all possible configurations:

Z(N) = Zhelix(N) +
∑

s=1

∑

i0=1

∑

j1=1

∑

i1=1

. . .
∑

js=1

∑

is=1

δN
∑

k
ik+
∑

l
jl
×

×
s
∏

m=1

[Zhelix(im)Zbubble(jm)]Zhelix(i0). (27)
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The generating function of Eq. (27) is

G(z) =
∑

N=1

Z(N)zN =
Ghelix(z)

1 −Ghelix(z)Gbubble(z)
, (28)

where Ghelix(z) =
∑

i=1
Zhelix(i)z

i and Gbubble(z) =
∑

j=1
Zbubble(j)z

j.

For a helical segment of i base-pairs, the free energy is −iε0−(i−1)εs due to base-pairing

(ε0) and base-pair stacking (εs). Therefore

Ghelix(z) =
zeβε0

1 − zeβ(ε0+εs)
. (29)

The partition function Zbubble(j) is estimated as follows. As mentioned in § II B, when

neglecting all the possible interactions with a single strand, a single-stranded DNA could be

modeled as a freely-jointed chain of bond length b ' 1.7 nm, with each bond corresponding

to about three nucleotide bases. A DNA denaturation bubble of j base-pairs therefore

corresponds to a freely-jointed chain of 2(j + 1)/3 bonds, with the additional constraint

that the two ends of the chain should be separated no more than 2a apart, where a is the

base-pairing interaction range (see § II B). Then

Zbubble(j) = Ω2(j+1)/3 × Probability(|r1 + . . .+ r2(j+1)/3| ≤ 2a) (30)

' c0
ejscoil

(j + 1)γ
, for j � 1. (31)

In Eq. (30), Ω denotes the total number of microscopic configurations of a bond; in Eq. (31),

γ = 3
2
, scoil/2kB is the configurational entropy of a single-stranded DNA base, and c0 is

a numerical constant. The scaling of the partition function of a denaturation bubble with

bubble size, j−3/2 is completely caused by entropic constraint of chain closure.

Based on Eq. (29) and Eq. (31), Eq. (28) is re-written as

G(z) =
zeβε0

1 − zeβ(ε0+εs) − zc0eβε0
∑∞

j=1
(zescoil)j

j3/2

. (32)

According to Eq. (28), the free energy density of the system is

gtotal = kBT ln zs, (33)

where zs is the smallest positive singular point of function G(z).

G(z) has two singular points: one is at z = exp(−scoil) and the other is at the point where

1/G(z) = 0. At low temperatures, the free energy of the whole system is determined by the

24



second singular point. As temperature is increased, the second singular point approaches the

first one, marking the transition from a native DNA into a denatured DNA. The transition is

second-order, because at the transition point gtotal is continuous and its first-order derivative

with respect to temperature is also continuous [90].

1. Excluded-volume effect

How will the phase-diagram of DNA denaturation be changed if excluded-volume effect

is taken into account? From our preceding discussion, it is obvious that the value of γ in

Eq. (31) could influence the order of the denaturation transition. If γ > 2 the transition is

first-order, as Eq. (32) predicts.

Many analytical and computational efforts have been made to include excluded-volume

effect in the Poland-Scheraga model. In 1966, Fisher [101] suggested a modified Poland-

Scheraga model to include the excluded-volume effect between the two strands of each de-

naturation bubble. He found that γ ' 1.75 by this modification, so the transition is still

second-order. Grassberger and co-workers [102] and Carlon and co-workers [103] performed

numerical simulations on a lattice double-stranded polymer model. They have considered

the self-avoidance effect in the simulation. The result of Refs. [102, 103] shows that, when

excluded volume effect is fully considered, the DNA denaturation transition is first-order.

The scaling exponent γ ' 2.10 as estimated by Carlon et al. [103]. Zhou [87] mapped

the DNA melting problem to a quantum-mechanical problem and related the melting point

with the vanishing of a confined state in the ground-state eigen vectors. However, because

self-avoidance effect is only partially considered in the work of [87], the denaturation transi-

tion is still predicted to be continuous. In the model studied by Garel and co-authors [104],

excluded volume interaction between the two chains of DNA was considered, and intro-chain

repulsions were neglected. This partially simplified model was found to predict a first-order

denaturation transition in all dimensions [104] (but see comment by Bhattacharjee [105]).

To further understand the results of Ref. [104], Baiesi and co-authors [106] considered

the statistics of two mutually avoiding random walks and found that the reunion scaling

exponent of such a pair of chains is γ > 2 both in two and three dimensions.

Here, we mainly review the work of Kafri, Mukamel and Peliti [107, 108]. In the original

Poland-Scheraga model, no excluded volume effect is considered. When excluded volume
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effect is taken into account, the available configuration of a DNA loop will be decreased.

This decrease in the available configurations comes from two sources: first, the excluded

volume effect between the two strands of the loop [101]; second, the excluded volume effect

between the loop and the rest of the DNA chain. Fisher has considered the excluded volume

interaction between the two strands of the same loop, but it is not enough to account for

the first-order phase transition. Kafri, Mukamel, and Peliti extended the work of Fisher to

consider the interaction between one denaturation bubble and the rest of the DNA chain.

They found that if this kind of interaction is considered, the scaling exponent γ ≥ 2.115

[107], leading to a first order phase transition. They have arrived at this conclusion taken

using of the scaling properties of polymer networks developed by Duplantier and co-workers

[109–111].

The arguments of Kafri and co-authors are as follows [108]. Consider the configuration of

Fig. 8. When the polymer is considerably long, all the segments in Fig. 8 could be regarded

as flexible. These segments form a polymer network of four chains and one loop. There

are also two vertices (A and D) of degree unit and two vertices (B and C) of degree three.

Generally, Duplantier and co-workers [109–111] showed that, for a polymer network made

of M segments of length l1, l2, . . . , lM (the total length is L =
∑

i li), the total partition

function has the following scaling form:

Zg = Lγg−1z(
l1
L
,
l2
L
, · · · , lM

L
), (34)

where function z(· · ·) is a scaling function and γg is obtained by

γg = 1 − 3νNloop +
∑

k=1

nkσk. (35)

In Eq. (35), ν is the scaling exponent related with the radius of gyration of a self-avoiding

chain in three dimensions, ν ' 0.588 [111, 112]; Nloop is the total number of independent

loops in the polymer network; nk is the total number of vertices of degree k; and σk is a

scaling exponent associated with a vertex of degree k.

For the polymer network of Fig. 8, when n� N , Eq. (34) leads to

Zg = (N + n)2σ1+2σ3−3νz(n/N). (36)

When n/N → 0, Zg should approach the partition function of a single polymer. Therefore,

g(n/N) ∼ (n/N)2σ3−3ν . The total partition function then has the following scaling form:

Zg = n2σ3−3νN2σ1 , (37)
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indicating that the total partition function is the partition function for a single loop, nγ

(with γ = 3ν − 2σ3), and that of the rest of the polymer, N 2σ1 .

It was known that σ3 = −0.175 [111], so γ ' 2.115 in Eq. (31). Since it is larger than

2, according to the Poland-Scheraga model we mentioned earlier, the denaturation phase

transition will be first-order.

Because the loop size distribution Eq. (31) is geometric with 2 < γ < 3, the average

loop size will be finite when the temperature approaches the melting temperature from

below. However, the variance of the loop size becomes infinite as the melting temperature

is approached.

It should be remarked that, in the literature there is still debate concerned with the

excluded volume effect between a denaturation loop and the remaining part of the DNA

molecule (see, for example, [113, 114]). The theoretical reasoning of Refs. [107, 108]

assume the polymer under study is extremely long, but cooperative denaturation behaviors

were usually observed with DNA chains with about 102-103 base-pairs. As our analysis in

§ II B (and also the discussion in the book of Poland and Scheraga [77]) demonstrated, DNA

denaturation could be very cooperative when base-pair stacking interaction is considered. It

might be suggested that for DNA chains with length of the order of 103 base-pairs, base-pair

stacking instead of excluded volume interaction is the main contribution to the cooperativity

of denaturation. More experimental investigations are certainly needed to resolve this issue.

D. Force-induced unzipping of real DNA molecules

In § IIA, § II B and § II C we have discussed the general physical aspects of DNA de-

naturation and unzipping. In this and the following subsections we discuss how a real DNA

molecules behave under the action of an external force. First, we consider the case of long

DNA molecules. In § II E we will focus on the kinetics of structural transitions of DNA

oligomers.

Essevaz-Roulet, Bockelmann, and Heslot [37–39] performed the following unzipping ex-

periment on single DNA molecules (Fig. 9). The two strands on one end of a phage-λ DNA

(48502 base-pairs, total contour length 16.2 µm) are separately attached to a glass slide and

a very soft force lever (a micro-needle with elastic modulus about 1.7 pN/µm), while the

other end of the DNA macromolecule was kept free (In Ref. [40], the soft micro-needle
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was replaced with optical tweezer to further increase the precision). At room temperature

T = 300 K and nearly physiological ionic conditions (150 mM NaCl), the two strands of

DNA was separated by displacing the glass slide with constant velocity (in the range 20-800

nm/s). During the DNA unzipping process, the distances between the glass slide and the

force lever were recorded in real time, as well as the bending extent of the force lever.

Heslot and co-workers [37–39] found that the typical force for DNA unzipping is in the

range 10-15 pN. The force needed to unzip an GC-rich DNA segment is larger than that to

unzip an AT-rich one, in consistent with the fact that a G-C pair has three hydrogen bonds

while an A-T pair has only two. They found that the unzipping force is directly related with

the GC contents: peaks of unzipping force correspond to peaks in the DNA GC contents.

The experimental curves are highly reproducible, suggesting the unzipping experiment was

probing the equilibrium unzipping properties of double-stranded DNA. The irregularities

in the force-displacement curves in the experimental curves are not random noises. These

irregularities contain information about the DNA sequence.

Trying to understand and reproduce the experimental unzipping force-extension profiles

from theoretical calculations, an equilibrium slip-stick mechanism was suggested by Heslot

and co-workers [38, 39]. Here we recall their model in some detail.

In the DNA-micro-needle system, there the following three energy terms:

1). the energy cost of separating j base-pairs, EDNA(j). Bockelmann et al. [38, 39]

suggested the following form

EDNA(j) =
j
∑

µ=1

Epair(µ), (38)

where Epair(µ) is the base-pairing energy of the µth base-pair:

Epair(µ) =











EG−C, for a G − C base − pair

EA−T. for an A − T base − pair
(39)

Therefore, EDNA is determined by two phenomenological parameters EG−C and EA−T, and

sequence-dependent interactions between neighboring base-pairs are averaged into these pa-

rameters. For the experiment with resolution in the range of about 100 base-pairs [37], a

two-parameter approximation is reasonable.

2). The elastic energy stored in the two single-stranded DNA segments. When the

external force is F , the average extension of a single-stranded DNA segment of j base-pairs
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is

x(F, j) = jlSS

[

coth

(

Fb

kBT

)

− kBT

Fb

]

(

1 +
F

S

)

. (40)

where lSS is the contour length of one nucleotide unit in the single-stranded DNA, and S

is the stretching modulus of a single-stranded DNA [115]. In deriving Eq. (40) the single-

stranded DNA chain is modeled as a freely-jointed-chain of Kuhn length b and stretching

modulus S [115, 116]. The force needed at keeping the single-stranded DNA’s extension fixed

at x could be obtained by inversion of Eq. (40). The elastic energy to keep the extension of

a single-stranded DNA at x is then

Eelastic(x, j) =

x
∫

0

F (x′)dx′ = F(x)x −
F(x)
∫

0

x(F′, j)dF′. (41)

3). The bending energy stored in the force lever,

Elever(x0) =
klever

2
x2

0, (42)

where x0 is the total deflection of the tip of the force lever (Fig. 9).

The total energy of the system is

Etotal(x0, x1, x2, j) = EDNA(j) + Eelastic(x1, j) + Eelastic(x2, j) + Elever(x0), (43)

with the total displacement of the system fixed at x = x0 + x1 + x2. The average force at

total displacement x is

〈F 〉 =

N
∑

j=0

∫

dx1

∫

dx2klever(x − x1 − x2) exp [−βEtotal(x − x1 − x2, x1, x2, j)]

N
∑

j=0

∫

dx1

∫

dx2 exp [−βEtotal(x − x1 − x2, x1, x2, j)]
. (44)

The theoretical force-displacement profile obtained with fitting parameter EG−C = 2.9 kBT ,

EA−T = 1.3 kBT , b = 1.5 nm, S = 800 pN, NlSS = 30 µm, and T = 300 K is in good

agreement with experimental data [38, 39]. The fine details of the experimental unzipping

curves could be quantitatively reproduced to some extent by this simple model.

A detailed analysis of the end-to-end distance of λ-DNA revealed the existence of many

saw-tooth patterns [37]. Typically, when the stretching force increases, at first the distance

between the two ends of DNA almost keeps constant (the stick phase). Then, as the increase

in force is about 1-2 pN, suddenly the end-to-end distance of DNA is increased by about

100-200nm (the slip phase). As the displacement of the whole system keeps increasing with
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a constant velocity, this stick-slip process repeats many times. Bockelmann et al. [38, 39]

regarded this phenomenon as an equilibrium stick-slip process.

The stick-slip phenomenon in unzipping λ-phage DNA has its origin from jumping of the

DNA “opening fork” between adjacent energy local minima. We explain this insight by an

example. In Fig. 10 the minimum value of the total energy Eq. (43) as a function of the

opening-fork position j is shown at two fixed displacements. When the total extension of the

system is x = 18.1 µm, the energy absolute minimum is located at j1 ' 10050. This energy

absolute minimum is separated from a metastable state at j2 ' 10150 by an energy barrier

of 10 kBT and another metastable state at j3 ' 10260 by an barrier of 20 kBT . Between the

two metastable states at j2 and j3 there is also an energy barrier of 15 kBT . At extension

x = 18.2 µm, position j3 now corresponds to the absolute energy minimum and position j1

becomes metastable. As the total extension changes from x1 to x2, the opening fork position

will also tries to move from the old best position j1 to the new best position j3. This is

achieved by two steps, from j1 to j2, and then from j2 to j3. Thermal activation causes a

nucleotide base-pair to switch frequently between the closed state and the opened state, the

characteristic time scale is 3.6×10−6s [75, 117]. However, to jump from j1 to j2, the thermal

activation energy should be at least 10 kBT , the probability of which is e−10 = 4.54× 10−5.

Therefore, the typical time needed for the opening fork to jump from j1 to j2 is about 0.1 s.

Similarly, the typical needed time to jump from j2 to j3 is about 1.0 s. In the experiment

with displacement velocity 20 nm/s, it takes five seconds to move a distance of 100 nm.

During this period it is very possible that the jumping process j1 → j2 → j3 has happened

once. When the j1 → j2 or the j2 → j3 hopping happens, about 100 base-pairs are unzipped

cooperatively, leading to a rapidly drop in the pulling force.

For homogeneous DNA chains, the energy landscape is quite smooth and the resulting

force-extension profile will be featureless.

In § II E, we will discuss more quantitatively why hopping processes such as that from

position j1 to position j2 in Fig. 10 have a time scale of several seconds.

A practical issue is the possibility of using DNA unzipping to obtain sequence informa-

tion of DNA. The analysis in this subsection suggests that, during DNA unzipping, the

boundary between unzipped and base-paired DNA moves along DNA polymer by a hop-

ping process, the hopping distance is of the order of 101-102 base-pairs. Therefore, one

cannot attain single-nucleotide resolution by mechanical unzipping. On the other hand, as
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demonstrated by Quake and co-workers [70], combining fluorescence and moving of DNA

polymerase along single-molecule DNA chain could be used to obtain sequence information

with single-nucleotide resolution. We expect more experimental and theoretical investiga-

tions along this line.

1. Scaling relationship in DNA unzipping

The unzipping experiment of Essevaz-Roulet et al. [37] was performed by fixing the

total extension of the DNA-micro-needle system. It is also possible to pull the two strands

of DNA apart with a constant force, as was done by Danilowicz et al. [41]. For an extremely

long DNA under the action of constant external force, § II B 2 showed that there exists a

threshold force Fc. At given temperature, when the external force is lower than Fc, most of

the base-pairs of DNA are in the closed state; while when the external force is larger than

Fc, the two strands of DNA are separated completely and there is no closed base-pairs. It is

interesting to study the scaling behavior of the number of opened base-pairs as the external

force approaches the transition force Fc from below.

First, let us consider the unzipping of a homogeneous DNA chain. Because of the first-

order nature of the unzipping transition, the probability that n base-pairs be opened is

proportional to exp(−nδε0), where δε0 ∼ (Fc −F ) is the free energy difference of a base-pair

in the paired state and in the opened state. Therefore, as F → Fc, the average number of

opened base-pairs scales as

〈n〉 =

∞
∑

n=1
n exp(−nδε0)

∞
∑

n=1
exp(−nδε0)

∼ (Fc − F )−1. (45)

When heterogeneity in a real DNA sequence (such as a λ-phage DNA) is considered,

will the scaling relationship Eq. (45) still hold? Lubensky and Nelson [118] argued that the

average number of opened base-pairs divergences should even faster, with a scaling form of

〈n〉 ∼ (Fc − F )−2! This is a surprising conclusion. Does the conclusion of Lubensky and

Nelson [118] indicate that, as F ↗ Fc the free energy difference between a base-pair in the

closed state and that in the opened state proportional to (Fc − F )2? However, this should

not be true, because the unzipping transition should be first-order even in the presence of

sequence heterogeneity.
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Lubensky and Nelson [118] showed that, for heterogeneous DNA Eq. (45) is still true, but

it is just one part of the contribution. The total number of opened base-pairs has another

contribution due to sequence heterogeneity. As Fc −F is much smaller than a characteristic

force determined by the sequence heterogeneity, this additional contribution, which scales

as (Fc − F )−2, becomes more important than Eq. (45).

Here, we explain the above-mentioned insight of Lubensky and Nelson in some detail. A

more quantitative analysis could be found in the paper of Lubensky and Nelson [118].

When there is sequence randomness, the free energy increase caused by breaking n base-

pairs is

δE = nδε0 +
n
∑

i=1

δεi, (46)

where δε0 ∼ (Fc − F ) is the average increase in the free energy caused by breaking one

base-pair, and δεi is the difference between the pairing energy of the i-th base-pair with

respect to the average pairing energy. For simplicity, we model δεi as an independent and

identically distributed Gaussian variable with standard deviation σ:

P (δεi) =
1√

2πσ2
exp

[

−(δεi)
2

2σ2

]

. (47)

Figure 11 demonstrates the energy landscape of breaking n base-pairs of a randomly

generated DNA sequence according to Eqs. (46) and (47). The first term of Eq. (46) causes

a constant slope of δε0 to the free energy profile; while the second term of Eq. (46) causes

a deviation from this slope, the magnitude of this deviation scales as
√
nσ. Because of this

random deviation, the free energy minimum is not located at n = 0, but is shifted to noptimal

(in Fig. 11 noptimal ' 500). This optimal number of base-pairs opened is expressed by the

following equation:

noptimal ∼
σ2

4(δε0)2
. (48)

Around the noptimal the free energy has a well of order of − σ2

4δε0
, which is proportional to

σ2. When the number of broken base-pairs goes beyond noptimal, the first term of Eq. (46)

dominates and the free energy increases linearly with n. The total number of broken base-

pairs is then noptimal plus Eq. (45):

〈n〉 ∼ σ2

(δε0)2
+

1

δε0
. (49)
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When the first term of Eq. (49) is less important than the second term, then Eq. (45) holds;

however, when the first term outperforms the second term, then

〈n〉 ∼ 1

(Fc − F )2
. (50)

To observe the scaling form Eq. (50), one must have strong sequence heterogeneity (σ � 0

in Eq. (49)), or the external force is very close to the critical force Fc. Otherwise, the scaling

form Eq. (45) will be observed. For the actual case of random sequence DNA, the binding

energy of A-T and G-C pairs differ about 1 kBT , which is considerable, so the scaling form

Eq. (50) instead of Eq. (45) should be observed. Lubensky and Nelson have performed

Monte Carlo simulations for several different heterogeneous DNA molecules [119] and their

results confirmed the validity of Eq. (50).

E. Unzipping kinetics of DNA/RNA helix-loops under constant force

We mentioned that the hopping processes in unzipping λ-phage DNA occur with a char-

acteristic time scale of seconds. Recently, single-molecule unzipping experiments were also

performed on RNA [51, 52]. A helix-loop RNA of 49 bases, P5ab, has a native structure

of a hairpin with 22 base-pairs, plus a hairpin loop of four bases and a single-nucleotide

bulge-loop. Liphardt et al. [51] revealed that, under a constant force of about 15 pN, P5ab

switched between two well-defined “open” and “close” states on a time scale also of seconds.

On the other hand, experimental measurement of Altan-Bonnet and co-authors [75] re-

ported that, at room temperature of T = 300 K, the closing-opening transition of a single

nucleotide base-pair takes place on a time scale of 10−6 s. In § IID we have briefly mentioned

that this huge gap in time scales from microseconds to seconds is caused by the existence of

high energy barriers. In this subsection we look into this issue more quantitatively.

Cocco and co-authors [117] presented a semimicroscopic model to explain the above-

mentioned huge gap in transition time scales. We review the calculations of Ref. [117] by

focusing on the following model system: a hairpin-loop made of 12 G-C base-pairs and a

4-base ATAT loop. The two ends of this single-stranded DNA are pulled apart by a constant

force of magnitude f .

Model and dynamic rules Under the pulling of a constant force f , the free energy
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associated with unzipping n bases is

G(n, f) =
n
∑

i=1

∆g(i, f), (51)

where ∆g(i, f) is the free energy change due to opening the i-th base-pair at the boundary

between the open and closed region,

∆g(i, f) = 2gs(f) − g0(i). (52)

In Eq. (52), g0(i) is the free energy of opening base pair i. For the poly(GC) hairpin, the

following values are used [117]:

g0(i) = g0 = −3.442 kBT, (1 ≤ i ≤ 11)

g0(12) = g0 + gloop = 3.062 kBT,

gloop = 6.504 kBT.

gs(f) is the free energy of an opened DNA base. For simplicity, single-stranded DNA is

regarded as a freely-jointed chain, without considering its deformability:

gs(f) = −kBT
lSS

b
ln

[

sinh βfb

βfb

]

, (53)

where lSS = 5.6 Å, b = 15 Å [117].

The following semimicroscopic transition rates are assumed for each elementary step in

the structural transition path. At time t, suppose the opening fork is at base-pair position

n (the n-th base-pair is opened but the n+ 1-th base-pair is closed). The movement of this

boundary is governed by an opening rate ro and a closing rate rc:

ro(n) = reg0(n)/kBT , (54)

rc(f, n) = re2gs(f,n)/kBT . (55)

In Eq. (54) and Eq. (55), r is essentially the microscopic rate for a base pair to move

together or apart in the absence of tension or base-pairing interactions. Its value can be

estimated by considering the inverse self-diffusion time for an object of nanometer scale

[117]: r = kBT/2πη`
3 ≈ 5 × 106 s−1, with ` = 5 nm, η = 0.001 Pa sec (the viscosity of

water). Another way to estimate r is to fit the experimental data of Liphardt et al. [51] on

P5ab unzipping. This fit gives r = 3.6 × 106s−1 [117].
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The probability that at time t, the opening fork is at base-pair n is ρn(t). It is governed

by the following Markovian equation

∂ρn(t)

∂t
= −[ro(n+ 1) + rc(f, n)]ρn(t) + ro(n)ρn−1(t) + rc(f, n + 1)ρn+1(t)

= −
N
∑

m=0

Tn,mρm(t), (56)

where the matrix Tn,m (0 ≤ n,m ≤ 12) is:

Tn,n = ro(n+ 1) + rc(f, n),

Tn,n+1 = −rc(f, n+ 1),

Tn,n−1 = −ro(n),

and all the other elements are zero.

Switching kinetics For the poly(GC) hairpin, the energy landscape as a function of

opening fork position n is saw-tooth shaped. At force f = 15.95 pN, the completely closed

and the completely opened states have the same free energy. The highest energy state is at

n = 11 base-pair, with a energy barrier of 10.17 kBT .

The structural fluctuation of the poly(GC) hairpin is simulated based on the above-

mentioned model. Figure 12 records the opening fork position as a function of time at fixed

external force 15.95 pN. Figure 13 and Fig. 14 demonstrate the life time distribution for the

polymer to be in the opened state and the closed state, respectively. Both of them obey

exponential distribution. The mean life time of a closed state is tmean close = 0.325 s and that

of an opened state is tmean open = 0.208 s; therefore tmean close/tmean open = 1.561. These data

are in close agreement with data obtained by equilibrium calculations mentioned below.

The eigenvalues of the matrix Tm,n in Eq. (56) are listed below:

1. 0 2. 2.233 × 10−6r

3. 1.748 × 10−2r 4. 3.175 × 10−2r

5. 5.251 × 10−2r 6. 7.790 × 10−2r

7. 1.060 × 10−1r 8. 1.346 × 10−1r

9. 1.616 × 10−1r 10. 1.850 × 10−1r

11. 2.032 × 10−1r 12. 2.146 × 10−1r

13. 2.145 × 101r

(57)
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Eigenvalue zero corresponds to equilibrium distribution of the opening fork position; the

second eigenvalue corresponds to the transition between open and closed states and it is

equal to 8.04s−1. All the other eigenvalues of the order 10−1r-101r and correspond to

internal structural transitions within the open and the closed states.

In the work of Cocco and co-authors [117], besides poly(GC) hairpins and P5ab RNA,

some other real RNA molecules with more complex native structures were studied. The

unzipping kinetic of λ-phage DNA under the action of a constant force was simulated [117].

In all these examples, unzipping at constant force proceeds by successive steps, each corre-

sponding to the crossing of a free energy barrier. This is similar with the conclusion of § IID.

Therefore, unzipping experiments performed at constant external force are also unlikely to

access DNA sequence information with single-nucleotide resolution.

In Ref. [120], Cocco, Monasson, and Marko further considered the effect of torque

contributions in the double-helix part and showed this torque could influence the unzipping

and re-zipping kinetics when the force increase rate is above certain threshold which is

comparable with the relaxation time of torques in double-stranded DNA. In Ref. [121] the

force and kinetic barriers of initialization of DNA unzipping were studied detailedly.

In Ref. [122], Ritort et al. used a two-state kinetic model to study the unzipping

dynamics of RNA and the relationship between work and load velocity. The dynamics of

DNA unzipping was also studied by Marenduzzo et al. [123] by a lattice model. The relation

between number of opened base pairs and time was obtained by simulation and was found

to obey a scaling law.

In our above discussion, we have not considered the possibility of mis-matched configura-

tions. In RNA hairpins such mis-matched states are likely to occur. The folding-unfolding

kinetics of RNA hairpins in the absence of external force was studied by Chen and Dill

[124] and by Zhang and Chen [125]. It was found [124, 125] that when the environmental

temperature is higher than a glass-transition temperature Tg, the folding-unfolding kinetics

is two-state-like, similar as the result shown here. When the temperature is lower than

Tg, the molecule is trapped in one of many low-free energy intermediate states, and the

folding-unfolding corresponds to trapping-detrapping transition.

A practical application of unzipping DNA hairpins maybe to measure the thermody-

namic parameters of DNA base-pairs. The experimental setup is relatively simple, and as

demonstrated in this subsection, quantitative fitting of experimental data with theoretical
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calculations is easy to perform.

37



III. SECONDARY STRUCTURES OF RNA POLYMER

In biological bodies RNA usually exists as a single-stranded biopolymer. Similar as DNA,

it is also formed by four types of nucleotide bases, G, C, A, and U (Uracil); and two types

of canonical Watson-Crick base-pairs, A-U and G-C, can be formed. The non-Watson-Crick

base-pairing pattern G-U is also quite common in RNA structures.

Some kinds of RNA polymers, such as transfer-RNA (tRNA), have specific stable three-

dimensional native configurations. Such configurations are formed when the RNA chain fold

up onto itself to form many base-pairs between its complementary nucleotide bases. Such

kind of RNA sequences should have been “designed” to make sure that there is only one

native configuration, the free energy of which being much lower than those of other possible

configurations. The sequences of tRNA molecules are obviously highly designed by natural

selection. On the other hand, the tRNA sequences of different organisms also show some

extent of variability. Investigation of this variability may shed some light on the evolutionary

history of different organisms.

However, for many other RNA molecules including message-RNA (mRNA) it is unde-

sirable to have stable structures. Message-RNA prefers to be in a random coil conforma-

tions with very few base-pairing interactions, so that its information can be easily read

by the protein synthesis machine (the ribosome). The coding region of a genome must

have been evolved to ensure that, (1) its corresponding mRNA transcript contains very

few mutually complementary segments and, (2) its encoding protein can fold into a stable

three-dimensional native configuration. This is a very difficult combinatorial optimization

problem in biology and nature took an extremely long time to find the right answers. Today,

identifying and interpreting correlations and anti-correlations in a DNA sequence becomes

a very important subfield of scientific research. To meet this challenge, a structural biology

viewpoint will turn out to be essential.

In this section we review recent works on the structural properties of RNA polymers. We

focus on the stability of RNA secondary structures. By the secondary structure we mean

the following picture [126–128]. The position of each nucleotide base along RNA chain with

respect to the 5′-end of RNA is specified by an integer index i. Suppose in a RNA secondary

structure, nucleotide base at position i and position j (with j > i) form a base-pair denoted

as pair (i, j), and nucleotide base at position k and position l (l > k) forms another base-pair
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(k, l). Then it is required that base-pairs (i, j) and (k, l) are either independent, with j < k,

or nested, with i < k < l < j.

In an actual RNA configuration, some base-pairs may violate these conditions. These

base-pairs are classified into the higher-order tertiary structure of RNA. For example, in

the three-dimensional yeast tRNAPhe there are base-pairing interactions between two RNA

hairpin loops. These additional base-pairs stabilize the twisted L conformation of tRNA [13].

However, for RNA the main contribution to the free energy is from its secondary structures.

Energy contributions from RNA tertiary structures could be regarded as perturbations to

the free energy of the system. This separation of energy scales makes the study of RNA

secondary structure of particular interest.

We discuss in § IIIA the structure of RNA polymers made of homogeneous nucleotide

sequences. In § III B we show the effect of weak sequence design on RNA secondary structure.

Glassy transition in RNA structures is discussed in § III C; and the influence of electrostatic

interactions to RNA structural stability is considered in § IIID. Section III E focuses on the

issue of predicting the most stable secondary structure of a given RNA sequence.

A. The homogeneous-sequence approximation

As a starting point, this subsection neglects sequence heterogeneity and regards RNA

as a homogeneous chain, with short-ranged attractive interactions between its constructing

units.

When a RNA folds back onto itself and nucleotide bases form base-pairs, many double-

helical segments appear. For a RNA made of random sequences (referred to as a random-

sequence RNA hereafter), because the correlation along the RNA chain is very weak, each

such double-helical segment in general is very short (of several base-pairs). According to

recent experimental work of Ref. [75], at physiological temperature double-helical segment

of 2-10 base-pairs is very easy to be disturbed by thermal noise. Therefore, secondary

structures of a random-sequence RNA are transient, with typical life-time of the order of

microseconds. The polymer could easily fluctuate from one secondary structure to another

when the environmental temperature is not too low. Entropy plays an important role here.

Since mRNA could be well regarded as a random-sequence in some sense, the results of

this subsection may have direct relevance to mRNA structural stability.
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When one end of the RNA is fixed and the other end is pulled with an external force,

it may be energetically unfavorable for the polymer to fold back and form double-helical

segments. At some critical force, there is a so-called helix-coil structural transition, where

the polymer is stretched considerably straight. It is of interest to estimate the magnitude

of this critical force.

As a first step to understand the elastic property of a random-sequence RNA, we average

over the sequence randomness and regard RNA as an effective chain with homogeneous

sequence. Our treatment will be improved in § III B by considering the effect of weak

sequence design; and in § III C we discuss how the homogeneity approximation of this

subsection breaks down at low temperatures.

Montanari and Mézard [88] have studied the structural transitions in a random-sequence

RNA by analytical means. In the treatment of Ref. [88], sequence randomness was smoothed

out and replaced with a (weak) short-ranged average interaction between two nucleotide

bases. The RNA chain was modeled as n+ 1 beads connected sequentially by n deformable

chemical bonds. Each unit (a bead plus a bond) of the model corresponds to several nu-

cleotide bases of a real RNA chain. Each bead can form a “base-pair” with at most one

another bead at the same time. In the calculation of Ref. [88], the base-pairing interaction

was the only interaction considered. The excluded volume effect was neglected, and the pos-

sible base-pair stacking interactions were also neglected. It is believed that excluded volume

effect is irrelevant in high salt conditions but becomes important at low salt conditions (see

§ IIID). The pairing energy is short-ranged with range a and strength ε0, as was assumed

in § II B. The deformable bond between two beads has the flowing bond length distribution

[see Eq. (10)]:

µ(u) ∝ exp

(

−(|u| − b)2

2l20

)

, (58)

where the bond length fluctuation l0 is much shorter than the intrinsic bond length b.

Because the RNA chain is modeled as a homopolymer, the free energy and the partition

function are sequence-independent and are functions only of the polymer length. Denote

the partition function of a RNA chain of n bonds as Z0(n, r), where r is the end-to-end

distance vector of the chain. According to Fig. 15 we have the following recursive equation

[Z0(0, r) = δ(r)]:

Z0(n, r) =
∫

du1du2µ(u1)Z0(n − 1,u2)δ(r− u1 − u2) +
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+ Θ(a− |r|)(eβε0 − 1)
∫

[

3
∏

i=1

dui

]

µ(u1)µ(u2)Z0(n− 2,u3)δ

(

r −
3
∑

i=1

ui

)

+

+
n−3
∑

l=0

∫

[

3
∏

i=1

dui

]

Z0(n− l − 3,u1)µ(u2) ×

× Θ(a− |r|)(eβε0 − 1)
∫





6
∏

j=4

duj



µ(u4)µ(u5)Z0(l,u6)δ



u3 −
6
∑

j=4

uj



 , (59)

where Θ(x) is the Heaviside step function defined in § II B 1.

With the same procedure as that in § II B 1, we can perform a Fourier transform for the

partition function Z0(n, r) and obtain an iterative expression for the Fourier transformed

partition function Z̃0(n,p). The generating function of Z̃0(n,p) can then be calculated

following the method of § II B 1. The result reads [88]

G0(z,p) =
∞
∑

n=0

Z̃0(n,p)zn =
1

z

ω(z)

1 − µ̃(p)ω(z)
. (60)

In Eq. (60), ω(z) is determined by the equation

ω(z) = z + z2B(ω), (61)

with

B(ω) =
a3

6π2
(eβε0 − 1)

∫

dqµ̃2(q)
ω

1 − µ̃(q)ω
, (62)

and [see also Eq. (18)]

µ̃(p) =
sin b0|p|
b0|p|

exp

(

− l
2
0|p|2
2

)

. (63)

When an external force F is pulling the two ends of a RNA polymer apart, the generating

function of the total partition function has the same form as Eq. (60), but with p replaced by

iβF (see § II B 2 for an explanation). A careful analysis [88] shows that in this case, Eq. (60)

has two singular points, one corresponds to the point zcoil at which ω(zcoil)µ̃(iβF) = 1, and

the other singular point is at zmolten, which is determined by zmolten = max
ω

[ 2ω

1+
√

1+4ωB(ω)
].

At given temperature T , when the external force is less than some threshold value Fc(T ),

the polymer is in the so-called molten phase [91], with the configuration of RNA fluctuat-

ing frequently between many transient secondary structures. The average extension of the

polymer is zero. When the force is larger than Fc(T ), the polymer is in the stretched coil

phase, with few base-pairing interactions. The threshold force Fc at given temperature is

determined by the equation

zcoil(Fc, T ) = zmolten(T ). (64)
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When |F| > Fc(T ), the average extension of RNA in units of it total contour length Nb is

calculated by

Ex = −1

b
kBT

∂ ln zcoil
∂|F| . (65)

The experimental and theoretical force-extension profile of a random-sequence RNA are

shown in Fig. 16 (the solid line and symbols), where the solid line is obtained through

Eq. (65).

In a random-sequence RNA, the main interaction is base-pairing interactions. The solid

curve of Fig. 16 suggests that the Montanari-Mézard model could quantitatively explain

the elastic response at high salt conditions of single-stranded charomid DNA [2, 34]. At

room temperature T ' 25◦C and high ionic conditions (for example, 50 mM Na+ and 5

mM Mg2+ buffer), when the external force is less than about 0.3 pN, the average end-to-end

distance of RNA approaches zero, and the RNA molecule is in the collapsed molten phase.

When the external force is increased beyond this level, the secondary pairing structures in

RNA is gradually pulled out and an increasing part of the polymer is in the stretched coil

state. This gradual increase of coiled segment length with external force leads to the gradual

force-extension profile of Fig. 16, without the appearance of a force plateau.

At the phase boundary Fc(T ), there is a continuous (secondary-order) molten-coil struc-

tural phase transition [88]. This transition is secondary-order, because at the transition

point, the free energy and its first-order derivative are both continuous [77, 89, 90, 108].

The continuous nature of this phase transition can also be predicted by a simple two-state

model [91]. The argument is as follows.

The RNA configuration could be divided into three parts: two stretched coil segments

at the ends and a (complicated) hairpin segment in the middle. The partition function of a

hairpin segment of m bases has the following scaling form:

Zhairpin
0 (m) ∼ m− 3

2 exp
(

−nghairpin

kBT

)

, (66)

where ghairpin is the (model-dependent) free energy density of a RNA hairpin segment. Equa-

tion (66) will be derived in § III C. Because of the scaling exponent of 3/2 in Eq. (66), we

know from the Lifson argument [89] (see § II C) that the transition between stretched coil

state and hairpin state must be continuous. In both the continuous model [88] and the

discrete model [91] mentioned here, self-avoidance effect is completely neglected. It is not

yet completely clear whether the inclusion of this effect will qualitatively change the above
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mentioned picture, as in the case of DNA thermal denaturation (see Sec. II). However, the

quantitative agreement between the theoretical result of the model of Ref. [88] and the

experimental observations (See Fig. 16) suggests that self-avoidance effect may not be so

important here, since the scaling exponent of 3/2 in Eq. (66) is not caused by the formation

of loops but by the constraint of secondary structures.

1. Elasticity of real homogeneous RNA chains

The homogeneous chain model studied by Montanari and Mézard has also real correspon-

dence. For example, a chain with sequence poly(GC), poly(AU), or poly(CAG), etc., can

be regarded as a homogeneous chain.

When such a “truly” homogeneous RNA molecule is stretched with an external force, the

force-extension profile is much more sharper then the solid curve of Fig. 16. For example,

Rief and co-workers [47] studied the elastic responses of single poly(AT) and poly(GC)

nucleotide chains and found that the force-extension profile has a marked plateau at force

9±3 pN for poly(AT) and 20±3 pN for poly(GC). The existence of a force plateau suggests a

discontinuous structural transition process. Pulling a poly(AT) or poly(GC) single-stranded

DNA is just like pulling apart the two strands of a double-stranded DNA, indicating that

in the absence of external force, the structure of a single-stranded poly(GC) or poly(AT)

chain can not fluctuate between many transient configurations. It forms a giant hairpin with

an very long stem region and very few single-stranded loop regions. The entropic effect is

suppressed.

However, based on the Montanari-Mézard model, it was found [93] that, even when the

pairing energy ε0 is very high the resulting force-extension curve is gradual and not abrupt.

This suggests that the entropy is suppressed not by high base-pairing potentials and must

be attributed to other effects including base-pair stacking interactions [92].

In the Montanari-Mézard model [88] base-pairing stacking interaction is neglected. This

may be a good approximation for a random-sequence RNA; but it may not be valid for a

highly homogeneous polymer such as poly(GC), since the probability that two base-pairs to

be adjacent to each other in a poly(GC) will be much higher than in a random-sequence

RNA. In Refs. [92, 93] base-pair stacking interactions were considered to explain the force-

extension profile of a homogeneous RNA chain. When two formed base-pairs are adjacent
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to each other, i.e., a (i, j) base-pair and a (i+1, j− 1) base pair, then there is an additional

energy gain of magnitude εs (J in Fig. 16) [93].

The actual theoretical calculation is similar with that outlined in § II B 1 and is detailedly

given in Ref. [93]. Here we just mention the salient results. The effect of increasing

base-pair stacking interaction is evidently demonstrated in Fig. 16. When the base-pairing

potential ε0 is kept fixed and stacking potential εs (or J) is increased, the force-extension

becomes more and more flat. When εs ' 6.0 kBT (T = 300 K) corresponding to an average

stacking energy of 2 kBT between two adjacent nucleotide base-pairs, a force plateau at

10 pN becomes very evident. Therefore, the cooperativity of hairpin-coil transition in a

homogeneous RNA could be explained by base-pair stacking interactions. This conclusion

reinforces the insight of § II B, where we show that the cooperativity of DNA denaturation

is also caused by base-pair stacking interactions.

Similar pictures can also be obtained by numerical Monte Carlo calculations with includ-

ing electrostatic interactions. The quantitative comparisons of the experimental data and

the modeling calculations will be displayed at IIID (see Figure 25).

B. structural transitions in a weakly designed RNA polymer

In the preceding subsection, the elastic property of a random-sequence RNA is studied.

In this subsection, we study the elastic property of a long RNA chain which has a preferred

native hairpin configuration [91]. The polymer is weakly designed in the following sense.

First, generate a random RNA sequence of 2n+ 1 nucleotide bases. Second, for index i = 1

till n, with probability p ≤ 1, change the nucleotide base at position 2n + 1 − i to be

complementary to the base at position i and with probability 1− p keep the nucleotide base

at position 2n+ 1− i unchanged. Energetically, the RNA polymer has a designed preferred

configuration of to form a long hairpin of 2n+1 bases. The designability is controlled by the

parameter p. When p is much less than 1, the chain is only weakly designed. In this section,

we mainly discuss this situation. The pairing energy is smoothed out along the polymer and

the following pairing energy is assumed for the polymer chain:

εi,j = −ε0 − (ε1 − ε0)δ
2n+1
i+j , (67)

with ε1 > ε0. Of cause the difference ε1 − ε0 is controlled by the parameter p.
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The thermal denaturation behavior of such system was first studied by Bundschuh and

Hwa [91]. They concluded that when the temperature is high enough, the polymer will be

in a molten phase with partition function governed by Eq. (66), and the polymer is not

trapped by just one configuration. However, when the temperature is low, the polymer is

in the designed hairpin configuration because of the energy preference of this state. There

exists a second-order structural transition between the hairpin and the molten states at some

critical temperature Tc.

In this subsection, the work of Ref. [91] is extended to consider also the effect of

external force. The general picture is given in the phase diagram of Fig. 17. When both the

temperature and the external force are small, the system is in the designed hairpin phase;

when temperature is small but the external force is large, the system is in the stretched

coil phase; when the temperature is high but the external force is small, the system is in

the molten phase. The hairpin-coil transition is first-order; the molten-coil transition is

second-order, and the hairpin-molten transition is also second-order.

Here we show the main steps of the analytical calculations which lead to the above-

mentioned conclusions. We use the same continuous model as in the preceding subsection.

First, we define the following notations: (1) Zpaired(n, r) is the total partition of a designed

RNA of 2n effective bonds, with the bases at the two ends forming a base-pair of distance

r; (2) Zunpaired(n, r) is the total partition function of a designed RNA of 2n bonds, with the

two bases at the ends separated with distance r (|r| > a, the bonding distance); (3) Z(n, r)

is the total partition function of a designed RNA of 2n bonds.

Based on Fig. 18, we have the following function for Zpaired(n, r):

Zpaired(n, r1) =
n
∑

m=1

∑

l1=1

. . .
∑

lm=1

δn
l1+...lm

∫

dr2 . . .drm+1e
−mβε1 ×

×
m
∏

i=1

[θ(a− |ri|)Zmolten−bubble(li, ri, ri+1)]δ(rm+1), (68)

where Zmolten−bubble(l, r1, r2) is the partition function of a loop of 2l bonds. From Eq. (68),

the partition function Zpaired(n) =
∫

drZpaired(n, r) can be obtained. Finally, we obtain the

following generating function for this partition function:

Gpaired(z) =
∞
∑

n=1

znZpaired(n) =
4π
3
a3eβε1Gmolten−bubble(z)

1 − 4π
3
a3eβε1Gmolten−bubble(z)

, (69)

where Gmolten−bubble(z) =
∑

l=1 z
lZmolten−bubble(l, 0, 0). Clearly, Zmolten−bubble(l, 0, 0) should

be independent of the value of ε1. To find the expression for Gmolten−bubble(z) we follow
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the idea of Ref. [91] to set ε1 to be identical to ε0 in Eq. (69) and calculate the partition

function for a hairpinned configuration of such a “un-designed” polymer. This could be done

following the same line as that in Sec. IIIA and we find that

Gmolten−bubble(z) =

z
(2π)3

∫

dqG0
even(z,q)

1 + 4π
3

a3eβε0 z
(2π)3

∫

dqµ̃2(q)G0
even(z,q)

. (70)

In Eq. (70), G0
even(z,p) =

∑

n=0 z
nZ̃0(2n,p), where Z̃0(2n,p) is the Fourier transform of the

partition function of an un-designed polymer chain of 2n bonds (see Sec. IIIA). A careful

analysis leads to the following expression

G0
even(z,p) =

1√
z

1

1 − µ̃(p)ω(
√
z)

ψ(
√
z)

1 + µ̃(p)[2ψ(
√
z) − ω(

√
z)]
, (71)

where ω(
√
z) is calculated according to Eq. (61), and

ψ(
√
z) =

√
z

[

1 +
Az

(2π)3

∫

dqµ̃2(q)G0
even(z,q)

]

. (72)

Similarly, the generating function for Zunpaired(n, r) can be obtained. Finally we arrive at

the generating function for the whole system:

G(z,p) =
∞
∑

n=1

znZ(n,p) =
G0

even(z,p)

1 − 4π
3
a3(eβε1 − eβε0) z

(2π)3

∫

dqµ̃2(q)G0
even(z,q)

− 1. (73)

When an external force F is acting on the end of the polymer, the total generating function

for the partition function has the same form as Eq. (72), but with p replaced by iβF. From

Eq. (72) we see that G(z, iβF) has three singular points, corresponding respectively to the

native hairpin phase, the denatured molten phase and the denatured stretched coil phase.

The phase diagram is shown in Fig. 17.

At given temperature and external force, the total relative extension of the polymer along

the direction of the external force is obtained by the following expression:

Ex = −kBT
∂ ln z

∂|F| . (74)

In Fig. 19 the force-extension profiles of a model designed RNA chain at different fixed

temperatures are calculated based on Eq. (74). For the parameters chosen in this figure,

when environmental temperature is higher than 318.88K and the external stretching is lower

than 0.3 pN, the model polymer is in the molten-globule state, and the force-extension curve

above 0.3 pN is continuous. When temperature is lower than 318.88 K the polymer is first
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in the designed hairpin state, and unzipping of this hairpin by external force leads to a force

plateau.

It is of interest to measure the elastic behavior of weakly designed RNA polymers and

compare the experimental results with theoretical calculations mentioned above.

C. Glassy transitions in RNA sequences at low temperature

At low temperatures, a RNA polymer prefers to fold into a configuration that has the

lowest possible energy. As discussed in the preceding subsection, if the RNA polymer under

study has a designed native structure, it will fold to this structure at low temperatures. How-

ever, what will happen to a random-sequence RNA? Will many configurations of comparably

low energies appear? Will the RNA be trapped in one of these low-energy configurations?

These are very interesting questions that have attracted considerable theoretical thinking

[127, 129–134]. Here will only briefly discuss this issue, following the work of Bundschuh

and Hwa [91, 131, 132].

In the analytical calculations of Refs. [91, 131, 132], each RNA monomer is either

unpaired or is forming a base-pair with another monomer. A given RNA secondary config-

uration S is a set of base-pairs, any two of which are either mutually independent or are

nested. The energy of a configuration S is assumed to be

E[S] =
∑

(i,j)∈S

εij, (75)

where εij is the base-pairing energy between base i and base j. In the analytical work

of Bundschuh and Hwa [131] the pairing energies εij is assumed to be an identically and

independently distributed Gaussian random variable:

ρ(ε) =
1√

2πσ2
exp

[

−(ε− ε0)
2

2σ2

]

, (76)

where ε0 is the average pairing free energy and σ is the standard variation in the pairing free

energy. The partition function of a RNA segment from base i to base j is denoted as Zi,j:

Zi,j =
∑

S

exp(−βE[S]). (77)

This partition function satisfies the following recursive relationship:

Zi,j = Zi,j−1 + e−βεijZi+1,j−1 +
j−2
∑

k=i+1

Zi,k−1e
−βεkjZk+1,j−1 + Zi,j−2e

−βεj−1,j , (78)

47



with Zk,k ≡ 1.

Homogeneous sequence First, let us consider the case of homogeneous RNA sequences

[σ = 0 in Eq. (76)]. In this case the partition function Zi,j depends only on chain length

n = j − i, so we denote it as Z(n). Its generation function is

G(z) =
+∞
∑

n=1

Z(n)zn. (79)

Combining Eq. (79) and Eq. (78) leads to the following expression [91]

G(z) =
1

2qz2

[

1 − z − 2qz2 −
√

(1 − z)2 − 4qz2

]

, (80)

where q = e−βε0.

The scaling form of the partition function (n� 1) could then be obtained:

Z(n) =
1

2πi

∮

G(z)

zn+1
dz

= − 1

4πqi

∮

√

[1 − (1 + 2
√
q)z][1 + (2

√
q − 1)z]

zn+3
dz

= −(1 + 2
√
q)n+2

4πqi

∮

√

[1 − ζ][1 + κζ]

ζn+3
dζ

= const × (1 + 2
√
q)n

n3/2
, (81)

where κ =
2
√

q−1

2
√

q+1
. The scaling exponent θ = 3

2
is explained in Ref. [131] using a “mountain”

picture. This scaling exponent characterizes the RNA molten phase.

Heterogeneous chain For Heterogeneous RNA chain where the pairing free energy has

the distribution Eq. (76), the quantity of interest is the average free energy over different

realizations of the random sequence, i.e.,

[F ]av = −kBT [lnZ]av. (82)

However, it is extremely difficult to calculate the average of the logarithm of the partition

function. A trick that is routinely used in studying spin-glass systems is to rewrite this

average into another form:

[lnZ]av = lim
n→0

[Zn]av − 1

n
, (83)

where Zn means the total partition function of n RNA chains with the same sequence [135].
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For our present system,

Zn =
∑

S1

. . .
∑

Sn

exp



−β




∑

(i1,j1)∈S1

εi1j1 + . . .+
∑

(in,jn)∈Sn

εinjn









=
∑

S1

. . .
∑

Sn

exp



−β
∑

(i,j)

nijεij



 , (84)

where nij is the total number of (i, j) base-pairs in the n replicas of the same system.

Averaging over the random variables εij in Eq. (84) leads to

[Zn]av =
∑

S1

. . .
∑

Sn

exp



−β
∑

(i,j)

nijε0



 exp





β2σ2

2

∑

(i,j)

n2
ij



 . (85)

Another way to express Eq. (85) is as follows. Define θij(k) = 1 if in replica index k the two

bases i and j forms a base-pair (i, j), and θij(k) = 0 otherwise. Then nij =
∑

k
θij(k). One

then has

[Zn] =
∑

S1

. . .
∑

Sn

n
∏

k=1

u|Sk|
∏

1≤k<l≤n

ũ|Sk∩Sl|, (86)

where

u = exp[−βε0 +
1

2
β2σ2], (87)

ũ = exp[β2σ2]. (88)

Equation (86) is equivalent to Eq. (85), because |Sk ∩ Sl| =
∑

(i,j)
θij(k)θij(l).

For general integer n, Eq. (86) is still very difficult to calculate. To make some progress,

Bundschuh and Hwa focused on the case of n = 2 [131]. They found that Eq. (86) for

this two-replica system is exactly solvable. When N � 1, the partition function has the

following scaling form [131]
[

Z2
]

∼ N−θ′ζN , (89)

where θ′ is a scaling exponent and ζ is related to the average free energy density.

Bundschuh and Hwa [131] demonstrated that at given level of sequence randomness,

when the temperature is decreased below some threshold, there is a phase transition in the

two-replica system. The main conclusions are as follows.

1. There exists a critical temperature Tc determined by the equation ũ = ũc, where ũc could

be calculated by calculating the partition function of a double-stranded RNA system

made of two independent RNA chains. When the sequence randomness is weak, i.e.,

σ ' 0, this critical temperature Tc also approaches zero.
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2. When the temperature T > Tc, the system is in the molten phase, with θ′ = 3 =

2× 3
2
. This indicates that the two replicas are un-coupled in the thermodynamic limit.

Therefore the sequence randomness is irrelevant at this temperature range.

3. When T < Tc, the system is in a weak glassy phase, with θ′ = 3
2

in Eq. (89). The two

replicas are locked together and the two-replica system behaves as a single RNA chain.

This glassy phase is weak, because the exciting energy scales logarithmically with the

domain size.

The work of Bundschuh and Hwa [131, 132] therefore proves the existence of a glassy

phase in random-sequence RNA chains at low-enough temperature. Related issues are also

been discussed in the literature [127, 129, 130, 133, 134].

Complementary to these analytical investigations, in Ref. [125] the temperature-induced

folding-unfolding kinetics of a hairpin-forming RNA chain was followed. Zhang and Chen

[125] found that when the environment temperature T is higher than a glass-transition

Tg, the folding-unfolding process is a two-state process, between a pre-equilibrated quasi-

equilibrium macro-state and the unfolded coil macro-state. While when T < Tg, the tran-

sition is not two-state-like but has many transition intermediates. This is consistent with

the qualitative results of Bundschuh and Hwa [131]. At low temperature, the RNA chain

is trapped in one of many free energy local minima states, and there are many comparable

time scales corresponding to transitions between these intermediate states.

Hyeon and Thirumalai [136] demonstrated that the typical energy scale ε characteristic

of the roughness of the energy landscape could be measured by performing force-extension

experiments on RNA over different ambient temperatures.

D. Single-stranded DNA/RNA at low salt solution

In our previous discussion of RNA or single-stranded (ss) DNA elastic properties, the

intramolecular and polymer-solution electrostatic interactions are completely ignored. How-

ever, as native single-stranded (ss) DNA/RNA molecules can achieve their biological ac-

tivities only at their physiological salt milieu, it is of practical importance to understand

the elasticity of ssDNA or RNA at different salt conditions. This subsection focuses on the

influence of electrostatic interactions to ssDNA/RNA elasticity.
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The electrostatic interactions of biopolymers in salt solution are usually theoretically

approached by Debye-Huckel method [137–140]. On the experimental side, during recent

years, there are several experimental groups who have pulled ssDNA or RNA molecules and

reported the force-extension data in a variety of salt environments [2, 18, 34, 36, 47, 141].

These data are critical for checking these theoretical approaches to biopolymers in solution

and meanwhile determine some important parameters of the molecules.

1. Debye-Huckel theory of biopolymers

In principle, the electrostatic potential ψ(r) of an electrolyte solution at position r is

governed by the Poisson-Boltzmann equation [142]

52ψ(r) = −4π

D

n
∑

i=1

vieci exp(−vieψ(r)/kBT ). (90)

Here the solution is assumed to contain n different types of ions. The ith species has valence

vi, and the total number of ions of the ith type is Ni, with ci (= Ni/V , V is the volume)

being the bulk concentration of this species. D is the dielectric constant of the solution, and

e denotes the protonic charge.

Equation (90) can be solved numerically under proper boundary conditions according to

the series expansion method that was first used by Pierce [143]. In Figure 20 are illustrative

examples of the electrostatic potentials of an ssDNA/RNA cylinder in 2 mM NaCl and 5

mM MgCl2 solutions. Here a cylinder radius of r0 = 0.5 nm and surface charge density

of e/0.6nm are assumed; and potential function ψ(r) is expanded up to the 17th and 14th

order for NaCl and MgCl2, respectively [140].

In case the electrostatic potential is small relative to kBT , the terms higher than square

in Pierce-expansion can be neglected. The electrostatic potential around a point charge q

can be written implicitly in the Debye-Huckel form

ψDH(r) =
q

D|r| exp(−κ|r|), (91)

where r is the radial distance from the charge, and κ is the inverse Debye length, equaling

to (8πc0e
2/DkBT )1/2 (for NaCl solution) or (24πc0e

2/DkBT )1/2 (for MgCl2).

To count the influence of higher expansion terms of the Poisson-Boltzmann equation, one

can phenomenologically change the amplitude of the Debye-Huckel potential of Eq. (91) to
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fit the precise solution of the Poisson-Boltzmann equation [144, 145]. According to Eq. (91),

the electrostatic potential of a uniformly charged straight cylinder of infinite length can be

written as

ψDH(r) =
∫ ∞

−∞

νdλ

D

exp(−κ
√
λ2 + r2)√

λ2 + r2
=

2ν

D
K0(κr), (92)

where λ is arclength along the cylinder axis, ν is effective linear charge density, and K0 is

the first-order modified Bessel function [146]. By comparing Eq. (92) with the numerical

Poisson-Boltzmann solution in the tail region as shown in Fig. 20, we can determine the

effective linear charge density ν in different bulk ionic concentration c for both the NaCl

and the MgCl2 solution (see Table I). In Table I we also show the effective charge density of

double-stranded (ds) DNA, as well as ssDNA. All the data of ν can be very well fitted by a

formula of

ν = exp(α + βc2/5), (93)

with the fitting parameters α and β listed also in Table I.

2. Elastic freely-jointed chain model and interplay with electrostatic force

Because of high degree of flexibility, ssDNA/RNA molecules are usually modeled by a

completely flexible “freely-jointed chain” (FJC) model: A chain consists of N rigid and in-

dependently oriented links, each of length b [147]. Since the contour length of the molecules

can be elongated under high extended force, the modification of elastic links has been intro-

duced into the FJC model [18]. Under the external force F , the free energy of this so-called

elastic freely jointed chain model (eFJC) in salt solution can be written as

FeFJC =
Y

2

N
∑

i=1

(|ri − ri−1| − b)2 +
ν2

D

∫

dλ1dλ2
exp(−κ|ri − rj|)

|ri − rj|
− FzN , (94)

where ri = (xi, yi, zi) is the position of link i, and Young’s modulus Y characterizes the

stretch stiffness of backbone. The integration is performed over the molecule’s curvilinear

coordinates (with i < j).

In Figure 21 is a comparison of force-extension data with Monte Carlo calculations of

the eFJC model [140, 141]. In the experimental setup of Dessinges and co-authors [141],

ssDNA molecules were treated physicochemically to suppress the base-pairing interaction. In

this condition, ssDNA extension was observed to increase almost logarithmically with force,
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which deviates strongly from the behavior of a pure elastic FJC (Fig. 21). According to

the Monte Carlo simulation, the electrostatic interaction tends to swell the volume occupied

by the chain and make the segments more easily aligned along the force direction. This

is equivalent to enlarging the Kuhn length of the molecule. In principle, the lower the

ionic concentration becomes, the larger the effective Kuhn length is and the more rigid the

molecule looks. As shown in Fig. 21, well agreement with experimental data up to 70 pN can

be obtained by the model of Eq. 94 without adjustable parameters. Beyond the external

force of 70 pN, however, the extremely large deformation of the ssDNA backbone could

not be described by the commonly-used quadratic elastic approximation [88, 93, 140] but

requires the introduction of a quartic elastic term with elastic module Y4 = 400 kBT/nm
4

in the model [141]. This nonlinear elastic behavior may result from a structural transition

in ssDNA as it is pulled above 70 pN [18].

The logarithmic increasing of extension with external stretching in ssDNA and RNA

revealed in Fig. 21 is very striking. Recently, it was observed that similar force-extension

behavior could happen in the stretching of spider-silk proteins [148]. It is yet to see whether

this phenomenon is also caused by electrostatic interactions or not.

3. Base-pairing interactions of ssDNA/RNA in solution

Long-range base-pairs can be formed between the complementary bases of ssDNA/RNA,

which tend to bend the molecule into specific secondary structures. Since hydrogen-bonds of

the base-pairs themselves are short-ranged (∼0.3-0.4 nm of donor-acceptor distance [149]),

this secondary structures are strongly influenced by the excluded volume interactions that

can be dramatically enhanced by the electrostatic repulsion of phospho-diester backbone.

To include the self-pairing interaction in the eFJC model, we approximate the base-

pairing potential by a node-pairing energy, i.e.

Epair =
NP
∑

i=1

VP , (95)

where NP is the number of node pairs and VP is a sequence-dependent parameter denoting

the intensity of a certain pairing mode.

As shown in Fig. 22, in low-salt solution, the electrostatic repulsive interaction along

ssDNA backbone is weakly screened. For example, in 1mM phosphate buffer (mainly
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NaH2PO4), the Debye length lD = 5.95 nm which is much larger than the hydrogen-bond

interaction range. In this case, there are few base pairs being able to form because the

dominant electrostatic repulsive potential excludes the bases from getting close into the

Watson-Crick base-pair range. In high-salt solution, the electrostatic self-avoiding inter-

action is much weaker because of the strong screen effect. The complementary bases can

therefore come spatially close and form base-pairs. In this case, it need slightly larger force to

elongate the molecule than a pure FJC chain to overcome additional base-pairing interaction

in low force range.

4. Sequence sensitivity of ssDNA/RNA elasticity

There are three hydrogen-bonds formed in a G-C pair-pair and two hydrogen-bonds in

a A-T base-pair. This difference of hydrogen-bonding strength leads to sequence sensitivity

of ssDNA/RNA secondary structure and elasticity in high salt solutions.

In Fig. 23, two different sequences of charomid and pX∆II, which have 50% and 30%

GC contents, respectively, are pulled under external forces [141]. The MC simulation of

Eq. 94 plus pairing interaction Eq. 95 fits the data well with VP = 4.6 kBT for the charomid

and VP = 3.8 kBT for the GC-poorer pX∆II construction. As expected, the higher the

GC content, the higher the average pairing energy VP , the more stable are the hairpins

and the higher the force required to stretch the ssDNA to a given length. This sensitivity

to ionic conditions and nucleotide content disappears at force large enough to unzip DNA

(>10 pN). As hairpins are less likely, the elasticity of ssDNA is less sensitive to variations of

sequence and buffers. Furthermore, recent analytical results [88, 93] are in good agreement

with experimental observations and Monte Carlo simulations.

When the pair-bases in RNA hairpin structures are neighboring along the sequence, there

exists van der Waals interaction between consecutive base-pairs. This stacking interaction

most likely happens in homogeneous sequences, such as poly(G-C) and poly(A-T).

To include the stacking interaction in the eFJC model, we count the stacking energy as

Estacking =
NS
∑

i=1

VS, (96)

where NS is the number of stacked node pairs and VS is the interactive potential between

two neighboring node pairs. Two node pairs are considered as stacked only when they are
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nearest neighbors to each other.

As shown in Fig. 24, the stacking potential can dramatically change the conformation of

ssDNA at low force. When the stacking potential is absent, the base pairs are formed quite

randomly with formation of many interior loops and branched structures. So the dispersed

hairpin structure can be easily pulled open in a medium force (left column of Fig. 24).

When the stacking interaction exists, on the other hand, the base pairs are encouraged

energetically to be neighboring and therefore lead to the formation of bulk hairpin structure

(right column of Fig. 24). This kind of abrupt transition from hairpin to coil was indeed

observed in recent experiments by Rief and co-authors [47], in which two designed poly(A-

T) and poly(G-C) ssDNA sequences are pulled (see Fig. 25). The value of threshold force,

i.e., the height of the plateau in the force-extension curve, is dependent on the pairing and

stacking potentials of the nodes. The best fit of MC calculations [140] to the data are

VP = 4.1 kBT and VS = 4 kBT in poly(A-T) sequence, VP = 10.4 kBT and VS = 6 kBT in

poly(G-C) sequence. Bearing in mind that each Kuhn length (∼ 1.6 nm) in our simulation

contains about three nucleotide bases, we can infer that the pairing energy of each A-T base

pair is 1.37 kBT and that for each G-C base-pair is 3.47 kBT . These values are comparable

with the measurements of Bockelmann et al. [38] by unzipping the two strands of a dsDNA

helix.

E. RNA secondary structure prediction through mechanical stretching

In preceding several subsections we have discussed the general physics of RNA secondary

structures. Recently, the biological significance of RNA molecules have been acknowledged

by more and more researchers. Besides the conventional functions of RNA, the mechanisms

of small-RNA and RNA binding and RNA interference were discovered. Therefore, an issue

of great biological interest is to predict faithfully the structure of a given RNA sequence. In

this subsection we mention some recent investigations on this respect.

RNA structure prediction is certainly not a new question. Many algorithms have al-

ready been existed for quite a long time, see, for example, Refs. [150–155] and references

cited therein. These algorithms work mainly for the secondary structures of RNA. They

try to identify the structures with the minimum free energy by calculating the partition

function iteratively [see Eq. (78)] and by assigning different empirical statistical weights to

55



different structural elements [150–152]. For short RNA sequences which contain hundreds

of nucleotides, these algorithms usually predict a pairing pattern for a given RNA that is in

reasonable agreement with experimental measurements.

However, these iterative algorithms are unreliable for very long RNA chains. Part of

the reason is that these algorithms excluded the possibility of tertiary structures such as

pseudo-knots. A pseudo-knot is formed when the nucleotide bases in the loop regions of two

hairpin segments pairing with each other (see Fig. 26).

With the development of single-molecule manipulation techniques, the suggestion has

been raised to detect the secondary structure of RNA by mechanical stretching. For long

RNA sequences, however, experimental measurements [2, 34, 141] revealed that the force-

extension curves of real RNA chains are very smooth and featureless. This situation is

dramatically different from the unzipping curves of double-stranded DNA molecules [37].

To find out why the force-extension profiles of stretching RNA can not reveal its structure,

Gerland and co-workers [156] performed numerical stretching simulations on several real

RNA molecules with well-defined native structures. They also found that the equilibrium

force-extension curves for natural or random RNA chains are considerably smooth and do

not contain many features to enable the detection of the underlying secondary structure of

RNA (Figure 27a).

Two reasons may contributed to this observed smoothness. First is a compensation effect

[156]. As demonstrated in Fig. 28a, as the total extension of a RNA polymer is increased,

new structural motifs may be opened, causing a transient decrease in the stretching force;

however, some structural motifs that were opened previously may reform rapidly, leading

to a reverse increase of the force. When pulling velocity is not so quick, the resulting force-

extension will then be smooth. Lower the temperature or increasing the pulling rate may

help improving the detection of RNA secondary structure.

The second reason is the contribution of suboptimal structures [156]. According to the

calculation in § IIIA, fluctuations of RNA structures over different suboptimal configurations

could result in a very smooth stretching curve.

To delete the compensation effect and to probe the native secondary structure of a RNA

molecule by mechanical stretching, Gerland and co-workers [157] suggested an elegant way.

The idea is to let the RNA molecule to pass through a nano-pore (see Fig. 28b). The radius

of the nano-pore is so small that only single-stranded RNA segments can pass through
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and double-stranded segments could not. By pulling the single-stranded part, the double-

stranded hairpin segment nearest to the nano-pore will be unzipped while other double-

stranded segments will not be destroyed. Therefore, the hairpin secondary structures in a

RNA polymer will be pulled out in a discrete manner, starting from one end of the polymer.

Gerland and co-workers performed simulations with this idea and their simulation results

suggested that by this means, the native secondary structures of RNA can indeed be largely

probed. Figure 29 shows the simulated force-extension curves of pulling a real RNA polymer

through a nano-pore. We see that saw-tooth patterns which signify the breaking of individual

RNA structural elements appear with considerable reproducibility. For more quantitative

discussion of this issue, please refer to Ref. [157].
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IV. DNA ENTROPIC ELASTICITY

We have discussed in the preceding two sections structural transitions in DNA and RNA

that are associated with breaking of nucleotide base-pairs. In this and the next two sections,

we focus on the mechanical property of DNA double-helix when the base-pairing pattern is

kept intact.

Double-stranded DNA (dsDNA) is a long polymer of nucleotides. In solution its spatial

configuration fluctuates over time because of thermal activations which are characterized

by energy scale kBT . What is the best model to describe the elastic behavior of solution

dsDNA?

Here we first outline the main predictions of three polymer models: the Gaussian model,

the freely-jointed-chain (FJC) model, and the wormlike-chain (WLC) model. The WLC

model is found to be most suitable in describing the elastic response of dsDNA under the

action of low external forces (less than 10 piconewton).

A. The Gaussian model and the freely-jointed-chain model

In the Gaussian model, a polymer is assumed to be formed by tandemly connecting N

bonds. The end-to-end extension is

R =
N
∑

i=1

ri. (97)

Each bond ri has the following bond length distribution

P (ri) =
(

3

2πb2

)3/2

exp

(

−3r2
i

2b2

)

. (98)

The characteristic length scale b is called the Kuhn length [147], 〈r2
i 〉 = b2. Between any

two bonds there is no other interactions.

Under the action of an external stretching force of magnitude f , the average extension of

the polymer along the force direction is

X =
Nb2

3kBT
f. (99)

The average extension is proportional to force f .

The Gaussian model works well when the external force is small. However, under moder-

ate or high stretching conditions, the assumption Eq. (98) becomes invalid, since each bond
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could have only finite extensibility. The freely-jointed-chain model replace this assumption

with that of a rigid bond,

P (ri) = (4πb2)−1δ(|ri| − b). (100)

However, the orientation of nearest-neighboring bonds are completely independent. Under

this assumption, the force-induced total average extension is

X = Nb

[

cosh(βfb)

sinh(βfb)
− 1

βfb

]

= LL(βfb), (101)

where L = Nb is the total contour length of the polymer and L(x) = coth(x)−1/x is known

as the Langevin function.

When the force is small, Eq. (101) reduces to the linear relationship Eq. (99). However,

for large force, Eq. (101) predicts that

1 − X

L
=
kBT

fb
. (102)

This scaling law characterizes the FJC model.

B. The wormlike-chain model

In 1992, Smith, Finzi, and Bustamante [1] made the first measurement on the elastic

response curve of λ-phage DNA (48, 502 base-pair in length) under the action of an external

force. These authors found that, neither the Gaussian model Eq. (99) nor the freely-jointed-

chain model Eq. (101) could explain their experimental data [1]. Later it turned out that

dsDNA is a semiflexible polymer, and to properly account the elasticity of dsDNA one has

to use the wormlike-chain model [16, 158].

In the WLC model, a polymer is regarded as an inextensible chain of contour length L, and

its configuration is described by the position vectors r(s) at each arclength point 0 ≤ s ≤ L

along the chain. The chain is semiflexible, so there is an energy penalty associated with

bending of the chain. The configurational energy is expressed as follows:

H[r] =

L
∫

0

ds
kBT`p

2

(

dr2(s)

ds2

)2

=

L
∫

0

ds
kBT`p

2

(

dt(s)

ds

)2

. (103)

In Eq. (103), t(s) = dr(s)
ds

is the unit tangent vector at arclength s. The physical meaning of

the bending persistence length `p will be explained shortly.
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The probability distribution of the tangent vector t at arclength s is determined by the

following Green equation:
∂P (t, s)

∂s
=

1

2lp
∇2

tP (t, s). (104)

The boundary condition of Eq. (104) is P (t, 0) = δ(t − t0), where t0 is the tangent of the

chain at arclength s = 0. The derivation of Eq. (104) is given in the Appendix.

Solution of Eq. (104) leads to

P (t, s) =
+∞
∑

l=0

exp

[

− l(l + 1)

2lp
s

]

2l + 1

4π
Pl(t·t0), (105)

where Pl(t · t0) is l-th order Legendre function. Therefore, the tangent-tangent correlation

is

〈t(s)·t0〉 = exp

(

− s

lp

)

. (106)

From Eq. (106) we know that `p is the characteristic correlation length of the polymer’s

direction. For dsDNA, lp ' 53 nm or 150 base-pairs [16, 158].

Under the action of an external stretching force F , the total average end-to-end extension

is determined by finding the ground-state eigenvalue and eigenvector of the following Green

function (see Appendix):

∂Ψ(t, s)

∂s
=

[

1

2lp
∇2

t + βFz0·t
]

Ψ(t, s), (107)

where z0 denotes the direction of the external force. The ground-state eigenvalue and eigen-

vector of Eq. (107) could be obtained exactly (see, for example, Ref. [159]), and the resulting

force-extension relation is shown in Fig. 30. Here, we also give an approximate variational

solution, which turns out to be very accurate.

We choose the following variational ground-state eigenvector

Ψ0 = exp [−g0s+ (η/2)t · t0] , (108)

and the ground-state “energy” is

g0 =

∫

Ψ∗
0 [−(2lp)

−1∇2
t − βF t·z0] Ψ0dt

∫

dtΨ∗
0Ψ0

=

(

η

4lp
− βF

)

L(η). (109)

The variational parameter η should be chosen such that g0 attains its minimal value. There-

fore, η is determined by

4βF lp = η +

(

d lnL(η)

dη

)−1

, (110)
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and the average end-to-end extension along the force direction z0 is

X = −LkBT
∂g0

∂F
= LL(η). (111)

For many applications, the following famous interpolation formula [16, 158] for the force-

extension relation is often used:

F =
kBT

4`p

[

1

(1 − X
L

)2
− 1 +

4X

L

]

. (112)

To understand Eq. (112), first we notice that when the external force is very weak, the

average extension X is related to the force through the linear-response theorem

X =
F

kBT

[〈

([r(L) − r(0)]·z0)
2
〉

F=0
− 〈[r(L) − r(0)]·z0〉2F=0

]

=
2`pL

3kBT
F. (113)

On the other hand, when the external force is very large, the configuration of the worm-like

chain will be aligned along the direction of the external force, the tangent vector can only

perform very small fluctuations around the direction of the external force. We can expand

the tangent vector along the force direction to quadratic term and obtain the following

equation

1 − X

L
=

√

√

√

√

kBT

4`pF
. (114)

Combining Eqs. (113) and (114) then leads to the interpolation formula Eq. (112).

Comparing Eq. (114) with Eq. (102), we know that as the external force F is large, the

difference between a semiflexible WLC chain’s contour length and its extension scales as

F−1/2 rather than F−1. This −1
2

scaling law was observed in dsDNA [1, 16].

The results mentioned in this section are summarized in Fig. 30.

The most interesting behavior of a semiflexible polymer is when the total contour length

L is of the same order as the bending persistence length `p. On such kind of systems there

has recently been many work (see, for example, Refs. [160–163]).
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V. DNA OVER-STRETCHING TRANSITION

The worm-like chain model of the preceding section regards DNA as an inextensible

chain. When DNA is under the action of a relative large external force ≥ 10 pN, the

molecule becomes extensible. In the force range 10 pN ≤ F ≤ 70 pN, the contour length of

DNA linearly increases with external stretching, with a stretching modulus ' 103 pN [18].

Surprisingly, at external force F ' 70 pN, the contour length of DNA suddenly increases to

1.7 times its B-form length [18, 19, 30, 164]. This abrupt structural transition is referred to as

DNA over-stretching transition in the literature. When F < 70 pN, DNA is a double-helical

molecule, with folded sugar-phosphate backbones; when F > 70 pN, DNA is over-stretched,

suggesting that the hidden length in the double-helix is pulled out. This section reviews

recent efforts in understanding the nature of this DNA over-stretching transition.

In the literature there are two kinds of opinions concerning DNA over-stretching transi-

tion. In one opinion, the transition is between B-form DNA and an over-stretched S-form

DNA. S-form DNA is also a double-helical molecule. In the other opinion, which was first

suggested by Smith, Cui, and Bustamante [18] and later more thoroughly investigated by

Bloomfield and co-workers [164–166], is that the over-stretching transition is actually a

force-induced DNA melting process.

A. Co-operative over-stretching transition viewed from a discrete model

Many theoretical and computational efforts have been made to understand the origin

of DNA over-stretching transition (see, for example, Refs. [19, 28, 167–173]). The first

theoretical understanding of DNA over-stretching was undertaken by Cluzel and co-workers

[19] based on a discrete Zimm-Bragg model (and similar models were also considered in

Refs. [168–170, 173]). Here we show the main points of this model.

Under the action of an external force f , each structural unit of DNA (i.e., a nucleotide

pair) has two states: a B-form state with extension lB(f) and a over-stretched S-form state

with extension lS(f). There is an energy difference 4E between these two states. Further-

more, there is an addition energy cost ω with each junction between an S-form segment

and a B-form segment. A DNA chain of length N base-pairs may have a configuration

characterized by the following set of integers {m0, n1, m1, . . . , ns, ms, n0}, where m0 ≥ 0 and
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mi ≥ 1 (i = 1, . . . s) are, respectively, the number of nucleotide pairs in the first, second,. . .,

s+1-th B-form segment; and ni ≥ 1 (i = 1, . . . , s) and n0 ≥ 0, are the corresponding S-form

segments between any two consecutive B-form segments. The configuration energy is

H[{mi, ni}] = −
s
∑

i=0

miflB −
s
∑

j=0

nj(flS −4E) + (2s+ 1)ω − ωδ0
m0

− ωδ0
n0
. (115)

An application of the generating function method of § II C leads to the following expres-

sion for the average extension X of a nucleotide pair:

X =
[α1lS + α2lB]

√

(α1 − α2)2 + 4α3 + (α1 − α2)[α2lB − α1lS] − 2α3[lB + lS]

(α1 + α2)
√

(α1 − α2)2 + 4α3 − (α1 − α2)2 − 4α3

, (116)

where α1 = exp(βflB), α2 = exp(βflS − β4E), and α3 = α1α2 exp(−2βω).

When external force is larger than 10 pN, the B-form DNA could be well modeled by

an extensible worm-like chain with bending persistence length lp = 53.0 nm and stretching

modulus SB = 1000 pN [2]. Therefore,

lB(f) = dBL(ηB)(1 + f/SB), (117)

where dB = 3.4 Å is the distance between two nucleotide pairs in B-form DNA, and ηB is

determined by Eq. (110) with the bending persistence length of B-form DNA. According

to the work of Storm and Nelson [173], S-form DNA could also be regarded as a wormlike

chain with bending persistence length l′p = 12.0 nm. So we could write down

lS(f) = dSL(ηS)(1 + f/SS), (118)

where dS is set to dS = 5.8 Å and ηS is also determined by Eq. (110) with the bending

persistence length l′p. The stretching modulus of S-DNA is set to SS = 2000 pN.

Figure 31 demonstrated the predicted force-extension relationship for DNA according

to this Zimm-Bragg model. We see that the threshold force 70 pN is determined by the

energy difference 4E between S-form DNA and B-form DNA, while the cooperativity of

transition is determined by the junction energy cost ω. The higher the junction energy cost,

the abrupt the B-S transition is. So this simple model is able to reproduce the experimental

observations [18, 19].

What is the physical origin of the cooperation factor ω? There are some possible alter-

native explanations. Cluzel et al. [19] performed molecular modeling of the DNA stretching
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process using the program JUMNA and suggested that in the over-stretched DNA the nu-

cleotide bases are no longer perpendicular to the molecular axis. Therefore, it is possible

that the discontinuities in inclination of the nucleotide bases in the B-form and S-form

boundary will cause large energy penalty. However, the molecular modeling of Cluzel et al.

[19] was performed by assuming the total twist of DNA to be fixed unchanged, which was in

conflict with experimental situations. In the experimental situation, there were many single-

stranded breaks (nicks) in the DNA back-bone, which allow the twisting stress in DNA to be

released by rotating the DNA molecule around such nicks. Another possibilities is that B-S

transition was initiated only at these nicks. The existence of just a limited number of single-

strand nicks can lead to a phenomenological energy penalty ω. However, this explanation is

also not very convincing since (1) the same force-extension behavior was observed in many

types of DNA molecules which differ in nucleotide composition and number of single-strand

nicks and (2), the over-stretching transition is not sensitive to pulling velocity.

A semi-microscopic model of DNA will be introduced in the next subsection. This model

suggests that the short-ranged nature of base-pair stacking interactions might be the main

reason for the highly cooperative B-S transition.

B. Double-stranded polymer model of DNA and the over-stretching transition

This subsection investigates theoretically the possible effects of DNA short-ranged base-

pair stacking interaction to the co-cooperativity of its over-stretching transition. To incor-

porate base-pair stacking interactions, Zhou and co-authors [28, 159] introduced a double-

stranded semiflexible polymer model for DNA and studied its property detailedly. Here we

recall the main points of this model.

In the model of Zhou et al. [28], DNA is modeled as a double-stranded polymer with

continuous degrees of freedom (Fig. 32). The two inextensible backbones of DNA [14] are

characterized by the same bending rigidity κ = kBT`p, where `p ' 1.5 nm is the bending

persistence length of ssDNA. The position vector along ssDNA is ri =
∫ s ti(s

′)ds′, where ti

(i = 1, 2) is the unit tangential vector of the ith backbone, and s its arc length (Fig. 32).

The nucleotide basepairs between the backbones are viewed as rigid planar structures with

finite area and volume.
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Bending energy of DNA First consider the bending energy of the backbones,

Eb =

L
∫

0

κ

2





(

dt1

ds

)2

+

(

dt2

ds

)2


 ds, (119)

where L is the contour length of each ssDNA backbone and s is its arc length parameter.

To proceed, each base-pair is regarded for the moment as a thin rigid rod of length 2R, with

a unit vector b pointing along it from r1 to r2, i.e., r2(s)− r1(s) = 2Rb(s). Relative sliding

of the backbones is prohibited, the basepair planes are assumed to lie perpendicular to the

DNA central axis and b · t1 = b · t2 ≡ 0. The central axis of dsDNA can be defined as

r(s) = r1(s)+Rb(s), and its tangential vector is denoted by t, with t ·b = 0. Since both t1

and t2 lie on the same plane perpendicular to b, we obtain that t1 = t cosϕ + n sinϕ and

t2 = t cosϕ − n sinϕ, where n = b × t and ϕ is half the rotational angle from t2 to t1 (b

being the rotational axis). We call ϕ the folding angle, it is in the range between −π/2 and

+π/2 (ϕ > 0 for right-handed rotations and < 0 for left-handed ones). It is not difficult to

verify that
db

ds
=

(t2 − t1)

2R
= −n

sinϕ

R
. (120)

With Eq. (120) and the definition of r we know that

dr

ds
=

(t1 + t2)

2
= t cosϕ. (121)

With the help of Eqs. (120) and (121), the total bending energy of the backbones Eq. (119)

can be rewritten as

Eb =
∫ L

0

[

κ(
dt

ds
)2 + κ(

dϕ

ds
)2 +

κ

R2
sin4 ϕ

]

ds. (122)

The second and the third terms in Eq.(122) is deformation energy caused by folding of the

backbones with respect to the central axis, and the first term, κ(dt/ds)2, is the bending

energy of DNA central axis contributed by the backbone bending rigidity κ. So far, base-

pairs are viewed as thin rods and their contribution to the bending rigidity of DNA chain

is not considered. Because of steric effects caused by finite volume and area, base-pairs

will certainly increase the bending rigidity of DNA chain (the bending persistence length

of double-stranded DNA is about 50 nm, quite larger than that of a single-stranded DNA

chain). The simplest way to consider such effects is to replace κ in the first term of Eq. (122)

with a phenomenological parameter κ∗, with κ∗ > κ [28].
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Base-pair stacking energy Besides steric effects, nucleotide base-pairs contribute also

base-pair stacking energy. This energy mainly originates from non-covalent van der Waals

interactions between adjacent base-pairs [14]. Base-pair stacking interaction is short-ranged

and is characterized by an attraction potential proportional to 1/d6 and a strong repulsion

potential proportional to 1/d12 (here d is the axial distance between adjacent base-pairs). In

our continuous model, the line density of such Lennard-Jones type potential can be written

as

ρ(ϕ) =























ε
r0

[( cos ϕ0

cos ϕ
)12 − 2( cos ϕ0

cos ϕ
)6] for (ϕ ≥ 0),

ε
r0

[cos12 ϕ0 − 2 cos6 ϕ0] for (ϕ < 0).

(123)

In Eq. (123), r0 is the backbone arc length between adjacent bases; ϕ0 is a parameter related

to the equilibrium distance between a DNA dimer; ε is the base-pair stacking intensity which

is generally base-sequence specific. Here we focus on macroscopic properties of DNA, so we

consider ε in the average sense by taking its averaged value over ten different DNA base-pair

dimers (see Table II) [14, 174]. In this work, ε is set to 14.0 kBT , and T = 300 K.

The asymmetric base-pair stacking potential Eq. (123) ensures a relaxed DNA to take

on a right-handed double-helix configuration with its folding angle ϕ ∼ ϕ0. However, if ad-

jacent base-pairs are pulled apart slightly from the equilibrium distance by external forces

or thermal stretching fluctuations, the base-pair stacking interaction intensity quickly de-

creases because of its short-range nature. In other words, the base-pair stacking potential

can endure only a limited pulling force.

The total base-pair stacking energy is

ELJ =

L
∫

0

ρ(s)ds. (124)

External stretching energy When an external force is pulling at one end of DNA, the

DNA will try to align along the force direction z0. The energy associated with external force

is

Ef = −
L
∫

0

ft·z0 cosϕds. (125)

The total energy of a particular configuration is the sum of the bending energy Eq. (122),

the base-pair stacking energy Eq. (124), and the alignment energy Eq. (125):

E = Ebend + ELJ + Ef . (126)
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According to the derivation given in the Appendix, the Green function G(t, ϕ; t′, ϕ′; s)

which determines the probability distribution of t and ϕ along DNA chain is governed by

∂G

∂s
=

[

∂2

4`∗p∂t
2

+
∂2

4`p∂ϕ2
− ft · z0

kBT
cosϕ− ρ(ψ)

kBT
− `p sin4 ϕ

R2

]

G, (127)

where `∗p = κ∗/kBT . The spectrum of the above Green equation is discrete and hence for long

chains, the average extension can be obtained either by differentiation of the ground-state

eigenvalue, g, of Eq. (127) with respect to f :

X

L
= (1/L)

∫ L

0
〈t · z0 cosϕ〉ds = kBT

∂g

∂f
, (128)

or by a direct integration with the normalized ground-state eigenfunction, Φ(t, ϕ), of Eq.

(127):
X

L
=
∫ ∫

|Φ|2t · z0 cosϕdtdϕ. (129)

Both g and Φ(t, ϕ) can be obtained numerically through standard diagonalization meth-

ods and identical results are obtained by Eqs. (128) and (129). The theoretical force-

extension of dsDNA is calculated numerically and compared with experimental data of

Ref. [19]. Figure 33 shows the result of this comparison. The theoretical curve in Fig. 33 is

obtained with just one adjustable parameter. The agreement with experiment is remarkable.

According to the continuous-degree model mentioned above , the onset of co-operative

extension of DNA axial length at forces about 65-70 pN is mainly caused by the yielding of

the short-range base-pair stacking interaction. After the collapse of base-pair stacking, the

model assumes double-stranded DNA will take a planar ladder structure. In reality more

complex configurational transition might happen after the yielding of stacking interaction.

For example, the un-stacked base-pair may become unstable and break into two unpaired

bases. Alternatively, the vertically stretched base-pairs may tilt with respect to the DNA

central axis to gain some residual base-pair stacking. To take into account these and other

kind of possibilities, one need to extend the basic model to include the possibility of base-pair

breaking and tilting. Related investigations could be found in Refs. [175–180].

The continuous model of Zhou et al. [28] is also able to describe the elastic response of

DNA at low external forces. Below the onset of co-operative elongation, DNA seems to be

very stiff and calculations based on this model show that at f = 50 pN the total extension of

DNA is only 4.1% longer than its B-form contour length, in close accordance with the value

of 4.6% reported by Smith et al. [18]. This is related to the fact that the base-pair stacking
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intensity ε is very strong. At low forces (f < 10 pN), because the fluctuation of the folding

angle ϕ is extremely small, it can just be neglected and DNA elasticity is caused by thermal

fluctuations of the axial direction t (entropic elasticity). The entropic elasticity (wormlike

chain) model of § IVB with contour length L〈cosϕ〉f=0 and persistence length 2`∗p〈cosϕ〉f=0

is an excellent approximation of the present theory (here 〈cosϕ〉f=0 is the average of cosϕ

at zero force). This point is demonstrated in Fig. 34.

In § VIA we will show that the model mentioned in this subsection can also quantitatively

explain the supercoiling property of stretched dsDNA without any fitting parameter.
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VI. ELASTICITY OF SUPERCOILED DNA

The number of times the two strands of DNA double helix are interwound, i.e., the linking

number Lk, is a topologically invariant quantity for closed DNA molecules [181]. It is also

topologically invariant for a linear DNA polymer in case that the orientations of the two

extremities of the linear polymer are fixed and no any part of the polymer is allowed to go

round the extremities of the polymer [20]. For an unstressed B-form DNA segment, it has

one right-handed twist about per 3.4 nm along its length [14], i.e., Lk0 = LB/3.4, where LB is

the DNA length. In real biological processes, however, DNA molecules are often overwound

or underwound from its relaxed state in order to facilitate specific biological activities. For

example, in human cells, the nucleus is just a few micrometers in diameter while it contains

DNA with total length three meters within 23 chromosomes. If these chromosomes were in

the relaxed coil form, it would be hard for them to fit inside the nucleus. It was observed

via the reconstitution of nucleosome cores by urea/salt dialysis that a negatively twisted

molecule can be packed more efficiently compared with linearized molecules [182]. The

reciprocal relations between the twisting topology of chromatin and the genetic processes

in vivo are also extensively acknowledged, and the twisting stress was shown to influence

the efficiency of transcription [183] and to modulate the binding of trans-acting proteins to

DNA elements [184, 185].

Conceptionally, in all cases when the linking number of DNA deviates from its relaxed

value Lk0, the DNA polymer is called “supercoiled”. Since the same linking number devia-

tion can induce different twisting stress in molecules of different size, it is more appropriate

to measure extent of supercoiling by a properly normalized quantity. The supercoiling degree

σ is measured by the normalized linking number deviation, i.e.,

σ =
Lk − Lk0

Lk0
, (130)

where as mentioned before, Lk0 is the linking number of a relaxed B-form DNA of the

same length. In living organisms, DNA molecules are usually negatively supercoiled, with

supercoiling degree σ ' −0.06.

In this section we investigate the elasticity of the supercoiled DNA molecules by analytical

means and Monte Carlo simulations, based on the double-stranded model mentioned in

§ VB. The main purpose is to understand the experimental data reported by Strick and
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co-authors [20, 22], who have pulled individual supercoiled DNA molecules and measured

their elastic responses under various external forces and torques.

This section does not discuss the supercoiling property of circular DNA molecules, since

studies on this topic have already well documented, see for example, Ref. [186].

A. Analytical approximation

In the experiment of Ref. [20], the two strands of a λ-DNA at one end are bound to

a glass cover slip and the two strands at the other end to a magnetic bead. The linking

number of λ-DNA was then changed by rotating the magnetic bead with a magnetic field.

At the same time, an external force in the order of piconewton was applied to the DNA

molecule to make it straight enough.

To model this situation theoretically, Zhou and co-authors [28, 159] introduced a torque

energy in the double-stranded DNA model (§ VB). This torque energy is proportional to

the total linking number of the DNA double-helix. Here we recall their calculations in some

detail.

The total number of topological turns one DNA strand winds around the other, Lk, can

be expressed as the sum of the twisting number, Tw(r1, r), of backbone r1 around the central

axis r and the writhing number, Wr(r), of the central axis [181, 187, 188]:

Lk = Tw +Wr. (131)

Based on the model of § VB, the twisting number is calculated by the following expression

[181, 189, 190]

Tw(r1, r) =
1

2π

L
∫

0

t × b · db

ds
ds =

1

2π

L
∫

0

sinϕ

R
ds, (132)

where L is the total contour length of a DNA strand and R is the cross-sectional radius

of DNA double-helix. The writhing number of the central axis is much more difficult to

calculate. It is expressed as the following Gauss integral over the central axis [187, 188]:

Wr(r) =
1

4π

∫ ∫

dr × dr′ · (r − r′)

|r− r′|3 . (133)

In the case of linear chains, provided that some fixed direction (for example the direction

of the external force, z0) can be specified and that the tangent vector t never points to
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−z0, it was proved by Fuller [191] that the writhing number Eq. (133) can be calculated

alternatively according to the following formula,

Wr(r) =
1

2π

L
∫

0

z0 × t · dt/ds

1 + z0 · t
ds. (134)

Equation (134) can be further simplified for highly extended linear DNA chains whose tan-

gent t fluctuates only slightly around z0. In this case, Eq. (134) is approximately expressed

as

Wr(r) ' 1

4π

∫ L

0

[

−ty
dtx

ds
+ tx

dty

ds

]

ds, (135)

where tx and ty are, respectively, the two components of t with respect to two arbitrarily

chosen orthonormal directions (x0 and y0) on the plane perpendicular to z0.

The energy caused by the external torque of magnitude Γ is then equal to

Etorque = −2πΓLk = −2πΓ(Tw +Wr). (136)

This energy term is added to Eq. (126) of the preceding section.

Based on Eq. (155) of the Appendix, the Green equation for a supercoiled and highly

stretched dsDNA is expressed as

∂Ψ(t, ϕ; s)

∂s
=

[

∂2

4`∗p∂t
2

+
∂2

4`p∂ϕ2
+
f cosϕ

kBT
t · z0 −

ρ(ϕ)

kBT
− `p
R2

sin4 ϕ

+
Γ

RkBT
sinϕ− Γ

4kBT`∗p

∂

∂φ
+

Γ2

16`∗p(kBT )2
sin2 θ

]

Ψ(t, ϕ; s), (137)

where (θ, φ) are the two directional angles of t [159]. Similar to what we have done in

§ VB, we can now express the above Green equation in matrix form [159]. The ground-state

eigenvalue and eigenfunction Φ0 of Eq. (137) can be obtained numerically for given applied

force and torque. The average extension is calculated through by the following formula

X = L
∫

χ0(t, ϕ)t · z0 cosϕΦ0(t, ϕ)dtdϕ, (138)

where χ0(t, ϕ) is the ground-state left-eigenfunction of Eq. (137). The writhing number

Eq. (135) is calculated according to Eq. (164) as

〈Wr〉 = L
Γ

16π`∗pkBT

∫

χ0(t, ϕ) sin2 θΦ0(t, ϕ)dtdϕ, (139)

and average linking number is then expressed as

〈Lk〉 = 〈Tw〉 + 〈Wr〉 =
L

2πR

∫

χ0 sinϕΦ0dtdϕ+
LΓ

16π`∗pkBT

∫

χ0 sin2 θΦ0dtdϕ. (140)
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The theoretical relationship between extension and supercoiling degree is shown in Fig. 35

and compared with the experimental result of Strick et al. [20]. In obtaining these curves,

the values of the parameters are the same as those used in Fig. 33 and no adjustment has

been done to fit the experimental data. We find that in the case of negatively supercoiled

DNA, the theoretical and experimental results are in quantitative agreement, indicating that

the present model is capable of explaining the elasticity of negatively supercoiled DNA; in

the case of positively supercoiled DNA, the agreement between theory and experiment is

not so good, especially when the external force is relatively large. In this simple model,

we have not considered the possible deformations of the nucleotide base-pairs. While this

assumption might be reasonable in the negatively supercoiled case, it may fail for positively

supercoiled DNA chain, especially at large stretching forces. The work done by Allemand

et al. [23] suggested that positive supercoiled and highly extended DNA molecule can take

on Pauling-like configurations with exposed bases.

For negatively supercoiled DNA molecule, both theory and experiment reveal the follow-

ing elastic aspects: (a) When external force is small, DNA molecule can shake off its torsional

stress by writhing its central axis, which can lead to an increase in the negative writhing

number and hence restore the local folding manner of DNA strands to that of B-form DNA;

(b) However, writhing of the central axis causes shortening of DNA end-to-end extension,

which becomes more and more unfavorable as the external force is increased. Therefore,

at large forces, the torsional stress caused by negative torque (supercoiling degree) begins

to unwind the B-form double-helix and triggers the transition of DNA internal structure,

where a continuously increasing portion of DNA takes on some certain new configuration as

supercoiling increases, while its total extension keeps almost invariant.

What is the new configuration? Strick and co-authors [20] suggested this new config-

uration corresponds to denatured DNA segments, i.e., negative torque leads to breakage

of hydrogen bonds between the complementary DNA bases and consequently to strand-

separation. To check this picture, Strick and co-authors [21] used short single-stranded

homologous DNA segments to detect possible denaturation bubbles. They found that these

homologous DNA probes indeed bind onto negatively supercoiled dsDNA molecules.

As seen in Fig. 35, although the simple theoretical model of this section does not taken

into account the possibility of strand-separation, it can quantitatively explain the behavior

of negatively supercoiled DNA. It is interesting to see what is the prediction of the new
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configuration according to this model. The calculations performed in Ref. [159] suggested

that, in negatively supercoiled and highly extended DNA, the two strands of DNA might

be in a left-handed double-helix configuration. The structural parameters of the left-handed

configuration suggested by the theory are listed in Table III and compared with those of Z-

form DNA [12]. The strong similarity in these parameters suggests that the torque-induced

left-handed configurations may resemble the Z-form of double-stranded DNA [12, 30]. It

may be possible that in this left-handed DNA configuration the base-pairing is not stable.

This can explain why short homologous DNA segments can bind to the DNA polymer [21].

The supercoiling property of stretched DNA were also studied theoretically using isotropic

models by many others, see, for example, Refs. [170, 192–200]

The anisotropic twisting elasticity of double-stranded DNA was investigated by con-

sidering the coupling between DNA spontaneous curvature and twist, see, for example,

Refs. [171, 201–204]. Garrivier and Fourcade considered the twist-bend coupling due to

the intrinsic curvature in DNA and very interesting numerical results were reported [202].

Panyukov and Rabin also demonstrated by analytical and numerical calculations that, under

external stretching, a supercoiled helical ribbon polymer has anisotropic force-extension rela-

tionship [171, 203]. Theoretical work on this respect may have direct biological significance,

since real DNA molecules has local sequence-dependent intrinsic curvature.

B. DNA supercoiling studied by Monte Carlo simulation

The analytical calculations mentioned in § VIA apply to highly stretched DNA. To go

beyond this limit, a powerful method is to use Monte Carlo simulation. Vologodskii and

Marko in Ref. [205] studied the supercoiling property of stretched DNA by using an achiral

model of dsDNA. To better understand the experimental observations of Strick et al. [20],

the chiral model of dsDNA mentioned in § VB and § VIA was studied by Zhang and co-

authors [206] following the procedure of Ref. [205]. Here we recall the work of Ref. [206]

in some detail to demonstrate the main points in simulating the configurational property of

topologically constrained DNA.
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1. Discrete DNA model

In the simulation, the double-stranded DNA molecule is modeled as a chain of discrete

cylinders, or two discrete wormlike chains constrained by basepairs of fixed length 2R (Figure

36). The conformation of the chain is specified by the space positions of vertices of its central

axis, ri = (xi, yi, zi) in 3-D Cartesian coordinate system, and the folding angle of the sugar-

phosphate backbones around the central axis, θi, i = 1, 2, · · · , N . Each segment is assigned

the same amount of basepairs, nbp, so that the length of the ith segment satisfies

∆si = |ri − ri−1| = 0.34nbp
cos θi

〈cos θ〉0
, (141)

where 〈· · ·〉0 means the thermal average for a relaxed DNA molecule.

According to Eq. (126), the total energy of dsDNA molecule with N segments in our

discrete computer model is expressed as

E = α
N−1
∑

i=1

γ2
i + α′

N−1
∑

i=1

(θi+1 − θi)
2 +

κ

R2

N
∑

i=1

∆si sin
3 θi tan θi +

Nbp
∑

j=1

U(θj) − FzN , (142)

where γi is the bending angle between the (i−1)th and the ith segments, and zN is the total

extension of the DNA central axis along the direction of the external force F (assumed in

the z-direction). Here, the bending rigidity constant α corresponds to the persistence length

p = 53 nm of dsDNA according to the direct discretization of Eq. (126), i.e.,

α =
p

2b
kBT, (143)

where b is the average length of segments.

In earlier approaches [205, 206], the bending rigidity constant α of a discrete chain was

determined according to the Kuhn statistic length of wormlike chain, which is twice of the

persistence length p. In fact, the Kuhn length lkuhn of a discrete wormlike chain with rigidity

α is written as (see, for example, Ref. [206])

lkuhn = b
1 + 〈cos γ〉
1 − 〈cos γ〉 , (144)

where

〈cos γ〉 =

∫ π
0 cos γ exp(−αγ2/kBT ) sin γdγ
∫ π
0 exp(−αγ2/kBT) sin γdγ

. (145)

The rigidity constant α defined in this way is only a function of m = lkuhn/b, the number of

links within one Kuhn length. The dependence of α versus m obtained from Eqs. (144) and
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(145) is shown numerically in Fig. 37. The rigidity constant α follows very well the linear

dependence upon m, especially in the reasonable region of m > 5. As a comparison, we

also show the line of Eq. (143), i.e. α = (m/4)kBT . It is obvious that the rigidity constants

of discrete chain are numerically equivalent in two algorithms. However the processes of

discretization of Eq. (126) is much more directly determined, especially to the models with

complicated elasticity.

The constant α′ in the second term of Eq. (142) should be associated with stiffness of

the DNA single strand. As an approximation, we have taken here α′ = α. The unpublished

data show that, the second term of Eq. (142) is quite small compared with the other four

terms in small torsional deviations. The result of the simulation is not sensitive to α′ in

these cases.

2. Monte Carlo simulation procedure

The equilibrium sets of dsDNA conformations are constructed using the Metropolis MC

procedure [207]. The conformational space is sampled through a Markov process. Three

kinds of movements are considered [186, 205, 206]: (1) a randomly chosen segment is under-

twisted or overtwisted by an angle λ1 (Fig. 38a); (2) a portion of the chain is rotated by λ2

around the axis connecting the two ends of rotated chain (Fig. 38b); (3) the segments from

a randomly chosen vertex to the free end are rotated by λ3 around an arbitrary orientation

axis that passes the chosen vertex (Fig. 38c). All these three types of movements satisfy the

basic requirement of the Metropolis procedure of microscopic reversibility, and each of them

is performed with a probability of 1/3. The value of λ1, λ2, λ3 are uniformly distributed

over interval (−λ0
1, λ

0
1), (−λ0

2, λ
0
2) and (−λ0

3, λ
0
3), respectively, and λ0

1, λ
0
2 and λ0

3 are chosen

to guarantee an appropriate acceptance rate of trial movements.

A trial move from a conformation i to a conformation j is accepted on the basis of

the probability pi→j = min(1, ρj/ρi), where ρi is the probability density of conformation i.

Energetic importance sampling is realized in the Metropolis MC method by choosing the

probability density ρi as the Boltzmann probability: ρi = exp(−Ei/kBT ), where Ei is the

energy of conformation i calculated according to Eq. (142).

The starting conformation of the chain is unknotted. To avoid knotted configuration

in the Markov process, we calculate the Alexander polynomial of each trial conformation
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[208, 209]. In a case where the trial movement knots the chain, the trial movement will be

rejected. To incorporate the exclude-volume effect, for each trial conformation, we calculate

the distance from the points on the axis of a segment to the points on the axis of another

nonadjacent segment. If the minimum distance for any two chosen segments is less than the

DNA diameter 2R, the energy of trial conformation is set to be infinite and the movement

is then rejected.

During the configurational evolution of DNA, the supercoiling degree σ may distribute

around all the possible values. In order to avoid the waste of computational samples and

also for the propose of comparison with the supercoiling experiments [20, 22], we bound

the supercoiling σ of DNA chain inside the region of −0.12 ≥ σ ≥ 0.12. When the torsion

degree of trial conformation is beyond the chosen range, we simply neglect the movement

and reproduce a new trial movement again.

The linking number Lk of each conformation is calculated according to Eq. (131), where

the twist number Tw [Eq. (132)] can be re-expressed by

Tw =
1

2πR

N
∑

i=1

∆si tan θi. (146)

To enclose the linear DNA molecule without changing its linking number, we add three long

flat ribbons to the two ends for each conformation and keep the ribbons in the same planar

(Fig. 39). The writhing number Wr of the linear DNA is equal to that of the closed circular

configuration and can be thereby calculated by Eq. (133).

3. Elasticity of supercoiled dsDNA

To obtain equilibrium ensemble of DNA evolution, 107 elementary displacements are

produced for each chosen applied force F . The relative extension and supercoiling degree σ

of each accepted conformation of DNA chain are calculated. When the trial movement is

rejected, the current conformation is counted up twice [207].

In order to see the dependence of mechanics property of dsDNA upon supercoiling degree,

the whole sample is partitioned into 15 subsamples according to the value of the supercoiling

degree σ. For each subsample, we calculate the averaged extension

〈zN〉j =
1

Nj

Nj
∑

i=1

zN (i)

LB
, j = 1, · · · , 15 (147)
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and the averaged torsion

〈σ〉 =
1

Nj

Nj
∑

i=1

σi, j = 1, · · · , 15, (148)

where Nj is the number of movements supercoiling of which belong to jth subsample.

We display in Fig. 40 the averaged extension as a function of supercoiling degree for three

typical applied forces. In spite of quantitative difference between Monte Carlo results and

experimental data, the qualitative coincidence is striking. Especially, three evident regimes

exist in both experimental data and the Monte Carlo simulations:

i). At a low force, the elastic behavior of DNA is symmetric under positive or negative

supercoiling. This is understandable, since the DNA torsion is the co-operative result

of hydrogen-bond constrained bending of DNA backbones and the base-pair stacking

interaction in our model. At very low force, the contribution from applied force and

the thermodynamic fluctuation perturbs the folding angle θ of base-pair to derive very

little from the equilibrium position, θ0. Therefore, the DNA elasticity is achiral at

this region. For a fixed applied force, the increasing torsion stress tends to produce

plectonemic state which shortens the distance between the two ends, therefore, the

relative extension of linear DNA polymer. These features can be also understood by

the traditional approaches with harmonic twist and bending elasticity [196, 205].

ii). At intermediate force, the folding angle of basepairs are pulled slightly further away

from equilibrium value θ0 where van der Waals potential is not symmetric around

θ0. So the chiral nature of elasticity of the DNA molecule appears. In the negatively

supercoiled region, i.e., θ < θ0, the contribution of applied force to the total elastic

energy dominates that of the stacking potential. So the extension is insensitive to

negative supercoiling degree. On the other hand, the positive supercoiling still tends

to contract the molecule.

iii). At higher force, the contribution of the applied force to the energy dominates that of

van der Waals potential in both over- and underwound DNA. DNA is in the extended

configuration, and its writhing number is small. The polymer is highly twisted.

The biological significance of DNA supercoiling has been discussed intensively in the

literature (see, for example, Ref. [186]). Benham and co-workers [210, 211] quantitatively

studied the base-pair opening probability as a function of supercoiling degree based on some
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simple models. The approach of Benham et al. [210, 211] was recently extended by Li and

Ou-Yang [212] and very interesting predictions were obtained concerning the transcriptional

initiation of several genes. It is anticipated that in coming years, the link between DNA

supercoiling and gene transcription will be understood more throughly.
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VII. CONCLUSION

In this chapter we have reviewed recent theoretical work on the statistical mechanics of

single-molecule DNA and RNA polymers. The topics covered in this chapter include DNA

double-helix denaturation, DNA unzipping, DNA entropic elasticity, DNA over-stretching,

DNA supercoiling, RNA secondary structure formation and prediction. The theoretical

methods used in these studies include generating functions, path integrals, Green equa-

tions, and Monte Carlo simulations. These methods were detailedly demonstrated. Here we

summarize the main results of this chapter.

DNA thermal denaturation and force-induced unzipping were discussed in § II. Three

different kinds of models were mentioned, namely the de Gennes-Peyrard-Bishop model, the

Montanari-Mézard model, and the Poland-Scheraga model. One main conclusion is that

the cooperativity of the DNA denaturation transition is largely due to the short-ranged

base-pair stacking potential. It was also demonstrated that, measuring the force-extension

response curves of DNA unzipping is unlikely to probe DNA sequence information down to

the single nucleotide resolution.

RNA secondary structure transition was studied in § III. The elastic properties of random-

sequence RNA and weakly-designed RNA were investigated, as well as the glassy phase

transition in RNA secondary structures. It was demonstrated that the base-pair stacking

interactions could stabilize the structure of RNA and make the RNA hairpin-coil transition

a highly co-operative process.

Electrostatic interactions in RNA polymers were quantitatively accounted. The idea of

using single-molecule force-extension measurement to identify the secondary structure of

RNA was also reviewed in § III.

Following a short section (§ IV) on the entropic elasticity of DNA, § V investigated the

over-stretching transition of double-stranded DNA. A double-stranded polymer model was

mentioned. The highly co-operative over-stretching transition in DNA is closely related the

short-ranged nature of DNA base-pair stacking interactions.

The last section (§ VI) focused on the behavior of a supercoiled and stretched DNA

polymer. It was demonstrated that the double-stranded polymer model of § V is able to

quantitatively explain the asymmetric elasticity of negatively and positively supercoiled

DNA chains. It was also suggested that, under the action of an external force, a negatively

79



supercoiled DNA might be in a left-handed Z-form configuration.

The mechanical property of DNA directly influences its biological functions. This chapter

demonstrated that many of the elastic properties of DNA could be understood by taking

into account the particular structure of DNA as a double-stranded, base-pair stacked, helical

macromolecule. We should emphasize here that the short-ranged base-pair stacking interac-

tion is very important to understand the mechanical property of DNA. On the one hand, the

base-pair stacking interaction makes DNA double-helix considerably stable to small environ-

mental variations; on the other hand, due to this short-ranged interaction, dramatic, abrupt,

and reversible structural transitions of DNA could be achieved. This later property may be

quite important for a biological organism to survive dramatic environmental changes.

The structure and elasticity of DNA also influences its interaction with proteins. Hope-

fully in the near future the interactions between DNA and various proteins will also be

thoroughly interpreted.
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Appendix: Path Integral method in Polymer statistical physics

In § IV we have used path integral and green equation technique in studying the elastic

property of DNA. To make this review self-contained, in this appendix we review some

basic ideas on the application of path integral method to the study of polymeric systems

[147, 159, 213–215].

Consider a polymeric string, and suppose its total “arclength” is L, and along each

arclength point s one can define a n-dimensional “vector” r(s) to describe the polymer’s

local state at this point. (For example, in the case of a flexible Gaussian chain, r is a three-

dimensional position vector; in the case of a semiflexible chain such as the wormlike chain

[158, 161], r is the unit tangent vector of the polymer and is two-dimensional.) We further

assume that the energy density (per unit arclength) of the polymer can be written as the

following general form:

ρe(r, s) =
m

2
(
dr

ds
)2 + A(r)·dr

ds
+ V (r), (149)

where V (r) is a scalar field and A(r) is a vectorial field. The total partition function of the

system is expressed by the following integration:

Ξ(L) =
∫ ∫

drfφf(rf)G(rf,L; ri, 0)φi(ri)dri, (150)

where φi(r) and φf(r) are, respectively, the probability distributions of the vector r at the

initial (s = 0) and final (s = L) arclength point; G(r, s; r′, s′) is called the Green function,

it is defined in the following way:

G(r, s; r′, s′) =
∫ r

r′
D[r′′(s)] exp[−β

∫ s

s′
ds′′ρe(r

′′, s′′)], (151)

where integration is carried over all possible configurations of r′′, and β = 1/kBT is the

Boltzmann coefficient. It can be verified that the Green function defined above satisfies the

following relation:

G(r, s; r′, s′) =
∫

dr′′G(r, s; r′′, s′′)G(r′′, s′′; r′, s′), (s′ < s′′ < s). (152)

The total free energy of the system is then expressed as

F = −kBT ln Ξ. (153)
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To calculate the total partition function Ξ, we define an auxiliary function Ψ(r, s) and

call it the wave function because of its similarity with the true wave function of quantum

systems. Suppose the value of Ψ at arclength point s is related to its value at s′ through

the following formula such that

Ψ(r, s) =
∫

dr′G(r, s; r′, s′)Ψ(r′, s′), (s > s′). (154)

(In fact, the choice of the wave function Ψ(r, s) is not limited. Any function determined by

an integration of the form of Eq. (154) can be viewed as a wave function.)

We can derive from Eqs. (149), (151), and (154) that:

∂Ψ(r, s)

∂s
=

[

∇2
r

2mβ
− βV (r) +

A(r) · ∇r

m
+

∇r · A(r)

2m
+
βA2(r)

2m

]

Ψ(r, s) = ĤΨ(r, s). (155)

Equation (155) is called the Green equation, it is very similar with the Schrödinger equation

of quantum mechanics. However, there is an important difference. In the case of A(r) 6= 0,

the operator Ĥ in Eq. (155) is not Hermitian. Therefore, in this case the matrix form of the

operator Ĥ may not be diagonalized by unitary matrix.

Denote the eigenvalues and the right-eigenfunctions of Eq. (155) as −gi and |i〉 = Φi(r)

(i = 0, 1, · · ·), respectively. Then it is easy to know, from the approach of quantum mechan-

ics, that

Ψ(s) =
∑

i

e−gi(s−s′)|i(s)〉〈i(s′)|Ψ(s′)〉, (156)

where 〈i| = χi(r) (i = 0, 1, · · ·) denote the left-eigenfunctions of Eq. (155), which satisfy the

following relation:

〈i|i′〉 =
∫

drχi(r)Φi′(r) = δi′

i .

In the case where Ĥ is Hermitian (i.e., A(r) = 0), then we can conclude that

χi(r) = Φ∗
i (r).

¿From Eqs. (150), (154), (155), and (156) we know that

Ξ(L) =
∫

dr
∫

dr′G(r, L; r′, s′)φf(r)φi(r
′) =

∑

i

〈φf |i〉〈i|φi〉e−giL

= e−g0L〈φf |0〉〈0|φi〉 (for L� 1/(g1 − g0)). (157)

Consequently, for long polymer chains the total free energy density is just expressed as

F/L = kBTg0, (158)
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and any quantity of interest can then be calculated by differentiation of F . For example,

the average extension of a polymer under external force field f can be calculated as 〈Z〉 =

∂F/∂f = LkBT∂g0/∂f .

We continue to discuss another very important quantity, the distribution probability of

r at arclength s, P (r, s). This probability is calculated from the following expression:

P (r, s) =

∫

drf

∫

driφf (rf)G(rf , L; r, s)G(r, s; ri, 0)φi(ri)
∫

drf

∫

driφf(rf)G(rf , L; ri, 0)φi(ri)
. (159)

Based on Eqs. (154) and (156) we can rewrite Eq. (159) in the following form:

P (r, s) =

∫

drf

∫

dri

∫

dr′φf(rf)G(rf , L; r′, s)δ(r′ − r)G(r, s; ri, 0)φi(ri)
∫

drf

∫

driφf(rf)G(rf , L; ri, 0)φi(ri)

=

∑

m

∑

n
〈φf |m〉〈n|φi〉χm(r)Φn(r) exp[−gm(L− s) − gns]

∑

m
〈φf |m〉〈m|φi〉 exp(−gmL)

(160)

For the most important case of 0 � s � L, Eq. (160) then gives that the probability

distribution of r is independent of arclength s, i.e.,

P (r, s) = χ0(r)Φ0(r) (for 0 � s� L). (161)

With the help of Eq. (161), the average value of a quantity which is a function of r can

be obtained. For example,

〈Q(s)〉 =
∫

drQ(r)P (r, s) =
∫

drχ0(r)Q(r)Φ0(r) = 〈0|Q|0〉, (162)

and

〈
∫ L

0
Q(r(s))ds〉 =

∫ L

0
〈Q(s)〉ds = L〈0|Q|0〉 (for L� 1/(g1 − g0)). (163)

Finally, we list the formula for calculating 〈B(r) · dr/ds〉, here B(r) is a given vectorial

field. The formula reads:

〈B(r) · dr
ds

〉 =
1

2
〈0|

[

r · (ĤB) − B · (Ĥr)
]

|0〉 (for L� 1/(g1 − g0)). (164)
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[88] A. Montanari and M. Mézard, Phys. Rev. Lett. 86, 2178 (2001).

[89] S. Lifson, J. Chem. Phys. 40, 3705 (1964).

[90] D. Poland and H. A. Scherage, J. Chem. Phys. 45, 1464 (1966).

88



[91] R. Bundschuh and T. Hwa, Phys. Rev. Lett. 83, 1479 (1999).

[92] H. Zhou, Y. Zhang, and Z.-C. Ou-Yang, Phys. Rev. Lett. 86, 356 (2001).

[93] H. Zhou and Y. Zhang, J. Chem. Phys. 114, 8694 (2001).

[94] V. M. Pavlov, J. L. Lyubchenko, A. S. Borovik, and Y. Lazurkin, Nucl. Acids. Res. 4, 4052

(1977).

[95] A. S. Borovik, Y. A. Kalambet, Y. L. Lyubchenko, V. T. Shitov, and E. Golovanov, Nucl.

Acids. Res. 8, 4165 (1980).

[96] A. Montrichok, G. Gruner, and G. Zocchi, Europhys. Lett. 62, 452 (2003).

[97] S. M. Bhattacharjee, J. Phys. A 33, L423 (2000).

[98] D. Marenduzzo, A. Trovato, and A. Maritan, Phys. Rev. E 64, 031901 (2001).

[99] I. Rouzina and V. A. Bloomfield, Biophys. J. 77, 3242 (1999).

[100] I. Rouzina and V. A. Bloomfield, Biophys. J. 77, 3252 (1999).

[101] M. E. Fisher, J. Chem. Phys. 45, 1469 (1966).

[102] M. S. Causo, B. Coluzzi, and P. Grassberger, Phys. Rev. E 62, 3958 (2000).

[103] E. Carlon, E. Orlandini, and A. L. Stella, Phys. Rev. Lett. 88, 198101 (2002).

[104] T. Garel, C. Monthus, and H. Orland, Eurphys. Lett. 55, 132 (2001).

[105] S. M. Bhattacharjee, Europhys. Lett. 57, 772 (2002).

[106] M. Baiesi, E. Carlon, E. Orlandini, and A. L. Stella, Eur. Phys. J. B 29, 129 (2002).

[107] Y. Kafri, D. Mukamel, and L. Peliti, Phys. Rev. Lett. 85, 4988 (2000).

[108] Y. Kafri, D. Mukamel, and L. Peliti, Eur. Phys. J. B 27, 135 (2002).

[109] B. Duplantier, Phys. Rev. Lett. 57, 941 (1986).

[110] B. Duplantier, J. Stat. Phys. 54, 581 (1989).
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TABLE I: The effective linear charge density ν (in unit of e/nm) of DNA molecules, calculated

from the comparison of the Poisson-Boltzmann solution and the modified Bessel function (see text).

α and β are the parameters of Eq. (93) fitted to the data of ν. [Y. Zhang, H. Zhou, and Z.-c.

Ou-Yang, Biophys. J. 81, 1133-1143 (2001). Copyright (2001) by the Biophysical Society of USA.]

Ionic Concentration ssDNA dsDNA

c0 (M) NaCl MgCl2 NaCl MgCl2

1. 4.18 9.50 91.85 993.16

0.75 3.50 6.74 56.15 410.67

0.5 2.84 4.51 31.22 144.10

0.2 2.04 2.31 11.73 24.52

0.15 1.89 1.97 9.29 16.22

0.1 1.73 1.64 7.02 9.82

0.05 1.53 1.27 4.78 4.98

0.02 1.37 0.99 3.29 2.66

0.01 1.29 0.86 2.66 1.91

0.005 1.23 0.78 2.26 1.45

0.002 1.17 0.71 1.93 1.13

0.001 1.14 0.67 1.76 1.00

α 0.0338 -0.577 0.300 -0.505

β 1.36 2.80 4.18 7.33
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TABLE II: The base-pair stacking energy of ten possible DNA base-pair stacking patterns based

on quantum chemical calculations [174]. In the table, the arrows are pointing from the 5 ′-end to

3′-end of DNA. The stacking energy is in units of kBT with T = 300 K.

DNA dimer stacking energy DNA dimer stacking energy
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TABLE III: Structural parameters for the suggested torque-induced left-handed DNA configura-

tions at different external force. d, the average rise per base-pair; num, the number of base-pairs

per turn of helix. The last row contains the corresponding values for Z-form DNA. [H. Zhou, Y.

Zhang, and Z.-C. Ou-Yang, Phys. Rev. E 62, 1045-1058 (2000). Copyright (2000) by the American

Physical Society.]

force (pN) torque (kBT ) d (Å) pitch (Å) num

1.3 -5.0 3.59 41.20 11.48

1.0 -5.0 3.57 40.93 11.44

1.3 -4.0 3.83 46.76 12.19

1.0 -4.0 3.82 46.38 12.15

Z-form: 3.8 45.6 12
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FIG. 1: Schematic representation of DNA. The two strands of DNA runs in opposite direction

(indicated by the arrows along the phosphate-sugar back-bones), and are bound together by

many G-C and A-T base-pairs. The two strands fold into a double-helix because of base-pair

stacking interactions. In the relaxed state, each pitch of the double-helix contains 10.5 base-

pairs and the vertical distance between two neighboring base-pairs is 0.34 nm. [Adapted from

http://ns2.d20.co.edu/kadets/lundberg/dna.html].

FIG. 2: Clover leaf model of the base-pairing pattern of a tRNA molecule. Filled dots denote

nucleotides and thin lines denote base-pairs.

FIG. 3: Phase diagram for a double-stranded biopolymer with an asymmetric potential. This

system shows second order thermal melting behavior at zero force. Inset shows how the threshold

force for melting changes with temperature T .

FIG. 4: DNA denaturation and unzipping based on the Montanari-Mézard model. Each DNA

strand is modeled as a deformable freely-jointed chain, there is on-site short-range attractive in-

teraction between the i-th pair of bases if their separation is less than distance a. (Left) DNA

thermal melting (denaturation), with the formation of denaturation bubbles. (Right) An external

force may act on the last base-pairs to pull the the two strands apart (unzipping).

FIG. 5: The melting curves of a hypothetical DNA made of 50% G-C base-pairs and 50% A-T

base-pairs. The experimental melting temperature is about 90 ◦C. The parameters used in the

calculations are: a = 4.194 Å, b = 1.7 nm, l0 = 1.105 Å. In these different curves, the base-pairing

energy ε0 and base-pair stacking energy εs are set to (ε0, εs) = (1.247, 10.040), (2.494, 8.768),

(3.742, 7.483), (4.989, 6.178), (7.483, 3.455), and (9.977, 0.361) from top to bottom (here the energy

is in units of kJ/mol).

FIG. 6: The phase-diagrams of a model DNA molecule made of 50% G-C base-pairs and 50% A-T

base-pairs. In the calculation, ε0 = 3.742 kJ/mol and εs = 7.483 kJ/mol (for the dashed curve)

and εs = δHs − TδSs (for the solid curve), where δHs = 72.893 kJ/mol and δSs = 0.180 kJ/(mol

K). All the other parameters are the same as those listed in the caption of Fig. (5).

FIG. 7: A schematic configuration of a DNA polymer in the Poland-Scheraga model. In this

example, there are s = 3 denaturation bubbles (length j1, j2, and j3) and s + 1 = 4 double-helical

segments (length i0, i1, i2, and i3). 96



FIG. 8: A dsDNA of 2(N +n) bases, with a loop of 2n bases embedded in the middle. When both

N and n are very large, the stem segments AB and CD and the two strands in the loop BCB could

be regarded as flexible chains.

FIG. 9: Schematic representation of the basic experimental setup of Essevaz-Roulet et al. [37–39].

The two strands on one end of a λ-DNA was attached to a movable glass slide and to a micro-

needle. The strand separation process was followed by moving the glass slide with constant velocity

and recording the time-dependent distance x between the glass slide and the micro-needle and the

bending extent x0 of the micro-needle.

FIG. 10: The energy landscape when the total displacement of the system is fixed at 18.1 µm (solid

curve) and at 18.2 µm (dotted curve).

FIG. 11: The free energy cost (in units of kBT ) due to unzipping n base-pairs of a random-sequence

DNA. In drawing the figure, δε0 of Eq. (46) is set to 0.05 kBT and σ of Eq. (47) is set to 0.5 kBT .

FIG. 12: Typical structural fluctuations of a poly(GC) hairpin of 28 nucleotide bases. The external

force is fixed at f = 15.95pN. The position of the opening fork as a function of time is shown.

FIG. 13: The life time distribution for a poly(GC) hairpin in the open configurations. The distri-

bution could be well fitted by an exponential distribution (the dotted line) with mean reciprocal

life time of 4.94 ± 0.10 s−1.

FIG. 14: The life time distribution for a poly(GC) hairpin in the closed configurations. The

distribution is fitted with an exponential distribution with mean reciprocal life time of 3.19 ± 0.07

s−1.

FIG. 15: Hartree diagram on the secondary structure of RNA polymer. The thick lines such as

{i, j} denote the partition function of the RNA segment from base i to base j, the thin segments

denote a single nucleotide monomer, and the dotted lines denote base-pairing interactions.
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FIG. 16: Force extension curve of random-sequence RNA. The experimental data come from Ref.

[2] (pluses) and Ref. [34] (squares), and the ionic concentration is 5 mM Mg2+ and 50 mM Na+.

The theoretical parameters are a = 4.194 Å, b = 1.7 nm, l0 = 1.105 Å, T = 300 K, ε0 = 7.482

kJ/mol. In the figure, γ = (4πa3/3b3)(eβε0 − 1) and J characterize the average base-pair stacking

interaction strength. [H. Zhou and Y. Zhang, J. Chem. Phys. 114, 8694 (2001). Copyright (2001)

by the American Institute of Physics.]

FIG. 17: Phase-diagram of a weakly-designed RNA polymer. The system has three phases, hair-

pin, molten, and stretched-coil. The hairpin-coil phase-transition is first-order (solid line), while

hairpin-molten and molten-coil transitions are both second-order (dotted line and dashed line).

The theoretical parameters are set to: a = 0.4194 nm, b = 1.7 nm, T0 = 300 K, ε0 = 3.0 kBT0,

ε1 = 3.6 kBT0.

FIG. 18: (A) Schematic representation of a weakly designed RNA with the last two bases forming

a base-pair. (B) Schematic representation of a weakly designed RNA with the last two bases does

not form a base-pair.

FIG. 19: Force-extension relationship of a designed RNA polymer at different temperatures. When

temperature is lower than Tc = 318.881K, stretching RNA cause a first-order hairpin-stretched coil

phase-transition. Therefore there is a force-plateau in each force curve. When temperature is higher

than Tc, stretching cause a second-order The values of the theoretical parameters are listed in the

caption of Fig. 17.

FIG. 20: Electrostatic potential of ssDNA cylinder versus the radial distance from the cylinder

axis in the solutions of 2 mM NaCl and 5 mM MgCl2. The solid and dashed curves are the

numerical solutions of Poisson-Boltzmann equation (P-B); the dotted and dashed-dotted denote

corresponding Debye-Huckel approximations (G-H) with effective linear charge density ν along the

axis listed in Table I. [Y. Zhang, H. Zhou, and Z.-C. Ou-Yang, Biophys. J. 81, 1133-1143 (2001).

Copyright (2001) by the Biophysical Society of USA.]
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FIG. 21: Extension of ssDNA molecules normalized by the contour length of an equivalent dsDNA

molecule observed in 10 mM PB. Solid circles are from Dessinges et al. [141], where a physico-

chemical treatment has been employed on the molecule for the propose of suppressing the pairing

interactions of the complementary bases; open circles are from Rief et al., which was pulled with

an AFM at high force [47]. The continuous line is the result of a numerical simulation of the model

described in Eq. (94) with Y = 120 kBT/nm2. To fit the results at high forces (F > 70 pN), a

nonlinear (quartic elastic term with Y2 = 400 kBT/nm4 was added. The dashed line is the predic-

tions of the eFJC model without electrostatic force included. [Adapted from M.-N. Dessinges, B.

Maier, Y. Zhang, M. Peliti, D. Bensimon, and V. Croquette, Phys. Rev. Lett. 89, 248102 (2002).

Copyright (2002) by the American Physical Society.]

FIG. 22: Stretching of a single ssDNA charomid of extension 5.7 µm in 1mM phosphate buffer

(PB) (triangle), 10mM PB (square), and 0.5mM Mg++ (circle). Data are taken from [141]. The

continuous curves are the results of Monte Carlo simulations of eFJC model [140] with a node-

pairing strength of VP = 4.6 kBT . [Adapted from M.-N. Dessinges, B. Maier, Y. Zhang, M. Peliti,

D. Bensimon, and V. Croquette, Phys. Rev. Lett. 89, 248102 (2002). Copyright (2002) by the

American Physical Society.]

FIG. 23: Stretching of two different ssDNA molecules: A 50% GC-rich charomid (solid circle) and

a 30% GC-rich pX∆II (open circle) in 10 mM Tris buffer [141]. The continuous curves are the

results of MC simulations of eFJC model plus a pair potential with VP = 4.6 kBT for the charomid

and VP = 3.8 kBT for pX∆II. [Adapted from M.-N. Dessinges, B. Maier, Y. Zhang, M. Peliti,

D. Bensimon, and V. Croquette, Phys. Rev. Lett. 89, 248102 (2002). Copyright (2002) by the

American Physical Society.]

FIG. 24: Typical conformations of ssDNA chains with random sequence (left) and designed poly(A-

T) sequence (right) in 150 mM NaCl solution stretched at different external forces, which are

produced in the Monte Carlo simulation of 60 nodes. The fictitious bases and backbone are

expressed by green nodes and lines, with the nodes of two ends denoted by two bigger red globes.

The hydrogen bonds of base pairs are denoted by magenta short lines. [Y. Zhang, H. Zhou, and

Z.-c. Ou-Yang, Biophys. J. 81, 1133-1143 (2001). Copyright (2001) by the Biophysical Society of

USA.]
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FIG. 25: Stretching of designed poly(A-T) sequence (a) and poly(dG-dC) sequence (b). The data

are taken from [47]; the lines are the Monte Carlo simulations of an eFJC model with base-pairing

and base-stacking potentials. [Y. Zhang, H. Zhou, and Z.-c. Ou-Yang, Biophys. J. 81, 1133-1143

(2001). Copyright (2001) by the Biophysical Society of USA.]

FIG. 26: An schematic RNA configuration with two helical segments and one pseudo-knot.

FIG. 27: (a) Simulated force-extension curve for a group I intron (solid line) and that for a

homogeneous RNA chain (dashed line). The native structure of the intron sequence is also shown.

(b) The force-extension curve for a DNA hairpin of random sequence (solid line) and that of a

homogeneous DNA hairpin (dashed line). (c) Mean number of external stems for the group I

intron. [U. Gerland, R. Bundschuh, and T. Hwa, Biophys. J. 81, 1324-1332 (2001). Copyright

(2001) by the Biophysical Society of USA.]

FIG. 28: (A) Compensation effect in RNA unfolding. One end of a RNA chain is fixed and the

other end is pulled with a stiff force lever. At extension X, hairpin with index 1 is opened; at

a slightly increased extension X + δX, hairpin with index 5 is also destroyed, which leads to a

transient drop in the pulling force. This drop in pulling force makes it favorable for hairpin 1 to

be closed again, resulting to an increase in the pulling force. This compensation effect partially

accounts for the smooth behavior of force-extension curves in RNA pulling experiment. (B) To

use pulling experiment to explore the native structure of a RNA chain, Gerland and co-workers

[157] suggested the use of a nano-pore. Only single-stranded RNA segment could pass through

the nano-pore. When applied with a external force F , hairpin 1 will first be opened, followed by

hairpin 2, and then hairpin 3 and so on. Because the hairpins break in a sequential order, from

the recorded force-extension curve, the secondary structure of RNA could be inferred.

FIG. 29: Typical simulated force-extension curves for pulling a RNA polymer through a nano-

pore. [Figure reproduced from U. Gerland, R. Bundschuh, and T. Hwa, e-print: cond-mat/0306126

(2003), with permission.]
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FIG. 30: The force-extension curve for a wormlike-chain model and the comparison with those

of the Gaussian model and the freely-jointed-chain model. The extension is in units of the total

contour length (for the case of Gaussian polymer, it is in units of Nb, where N is the number of

bonds). The model parameters is T = 300 K and `p = 53.0 nm (correspondingly, b = 106.0 nm).

The variational curve is calculated from Eq. (104) and the interpolation curve is calculated from

Eq. (112). (A) linear-logarithmic scale and (B) linear-linear scale.

FIG. 31: Theoretical force-extension profile of DNA based on Eq. (116). In the calculation, 4E

is set to 8.4 kJ/mol per nucleotide pair as in Ref. [19] and the other parameters are given in

the main text. The cooperation factor ω is set to ω = 15.0 kJ/mol (solid line), ω = 10.0 kJ/mol

(dashed line), ω = 5.0 kJ/mol (dotted line), and ω = 1.0 kJ/mol (dot-dashed line).

FIG. 32: The double-stranded DNA model of Zhou et al. [28]. DNA is modeled as two inextensible

worm-like chain winding along a common central axis. The two strands are bound together by

many rigid rods which mimic base-pairs.

FIG. 33: Force-extension relation of DNA. Experimental data is from Fig. 2A of Ref. [19].

Theoretical curve is obtained by the following considerations: (i) `p = 1.5 nm and ε = 14.0kBT ;

(ii) `∗p = 53.0/2〈cos ϕ〉f=0 nm, r0 = 0.34/〈cos ϕ〉f=0 nm and R = (0.34 × 10.5/2π)〈tan ϕ〉f=0 nm;

(iii) adjust the value of ϕ0 to fit the data. For each ϕ0, the value of 〈cos ϕ〉f=0 is obtained self-

consistently. The present curve is drawn with ϕ0 = 62.0◦ (in close consistence with the structural

property of DNA), and 〈cos ϕ〉f=0 is determined to be 0.573840. DNA extension is scaled with its

B-form contour length L〈cos ϕ〉f=0. [H. Zhou, Y. Zhang, and Z.-C. Ou-Yang, Phys. Rev. Lett.

82, 4560-4563 (1999). Copyright (1999) by The American Physical Society.]

FIG. 34: Low-force elastic behavior of DNA. Experimental data is from Fig. 5B of Ref. [1], the

dotted curve is obtained for a wormlike chain with bending persistence length of 53.0 nm and the

parameters for the solid curve are the same as those in Fig. 33. [H. Zhou, Y. Zhang, and Z.-C.

Ou-Yang, Phys. Rev. Lett. 82, 4560-4563 (1999). Copyright (1999) by The American Physical

Society.]

101



FIG. 35: Extension vs supercoiling relations at fixed pulling forces for torsionally constrained DNA.

The parameters for the curves are the same as Fig. 33 and experimental data is from Fig. 3 of

Ref. [20] (symbols). [H. Zhou, Y. Zhang, and Z.-C. Ou-Yang, Phys. Rev. Lett. 82, 4560-4563

(1999). Copyright (1999) by the American Physical Society.]

FIG. 36: A 3-segment configuration of discrete DNA chain in Monte Carlo simulation. [Y. Zhang,

H. Zhou, and Z.-C. Ou-Yang, Biophys. J. 78, 1979-1987 (2000). Copyright (2000) by the Biophys-

ical Society of USA.]

FIG. 37: The bending rigidity constant α of a discrete wormlike chain as function of the number

of segments within one Kuhn length m = lkuhn/b. The circle points denote the result calculated

from Eqs. (144) and (145); the solid line from direct discretization of Eq. (126).

FIG. 38: Movements of dsDNA chain during Monte Carlo simulations. The current conformation

of the DNA central axis is shown by the solid lines and the trial conformations by dashed lines. (a)

The folding angle θi in the ith segment is changed into θi + λ1. All segments between ith vertex

and the free end are translated by the distance of |∆si−∆s′i|. (b) A portion of the chain is rotated

by an angle of λ2 around the axis connecting the two ends of rotated chain. (c) The segments

from a randomly chosen vertex to the free end are rotated by an angle λ3 around an arbitrary

orientation axis that passes the chosen vertex. [Y. Zhang, H. Zhou, and Z.-C. Ou-Yang, Biophys.

J. 78, 1979-1987 (2000). Copyright (2000) by the Biophysical Society of USA.]
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FIG. 39: The schematic diagram to calculate link number in our simulations. (a). For a linear

supercoiled DNA chain with one end attached to a microscope slide and with the other end attached

to a magnetic bead, when the orientation of the bead is fixed and the DNA chain is forbidden to go

round the bead, the number of times for two strands to interwind each other, the linking number of

the linear DNA (Lkl), is a topological constant. (b). The DNA double helix is stretched to a fully

extended form while the orientation of bead keeps unchanged. The link number of linear DNA

chain is equal to the twist number, i.e. Lkl = Twl. (c). Three long flat ribbons are connected to the

two ends of the linear twisted DNA of (b). The link number of the new double helix circle is equal

to that of linear DNA chain, i.e. Lkc = Twc = Twl = Lkl since the writhe of the rectangle loop is

0. (d). The DNA circle in (c) can be deformed into a new circle, one part of which has the same

steric structure as the linear supercoiled DNA chain in (a). So by adding three straight ribbons,

the link number of linear double helix DNA can be obtained by calculating the link number of the

new DNA circle, i.e. Lkl = Lkc = Tw + Wr. [Y. Zhang, H. Zhou, and Z.-C. Ou-Yang, Biophys.

J. 78, 1979-1987 (2000). Copyright (2000) by the Biophysical Society of USA.]

FIG. 40: Relative extension versus supercoiling degree of DNA polymer for three typical stretch

forces. Open points denote the experimental data [22], and solid points the results of Monte Carlo

simulation of the discrete dsDNA model [206]. The vertical bars of the solid points signify the

statistic error of the simulations, and the horizontal ones denote the bin-width that we partition

the phase space of supercoiling degree. The solid lines connect the solid points to guide the eye.

[Y. Zhang, H. Zhou, and Z.-C. Ou-Yang, Biophys. J. 78, 1979-1987 (2000). Copyright (2000) by

the Biophysical Society of USA.]
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