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ABSTRACT

We developed LOMETS, a local threading
meta-server, for quick and automated predictions
of protein tertiary structures and spatial constraints.
Nine state-of-the-art threading programs are
installed and run in a local computer cluster,
which ensure the quick generation of initial thread-
ing alignments compared with traditional remote-
server-based meta-servers. Consensus models
are generated from the top predictions of the
component-threading servers, which are at least
7% more accurate than the best individual servers
based on TM-score at a t-test significance level
of 0.1%. Moreover, side-chain and C-alpha (Ca)
contacts of 42 and 61% accuracy respectively, as
well as long- and short-range distant maps,
are automatically constructed from the threading
alignments. These data can be easily used as
constraints to guide the ab initio procedures such
as TASSER for further protein tertiary structure
modeling. The LOMETS server is freely available
to the academic community at http://zhang.bioinfo
rmatics.ku.edu/LOMETS.

INTRODUCTION

The meta-server technique represents one of the major
progresses in the field of protein tertiary structure
prediction during recent years (1–4). It generates 3D
structure predictions by taking the consensus models from
a variety of individual (mainly threading/fold-recognition)
servers. Various benchmarking and blind test experiments
demonstrate that the consensus meta-server predictions
outperform the best individual threading server (5,6).

There are, however, several drawbacks in the current
meta-servers. First, all the meta-servers, including
3D-Jury (2) and GeneSilico (4), take the initial threading
inputs from remote computer servers installed in other
laboratories. Because of the differences in the available
computer resources among different laboratories,

it is difficult to quickly collect all the threading results
from the individual servers, which influences its usefulness
in the large-scale protein structure prediction (7,8).
Especially, some remote individual servers can be
occasionally shut down or become not available. In the
3D-Jury meta-server, for example, there was only one
server from FFAS03 (9) that was available during the
CASP7 season. The absence of sufficient initial threading
inputs will influence the performance of the final
meta-server results.
The second drawback of the current meta-servers is the

instability of the algorithms of the remote servers. To
achieve the best performance, the meta-servers need to
balance various cutoff parameters for the selection and
combination of the final models. This requires careful
tuning and training of the meta-server algorithms based
on all the individual servers. However, the inconsistent
updating and modifications of the remote individual
servers make the development of a steady and robust
meta-server algorithm difficult.
In this work, we developed a new meta-threading-

server, LOMETS, where all nine individual threading
servers are installed locally. This will allow us to control
and tune our meta-server algorithms in a consistent
manner, and make the users able to obtain the compre-
hensive predictions of all servers quickly. In addition to
the construction of the best possible 3D models, the
LOMETS server also provides the Ca and side-chain
contact and distance map predictions, combined from all
threading alignments. These constraints can be used to
guide the structure construction procedures such as
MODELLER (10), ROSETTA (11) and TASSER (12)
for generating protein tertiary models.

METHODS

Component threading programs in LOMETS

LOMETS server takes predictions from nine different
servers that represent a diverse set of state-of-the-art
threading algorithms, i.e. FUGUE (13), HHSEARCH
(14), PROSPECT2 (15), SAM-T02 (16), SPARKS2 (17),
SP3 (18), PAINT, PPA-I and PPA-II. The first six
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programs were copied from other laboratories and the
last three developed in our own lab. All the nine
servers are installed and run in our local computer
cluster with template libraries updated every week.
The algorithms were selected to cover different threading
methods. Here, we give a brief introduction of the
methods.

FUGUE. FUGUE is developed at the Blindell Lab
(13). It aligns target sequence profile against template
structural profile collected from HOMSTRAD (19).
Dynamic programming algorithm (20) is used to find
the best sequence–structure match.
PROSPECT2. PROSPECT2 (15) is developed at the
Xu Lab, which uses a score function including residue
mutations, secondary structure propensity, solvent
accessibility and pairwise contact potential. A divide-
and-conquer searching approach (15) is exploited to
generate the global optimization of alignments.
SPARKS2 and SP3. Both methods have been devel-
oped at the Zhou lab (17,18). In SPARKS2 (17), the
authors exploit a sequence profile–profile alignment
combined with a single-body knowledge-based statis-
tical potential; in SP3 (18), they use a residue depth-
dependent structure profile to replace the single-body
potential in the SPARKS2. Both methods use dynamic
programming for the sequence–structure alignment
search.
SAM-T02. SAM-T02 (16) is developed at the Karplus
lab, which starts from the PSI-Blast sequence database
search (21). Based on the PSI-Blast multiple sequence
alignment, a hidden Markov model (HMM) will be
constructed in an iterative way, which is then exploited
to search through the whole template library by the
Viterbi algorithm (22).
HHSEARCH. HHSEARCH (14) is developed at the
Soding lab, which aligns the profile HMM of target
with the profile HMM of templates by maximizing the
log-sum-of-odds score.
PPA-I. PPA-I is a simple sequence Profile–Profile
Alignment approach combined with secondary struc-
ture matches. The alignment score between the ith
residue of the query sequence and the jth residue of
the template structure is defined as

Scoreði; jÞ ¼
X20

k¼1
Pqueryði; kÞLtemplateð j; kÞ

þ c1� squeryðiÞ; stemplateð jÞ
� �

þ c2;
1

where Pquery(i, k) is the frequency of the kth amino acid
at the ith position of the query sequence when a PSI-
BLAST search of the query sequence runs against a
non-redundant sequence database (ftp://ftp.ncbi.nih.-
gov/blast/db/nr.Z) with an E-value cutoff of 0.001;
Ltemplate( j, k) is the log-odds profile of template
sequence in the PSI-BLAST search; Squery(i) is the
secondary structure prediction from PSIPRED (23) for
the ith residue of the query sequence and Stemplate( j) the
secondary structure assignment by DSSP (24) for the jth
residue of the template; �(Squery(i),Stemplate( j)) equals to
1 if Squery(i)¼Stemplate( j) and 0 otherwise. The weight

factor c1 is an adjustable parameter for balancing the
profile term and the secondary structure matches; the
shift constant c2 is introduced to avoid the alignment
of unrelated regions in the local alignment (18).
The Needleman–Wunsch (20) dynamic programming
algorithm is used to find the best match between query
and template sequences. A position-dependent gap
penalty in the dynamic programming is employed: no
gap is allowed inside the secondary structure regions;
gap opening (go) and gap extension (ge) penalties apply
to other regions; ending gap-penalty is neglected. The
four parameters [i.e. c1, c2, in Equation (1), and go, ge of
gap penalties in dynamic programming] are decided by
trial and error on the ProSup benchmark (25).

PPA-II. PPA-II is also a profile–profile alignment
algorithm. The only difference from PPA-I is that
the sequence profiles in PPA-II are collected from
SAM-T99 sequence alignments (26). Here, we do not
use SAM-T02 because we found that PPA-II with
SAM-T99 sequence profile generates slightly better
alignments as judged by average TM-score. During the
construction of sequence profiles, Henikoff weights
(27) are used for re-weighting the redundant
sequences.
PAINT. PAINT is a PAirwise-Interaction-based
Threading algorithm similar to RAPTOR (28). There
are five terms in PAINT’s energy function which
account for environment fitness, residue mutation,
secondary structure match, pair-wise interactions and
gap penalty. A detailed description of the energy terms
and the PAINT algorithm can be found in the
Supplementary Data. Since the sequence–structure
alignment is defined by the integer coefficients (x’s)
of the energy function, the goal of the PAINT
threading is to identify the set of integer coefficients
which maximize the total alignment score of Equation
(S1). Under the constraint of Equations (S2–S5), x’s
can be solved by the established integer programming
programs of GLPK (http://www.gnu.org/software/
glpk). Since the computation of integer programming
is time-consuming for big proteins, we take only
a subset of template proteins which consist of top
10 templates from each of other eight threading
servers. The average CPU time for the alignment of
the 80 template proteins is around 5min. There are
two main differences of PAINT and RAPTOR
algorithm (28). For the identification of possible
alignment positions, only the alignment positions
with top 40% energy score are considered for the
purpose of reducing the chance of missing possible
alignment positions. Second, rather than using SVM
in RAPTOR, we have used a simple scaled score of
E/Lali for the ranking of alignments, where E is the
energy score and Lali is the number of aligned residues
after alignment.

Threading model selection

Models in LOMETS are selected from individual servers
purely based on consensus, i.e. the structure similarity of
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the considered model with other threading alignments.
For the best performance, 30 models are taken from
the top predictions of the nine servers sequentially from
PPA-I, SP3, PPA-II, SPARKS, PROSPECT, FUGUE,
HHSEARCH, PAINT and SAM-T02, where the order of
the servers are based on their performance on independent
test runs. The 30 models are taken as following: First,
select the first model of PPA-I and then the first model
from SP3. This procedure proceeds until all the first
models from nine servers are collected. Then, all the
second models from nine servers are collected in the same
order. The collection process proceeds and stops until
30 models have been reached. During the collection, the
templates of very short alignments, i.e. the number of
aligned residues is less than a quarter of the query
sequence length, are neglected. The consensus score of
each (ith) of the 30 models is calculated by the average
TM-score (29):

TM-scoreih i ¼
1

29

X29

j¼1

TM-scoreij: 2

We note that, when running the TM-score program
with modeli and modelj, the TM-score is by default
normalized by the length (LThr

j ) of the second model (i.e.
modelj). But in Equation (2) TM-scoreij should be
uniformly normalized by the query sequence length (L).
To do this, one can first run the TM-score program with
an option of ‘�d d0’ with d0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L� 15� 1:83

p
to obtain

TM-scoreijðL
thr
j Þ. The normalized TM-scoreij can be

then obtained by Lthr
j TM-scoreijðL

thr
j Þ=L. Here, purpose

of the option ‘�d d0’ in the TM-score program is to assign
the new-defined length scale of d0 to the Levitt–Gerstein
score (29).

Finally, the models are ranked based on TM-scoreih i,
i.e. the models with higher average TM-score to other
models are ranked higher.

Spatial constraints

For each protein, threading models are categorized as
‘good’ or ‘bad’ depending on whether the inherent Z-score
(the energy in standard deviation units relative to mean) of
the alignment is above or below a threshold Z-scorecut.
The threshold cutoff is determined by the minimization of
the false positive (high Z-score but with low TM-score)
and false negative rate (low Z-score but with high
TM-score) of each threading program based on an
independent benchmark set of 1489 non-redundant
proteins (12). For PPA-I, SP3, PPA-II, SPARKS2,
PROSPECT2, FUGUE, HHSEARCH, PAINT and
SAM-T02, the Z-scorecut are 8.2, 8.0, 7.0, 8.8, 4.0, 6.0,
11.0, 0.5 and 9.5, respectively. If the total number of
‘good’ models is more than nine (i.e. on average at least
one ‘good’ model from each server), the target is defined
as an ‘Easy’ target; if there is no ‘good’ model at all in all
the servers, the target is a ‘Hard’ target; otherwise, it is a
‘Medium’ target. For Easy/Medium/Hard targets,
N (¼20/30/50) highest confident models are selected
from the servers for the next constraint construction.
The ‘good’ models and then the ‘bad’ models are taken in

a sequential server order as mentioned above until
N models are selected. The logic for the decision of N is
the following: for ‘Easy’ targets where we have good
templates, about top two (good) templates on average
are taken from each program while including more
templates with bad quality will bring more noises for the
good templates. For the ‘Medium’ and ‘Hard’ targets
where we do not have good templates and constraints
overall, we will take more templates to enhance the
consensus information because there are usually some
partially correct substructures even in the low rank
templates which may be identified by the consensus
selections.
There are four types of spatial constraints that are

collected from the N selected threading alignments:

Side-chain contacts. A pair of side-chains is considered as
contact if the distance between the centers of mass in the
aligned templates is below an amino acid specific cutoff:

cutðA;BÞ ¼ dðA;BÞ þ 2:5�ðA;BÞ 3

Here d(A,B) was obtained by calculating the average
distance of side-chain centers of mass of the contacted
residues A and B with at least one pair of heavy atoms in
A and B54.5 Å in 6379 non-homologous PDB structures.
�(A,B) is the SD of d(A,B). The data of d(A,B)
and �(A,B) can be seen at our website http://zhang.
bioinformatics.ku.edu/LOMETS/sidechain_contact.txt.
In the side-chain contact file of LOMETS server, we list
the identities of all the contacts with contact order 55, as
well as the confidence score that is defined as the number
of occurrences of the contacts divided by the total number
of templates that have both residues aligned.

Ca contacts. The Ca-contact file lists the identity of all
predicted Ca pairs in contact with contact order 55 and
the confidence score. A pair of Cas is considered as
contact if the distance of Ca atoms is below 6 Å.
Long-range Ca distance map. This file contains the
Ca-distances between i and iþ j �10 residues
(i¼ 1, . . . ,L; j¼ 1,2, . . .), which are collected from the
top four templates.
Short-range Ca distance constraints. This file contains the
average Ca-distances of i and iþ j residues (i¼ 1, . . . ,L;
j¼ 2, . . . ,6), taken from all N templates. It includes only
local structure information and can be used for guiding
the protein-like secondary structure construction.

RESULTS

For the testing of the LOMETS server, we select
620 non-homologous proteins (525% sequence identity
with lengths from 50 to 600) from PDBSELECT
(2006 March) (30). A list of the 620 benchmark proteins
and the threading results of all nine programs are
available at http://zhang.bioinformatics.ku.edu/LOM
ETS/benchmark.html.
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Threading alignment and consensus selections

In Figure 1, we present the threading results of the nine
individual servers on the 620 benchmark proteins, where
all homologous templates with sequence identity to targets
430% have been removed from the template library. Since
all servers run locally, we could obtain the threading
results quickly and the average CPU time for one target is
less than 20min in our computer cluster when we run
them at nine nodes in parallel. There is an obvious
correlation between the TM-score and the Z-score of each
server. We also show the Z-score cutoff in each server in
the plot. If we use TM-score 50.5 (or50.5) to define a
correct (or wrong) threading model, the false negative and
false positive rates of the Z-score cutoffs are: 0.0444 and
0.0622 (for PPA-I), 0.0515 and 0.0282 (for SP3), 0.0359
and 0.0597 (for PPA-II), 0.0829 and 0.0045 (for
SPARKS2), 0.0602 and 0.0376 (for PROSPECT2),
0.0183 and 0.0447 (for FUGUE), 0.0339 and 0.0733 (for
HHSEARCH), 0.0219 and 0.0193 (for PAINT) and
0.0154 and 0.0831 (for SAM-T02).
In Table 1, we list the average TM-score, RMSD,

and alignment coverage of all threading programs on the
620 proteins. Below the values, we also list the average
TM-score and RMSD of the full-length models built by
MODELLER v8.2 (10), where external constraints from
LOMETS are incorporated. We found that MODELLER

generates slightly better results when using the LOMETS
spatial constraints than running MODELLER by default.
Based on the average TM-score, the improvement is
�0.8%. Except for the external constraint file,
MODELLER has an option to include multiple templates
where MODELLER extracts constraints from multiple
templates by itself. By trial and error, we found that for
‘Easy’ targets the MODELLER program using up to five
consensus templates (0.755TM-score51.0) as input works
the best. For ‘Medium’ and ‘Hard’ targets, the structures
of top templates are usually divergent and only one
template is exploited here. These full-length models built
by MODELLER are also provided at the LOMETS
server.

Since the lengths of MODELLER models are longer
than those of threading alignments, the average
TM-scores of the full-length MODELLER models are
relatively larger than the threading alignments although
the topology of the core regions are unchanged. The
increment of TM-score ranges from 2.9% (PPA-I) to
5.6% (PAINT) depending on the threading alignment
coverage. In general, the smaller the threading alignment
coverage is, the bigger increment the TM-score of
MODELLER models has, because more residues have
been added in the full-length models.

Although both MODELLER (10) and I-TASSER (31)
make use of consensus restraints from templates in their
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structure modeling, the structure improvement of
I-TASSER models on the templates is much higher.
Based on the recent CASP7 experiment, the average
TM-score of the models generated by I-TASSER
(‘Zhang-Server’) is 16.9% higher than that of the best
template (32). There may be two factors contributing to
the difference. First, the I-TASSER force field includes a
variety of knowledge-based, protein-sequence specific/
nonspecific potentials obtained from variant resources
(31), which has been optimized using structure decoys.
Second, the conformational space of MODELLER is
searched using a conjugated gradient algorithm, which is a
local minimization method. The advantage of the con-
jugated gradient method is the quick convergence to the
local minimum of an object function. But if the external
restraint is different from the initial templates, the method
does not guarantee the optimal satisfaction of all the
constraints. In contrast, the conformational space in
I-TASSER is searched by the parallel Monte Carlo
sampling method (33), the goal of which is to identify
the lowest free-energy state by global search. But the
Monte Carlo simulation of I-TASSER takes much longer
CPU time than MODELLER does. Since the major
purpose of the LOMETS server is to provide a quick
collection of the alignments and restraints from multiple
local threading servers, we do not include the I-TASSER
simulation here. A publicly available server of the
I-TASSER algorithm is provided separately at our
website: http://zhang.bioinformatics.ku.edu/I-TASSER.

At the bottom of Table 1, we show the result of
LOMETS consensus selections. The average TM-score of
the first model in LOMETS is 0.4287, �7% better than
the best individual server (PPA-I). This difference is
statistically significant, which is at a 0.1% significance
level based on the t-test. The TM-score of the best in top
five models of the LOMETS selection is shown at Column
3, which also outperforms the best individual server.
The higher TM-score of the LOMETS models demon-
strates a better balance of RMSD (Columns 4 and 5) and
alignment coverage (Columns 6 and 7) in comparison with
that of the individual servers.

As a control, we also downloaded the PCONS5,
the newest version of PCONS meta-server selection
program by Wallner and Elofsson (34), which combines
consensus analysis (by LGscore), structural evaluation
and inherent score of threading servers. The PCONS5
selection result is listed in the last row of Table 1.
The selection of PCONS5 is also better (�3%) than
the best individual server but not better than LOMETS.
This result seems to indicate that the consensus analysis,
which is the only fact adopted in LOMETS by TM-score
analysis, is the most robust factor of meta-server
selections.

Spatial constraint predictions

The effect of spatial constraints on the protein structure
modeling is a tradeoff of the prediction accuracy (Acc) and
the prediction coverage (Cov) (35). For the quantitative
evaluation of the Ca and side-chain contact predictions,
we define

Acc ¼
Ncorr

Npred
; Cov ¼

Npred

L
4

where Ncorr is the number of correctly predicted contacts
that are true contacts in native structures based on the
same distance cutoff of Equation (3), Npred is the number
of total predicted contacts and L is the length of target
sequence.
In Figure 2a, we show the accuracy of predicted

contacts versus relative occurrence frequencies with
which the contacts occurred in the models for the 620
testing proteins. Here relative occurrence frequency for a
contact is defined as N0/N, where N0 is the number of
templates having the contact and N (¼20/30/50) the total
number of the selected threading templates. It is worth
noting that accuracy in Figure 2a is non-cumulative, i.e. the
accuracy at frequency f is an average accuracy calculated in
[ f� 0.05, fþ 0.05]. As expected, the more often the
contacts occur, the more accurate the contacts are,
which indicate that the occurrence frequency can be
considered as a confidence score for the contact prediction.

Table 1. Summary of component-threading programs and the meta-server selections

Threading
servers
or meta-servers

TM-score of
threading alignments
(MODELLER models)

RMSD (Å) of
aligned residues
(MODELLER models)

Coveragea of
threading alignments

First model Best in top
five models

First model Best in top five models First model Best in top
five models

PPA-I 0.4001 (0.4117) 0.4389 (0.4531) 10.11 (16.66) 9.13 (14.02) 0.831 0.846
SP3 0.3991 (0.4138) 0.4391 (0.4551) 10.50 (13.86) 9.62 (12.83) 0.858 0.867
PPA-II 0.3900 (0.4076) 0.4306 (0.4512) 10.72 (14.89) 9.40 (13.02) 0.837 0.847
SPARKS2 0.3855 (0.3973) 0.4283 (0.4441) 11.62 (13.60) 10.03 (12.23) 0.895 0.893
PROSPECT2 0.3793 (0.3914) 0.4245 (0.4384) 12.19 (13.01) 10.68 (12.02) 0.903 0.903
FUGUE 0.3580 (0.3721) 0.4038 (0.4173) 10.78 (19.26) 10.30 (15.82) 0.827 0.872
HHSEARCH 0.3635 (0.3827) 0.4016 (0.4224) 6.92 (22.38) 6.44 (19.04) 0.607 0.643
PAINT 0.3558 (0.3758) 0.4045 (0.4210) 10.35 (15.74) 9.86 (14.21) 0.735 0.786
SAM-T0 2 0.3402 (0.3575) 0.3798 (0.3971) 10.19 (21.75) 9.83 (17.53) 0.721 0.777

LOMETS 0.4287 (0.4434) 0.4481 (0.4669) 10.18 (10.99) 9.49 (10.61) 0.890 0.882
PCONS5 0.4117 (0.4272) 0.4434 (0.4628) 10.03 (15.39) 9.14 (13.67) 0.840 0.852

aCoverage¼ length of aligned residues/length of target sequence.
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In Figure 2b, we show how the prediction coverage is
reduced with increasing the relative occurrence frequency.
As demonstrated in our previous study (35), an

accuracy of side-chain contact constraints of 422% has
a positive effect on ab initio protein structure modeling.
This accuracy value corresponds to the occurrence
frequency of �0.18 in Figure 2a.
In Table 2, we list a summary of contact predictions of

Ca and side-chains by LOMETS and its component
threading programs with a confidence score 50.18
(Columns 2–5). Here the constraints of a single threading
program are collected from the top ten templates.
Obviously, the spatial constraints from consensus meta-
servers have much higher accuracy than those from
individual threading programs.
In Column 6, we present the average differences between

the native and the predicted distances for short-range
Ca distance maps of |i� j|57. Column 7 is the average

numbers of the predicted short-range distance constraints.
For long-range Ca distance map of |i� j|5 10, we generate
up to four predictions for each pair of residues. The eighth
column shows the average error of the best predicted
long-range Ca distance pairs and the ninth column gives
the average numbers of the long-range distance constraints.
Because of the differences in accuracy and coverage of
threading alignments, the accuracy and number of distance
constraints are different among the threading programs.
For example, HHSEARCH has the highest accuracy of
short-range distance constraints but the number of
short-range distance constraints is the lowest because it
has no alignment in many uncertain regions. For a balance
of the accuracy and number of distance constraints,
the consensus LOMETS has obviously the highest
accuracy with a reasonable number of distance constraints
on the distance maps.
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Figure 2. (a) Average accuracy of predicted Ca and side-chain contacts versus the relative occurrence frequency of the contacts in the LOMETS
threading templates. (b) Coverage of the predicted contacts versus the relative occurrence frequency. For each frequency value (f ), the data is
calculated as an average within the bin of [ f� 0.05, fþ 0.05].

Table 2. Summary of constraint predictions by LOMETS and the threading programs (with a relative occurrence frequency 50.18 for contact

predictions)

Threading servers or
meta-servers

Accasc Covbsc2 AcccC�
3 CovdC�

Dif eshort Nofshort Difglong Nohlong

PPA-I 0.249 1.655 0.431 0.696 1.178 600.5 3.732 1159.5
SP3 0.239 1.713 0.405 0.712 1.220 612.3 3.817 1196.6
PPA-II 0.253 1.527 0.410 0.661 1.216 591.3 3.894 1173.0
SPARKS2 0.223 1.654 0.375 0.659 1.356 629.4 3.804 1203.8
PROSPECT2 0.236 1.599 0.411 0.653 1.219 631.7 3.591 1198.0
FUGUE 0.221 1.185 0.379 0.438 1.586 625.3 3.649 1175.7
HHSEARCH 0.359 0.842 0.528 0.404 1.024 357.1 4.111 743.7
PAINT 0.248 1.174 0.372 0.529 1.267 527.3 4.138 1103.2
SAM-T02 0.227 1.164 0.350 0.534 1.597 520.0 3.923 1019.4

LOMETS 0.421 0.910 0.607 0.405 1.186 632.7 3.455 1193.0

aACCsc: Average accuracy for side-chain center of mass contact predictions.
bCovsc: Average coverage for side-chain center of mass contact predictions.
cAccCa: Average accuracy for Ca atom contact predictions.
dCovCa: Average coverage for Ca atom contact predictions.
eDifshort: Average difference (Å) between native and predicted short-range Ca-distances.
fNoshort: Average number of predicted short-range Ca-distances.
gDiflong: Average difference (Å) between native and the best predicted long-range Ca-distances.
hNolong: Average number of the best predicted long-range Ca-distances.
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The accuracy of the spatial constraints relies on the
quality of the threading templates. In Figure 3, we plot the
histogram of the prediction accuracy of constraints for
200 ‘Easy’, 120 ‘Medium’ and 300 ‘Hard’ proteins
separately. Obviously, for ‘Easy’ targets, the templates
have a better quality of alignments and the accuracy of
constraints is higher than that of ‘Medium’ and ‘Hard’
targets (Figure 3a and c). Moreover, the number of
aligned residues in ‘Easy’ targets is higher and the
alignments by different servers are more consistent,
which make the prediction coverage in ‘Easy’ targets
also higher than that of ‘Medium’ and ‘Hard’ targets
(Figure 3b). Here, because of the fixed small Ca distance
cutoff [56 Å as used in TASSER modeling (12)], the
coverage of Ca contacts is lower than that of side-chain
center contacts. The average accuracy of Ca is also higher
than that of side-chain centers which may be due to the
fact that side-chain rotamers have more structure
variations.

SUMMARY

We have developed a quick and automated meta-server,
LOMETS, for protein structure predictions. Different
from other on-line meta-servers, all nine component-
threading servers are installed and run in our local
computer cluster. The local installation of the servers
greatly speeds up the coherent generation of initial
threading alignments, as well as facilitates the develop-
ment of a robust and well-tuned meta-server algorithm.
The consensus prediction taken from LOMETS servers is
at least 7% more accurate than all the individual servers.
The difference is also statistically meaningful with a t-test
at 0.1% of significance level. The average CPU time for a
medium size protein (�200 residues) is less than 20min
when the programs are run in parallel on nine nodes of
our cluster.

In addition to the threading alignments, LOMETS also
provides highly accurate contact and distance predictions
for the query sequences. In our benchmark testing of 620
proteins, the average accuracy of side-chain center
contacts is 0.42 with coverage of 91%; the average
accuracy of Ca contacts is 0.61 with coverage of 41%.
The average errors of the best long- and short-range

distance map prediction are 3.5 and 1.2 Å, respectively.
These data can be easily used as constraints to guide the
tertiary structure modeling procedures such as
MODELLER (10), ROBETTA (11), TASSER (12,36).
Last but not the least, the template libraries of all nine

servers are kept updated every week. We have managed
to generate template files in our local computers for
SAM-T02, PROSPECT2, SPARKS2, SP3, PPA-I, PPA-II
and PAINT. The template library for FUGUE
and HHSEARCH are automatically downloaded
from the authors’ websites (i.e. ftp://merlin.bioc.cam.ac.
uk/pub/software/fugue/data and ftp://ftp.tuebingen.
mpg.de/pub/protevo/HHsearch/databases/pdb70_�.hhm.
tar.gz), which are also kept updated each week.
LOMETS will be open to add new and efficient

threading programs when they become available.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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