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Progress and challenges in protein structure prediction
Yang Zhang
Depending on whether similar structures are found in the PDB

library, the protein structure prediction can be categorized into

template-based modeling and free modeling. Although

threading is an efficient tool to detect the structural analogs, the

advancements in methodology development have come to a

steady state. Encouraging progress is observed in structure

refinement which aims at drawing template structures closer to

the native; this has been mainly driven by the use of multiple

structure templates and the development of hybrid knowledge-

based and physics-based force fields. For free modeling,

exciting examples have been witnessed in folding small

proteins to atomic resolutions. However, predicting structures

for proteins larger than 150 residues still remains a challenge,

with bottlenecks from both force field and conformational

search.
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Introduction
In recent years, despite many debates, structure genomics

is probably one of the most noteworthy efforts in protein

structure determination, which aims to obtain 3D models

of all proteins by an optimized combination of exper-

imental structure solution and computer-based structure

prediction [1,2�]. Two factors will dictate the success of

the structure genomics: experimental structure determi-

nation of optimally selected proteins and efficient com-

puter modeling algorithms. Based on about 40 000

structures in the PDB library (many are redundant) [3],

4 million models/fold-assignments can be obtained by a

simple combination of the PSI-BLAST search and the

comparative modeling technique [4�]. Development of

more sophisticated and automated computer modeling

approaches will dramatically enlarge the scope of model-

able proteins in the structure genomics project.
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The crucial problems/efforts in the field of protein struc-

ture prediction include: first, for the sequences of similar

structures in PDB (especially those of weakly/distant

homologous relation to the target), how to identify the

correct templates and how to refine the template structure

closer to the native; second, for the sequences without

appropriate templates, how to build models of correct

topology from scratch. The progress made along these

directions was assessed in the recent CASP7 experiment

[5] under the categories of template-based modeling

(TBM) and free modeling (FM). Here, I will review

the new progress and challenges in these directions.

Template-based modeling
The canonical procedure of the TBM consists of four

steps: first, finding known structures (templates) related

to the sequence to be modeled (target); second, aligning

the target sequence to the template structure; third,

building structural frameworks by copying the aligned

regions or by satisfying the spatial restraints from tem-

plates; fourth, constructing the unaligned loop regions

and adding side-chain atoms. The first two steps are

actually done in a single procedure called threading (or

fold recognition) [6,7] because the correct selection of

templates relies on the accurate alignment. Similarly, the

last two steps are performed simultaneously since the

atoms of the core and loop regions are in close interaction.

The existence of similar structures in the PDB is a

necessary precondition for the successful TBM. An

important question is how complete the current PDB

structure library is. Figure 1 shows a distribution of the

best templates found by the structural alignment [8] for

1413 representative single-domain proteins between 80

and 200 residues. Remarkably, even excluding the hom-

ologous templates of sequence identity >20%, all the

target proteins have at least one structural analog in the

PDB with a Ca root-mean-squared deviation (rmsd) to the

target <6 Å covering >70% regions. The average rmsd

and coverage are 2.96 Å and 86%, respectively. Zhang and

Skolnick [9��] recently showed that high-quality full-

length models could be built for all the protein targets

with an average rmsd 2.25 Å when using the best tem-

plates in the PDB. These data demonstrate that the

structural universe of the current PDB library is complete

essentially for solving the protein structure problem for at

least the single-domain proteins. However, most of the

target–template pairs at this level of sequence identity

(�15%) are difficult to identify by threading. In fact, after

excluding the templates of sequence identity>30%, only

two-third of the proteins could be assigned by the current

threading techniques to the templates of a correct top-
www.sciencedirect.com
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Figure 1

Structural superimposition results of 1413 representative single-domain

proteins on their analogs in the PDB library. The structural analogs are

searched by a sequence-independent structural-alignment tool, TM-

align [8], and ranked by TM-score (a structural similarity measure

balancing rmsd and coverage) [51]. All structural analogs with a

sequence identity >20% to the target are excluded. If the analog of

the highest TM-score has a coverage below 70%, the first structural

analog with the coverage >70% is presented. As a result, all the

structural analogs have a rmsd < 6 Å; 80% have a rmsd < 4 Å with

>75% regions covered.
ology with some alignment errors (average rmsd � 4 Å)

[10]. Thus, the role of the structure genomics initiative is

to bridge the target–template gap for the remaining one-

third proteins, as well as, to improve the alignment

accuracy of the two-third proteins by providing evolutio-

narily closer template proteins.

Template structure identification

Since its invention in the early 1990s [6,7], threading has

become one of the most active areas in proteins structure

prediction. Numerous algorithms have been developed

during the past 15 years for the purpose of identifying

structure templates from the PDB, which use techniques

including sequence profile–profile alignments (PPAs)

[10–13], structural profile alignments [14], hidden Mar-

kov models (HMMs) [15,16��], machine learning [17,18],

and others.

The sequence PPA is probably the most often-used and

robust threading approach. Instead of matching the single

sequences of target and template, PPA aligns a target

multiple sequence alignment (MSA) with a template

MSA. The alignment score in the PPA is usually calcu-

lated as a product of the amino-acid frequency at each
www.sciencedirect.com
position of the target MSA and the log-odds of the amino

acid in the template MSA, the profile [19]. There are

alternatives in calculating the PPA scores [20]. The

profile-alignment-based methods demonstrated advan-

tages in several recent blind tests [21,22,23�]. In Live-

Bench-8 [21], for example, all top four servers (BASD/

MASP/MBAS, SFST/STMP, FFAS03, and ORF2/

ORFS) were based on the sequence PPA. In CAFASP

[22] and the recent CASP Server Section [23�], several

sequence-profile-based methods were ranked at the top

of single-threading servers. Wu and Zhang [24] recently

showed that the accuracy of the sequence PPAs can be

further improved by about 5–6% by incorporating a

variety of additional structural information.

In CASP7, HHsearch [16��], a HMM–HMM alignment

method, stands out to be the best single-threading server.

The principle of the HMM–HMM alignments and the

PPAs is similar in that both try to perform a pair-wise

alignment of the target MSA with the template MSA.

Instead of representing the MSAs by sequence profiles,

HHsearch uses profile HMMs that can generate the

sequences with certain probabilities, given by the product

of amino-acid emission and insertion/deletion probabil-

ities. HHsearch aligns the target and template HMMs by

maximizing the probability that two models coemit the

same amino-acid sequence. In this way, amino-acid fre-

quencies and insertions and deletions of both HMMs are

matched up together in an optimum way [16��].

Although the average performance differs among differ-

ent algorithms, there is not a single-threading program

that can outperform other methods for every target. This

naturally leads to the prevalence of the so-called meta-

server [25,26�,27], which collects and combines results

from a set of different threading programs. There are two

ways to generate predictions in meta-servers. One is to

build a hybrid model by cut-and-paste of the selected

structural fragments from multiple templates [27]. The

combined model has on average larger coverage and

better topology than the best single template. One draw-

back is that often the hybrid models have nonphysical

local clashes between atoms. The second way is to select
the best model based on a variety of scoring functions or

machine-learning techniques, which emerges as a new

research topic called Model Quality Assessment Programs

(MQAPs) [28]. Despite considerable efforts in developing

various MQAP scores, the most robust score turns out to

be the one based on the structure consensus [29�], that is,

the best models are those simultaneously hit by various

threading algorithms. The idea behind the consensus

approach is simple because there are more ways for a

threading program to select a wrong template than a right

one. Therefore, the chances for multiple threading pro-

grams to make a common but wrong selection are much

lower than the chances to make a common and correct

selection.
Current Opinion in Structural Biology 2008, 18:342–348
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Table 1

Top 10 servers in CASP7 as ranked by the accumulative GDT-TS score

Servers Number

of targets

GDT-TS

score

Server type; URL address

Zhang-Server 124 76.04 Threading, refinement, and free modeling; http://zhang.bioinformatics.ku.edu/I-TASSER

HHpred2 124 71.94 HMM–HMM alignment (single-threading server); http://toolkit.tuebingen.mpg.de/hhpred

Pmodeller6 124 71.69 Meta-threading server; http://pcons.net

CIRCLE 124 71.09 Meta-threading server; http://www.pharm.kitasato-u.ac.jp/fams/fams.html

ROBETTA 123 70.87 Threading, refinement, and free modeling; http://robetta.org/submit.jsp

MetaTasser 124 70.77 Threading, refinement, and free modeling; http://cssb.biology.gatech.edu/skolnick/

webservice/MetaTASSER

RAPTOR-ACE 124 69.70 Meta-threading server; http://ttic.uchicago.edu/�jinbo/RAPTOR_form.htm

SP3 124 69.38 Profile–profile alignment (single-threading server); http://sparks.informatics.iupui.edu/hzhou/

anonymous-fold-sp3.html

beautshot 124 69.26 Meta-threading server; http://inub.cse.buffalo.edu/form.html

UNI-EID-expm 121 69.13 Profile–profile alignment (single-threading server); server not avaliable

Multiple servers from the same lab are represented by the highest rank one.
The meta-server predictors have dominated the server

predictions in previous experiments (e.g. CAFASP4 [28],

LiveBench-8 [21], and CASP6 [30]). In the recent CASP7

experiment [23�], however, Zhang-Server (an automated

server based on profile–profile threading and I-TASSER

structure refinement [31��]) clearly outperforms others

(including the meta-servers which include it as an input

[29�]). A list of the top 10 automated servers in the CASP7

experiment is shown in Table 1. This data on the one

hand highlight the challenge to the MQAP methods in

correctly ranking and selecting the best models; on the

other hand, the success of the composite threading plus

refinement servers (as Zhang-Server, ROBETTA, and

MetaTasser) demonstrates the advantage of structure

refinement in the TBM prediction.

Template structure refinement

The goal of the protein structure refinement is to draw the

templates closer to the native, which has proven to be an

extremely nontrivial problem. Until only a few years ago,

most of the TBM procedures either keep the templates

unchanged or drive the templates away from the native

structures [32,33].

Early efforts on template structure refinement have been

focused on the molecular dynamics (MD)-based atomic

simulations, which attempt to refine low-resolution

models by running the classic software such as AMBER

and CHARMM. Except for some isolated instances,

however, no systematic improvement was achieved

[34]. The failure of the MD-based structure refinements

seems contrary to the reported successes of the MD

potentials in discriminating the native from structural

decoys. Wroblewska and Skolnick [35��] recently showed

that the AMBER plus GB potential could only discrimi-

nate the native from roughly minimized TASSER struc-

ture decoys [36]. After a 2-ns MD simulation, none of the

native structures have the lowest energy among decoys

and the energy–rmsd correlation vanishes. A noteworthy
Current Opinion in Structural Biology 2008, 18:342–348
observation was recently made by Summa and Levitt

[37��] who exploited different molecular mechanics

(MM) potentials (AMBER99, OPLS-AA, GROMOS96,

and ENCAD) on the refinement of 75 proteins by in vacuo
energy minimization. The authors found that a knowl-

edge-based atomic contact potential based on the PDB

statistics outperforms all the traditional MM potentials by

moving almost all the test proteins closer to the native

state, while the MM potentials, except for AMBER99,

essentially drive the decoys away from the native. The

vacuum simulation without solvation may be a part of the

reason for the failure of the MM potentials. But this

observation demonstrates the potential of the hybrid

knowledge-based and physics-based potentials in the

protein structure refinement.

Encouraging template refinements have been recently

achieved by combining the hybrid potentials with spatial

restraints from threading templates [9��,38��,39�]. Misura

et al. [38��] first built low-resolution models by

ROSETTA [40] using a fragment library enriched by

the query-template alignment; the Cb-contact restraints

were used to guide the assembly procedure. The low-

resolution models were then refined by a physics-based

atomic potential. As a result, in 22 of 39 test cases, at least

1 of the 10 lowest energy models was found closer to the

native than the template.

A more comprehensive test of the template refinement

procedure based on TASSER simulations, combined with

consensus spatial restraints from multiple templates, was

reported by Zhang and Skolnick [9��,36]. For 1489 test

cases, TASSER reduces the rmsd of the templates in the

majority of cases with an average rmsd reduction from 6.7

to 4.4 Å over the threading aligned regions. Even starting

from the best templates as identified by the structural

alignment, TASSER refines the models from 2.5 to 1.88 Å

in the aligned regions. Here, TASSER has built the

structures based on a reduced model (specified by Ca
www.sciencedirect.com
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and side-chain center of mass) with a purely knowledge-

based force field. One of the major contributions to the

refinements is the use of multiple threading templates

where the consensus spatial restraint is more accurate

than that from the individual template. Second, the

composite knowledge-based energy terms have been

extensively optimized using large-scale structure decoys

[41] which help coordinate the complicated correlations

between different interaction terms.

The progress of threading template refinements has been

assessed in the recent CASP7 experiment, where the

assessors compared the predicted models with the best

structural template (or ‘virtual predictor group’) and

commented that ‘The best group in this respect (24,

Zhang) managed to achieve a higher GDT-TS score than

the virtual group in more than half the assessment units

and a higher GDT-HA score in approximately one-third

of cases’ [42�]. This comparison may not entirely reflect

the template refinement ability of the algorithms because

the predictors actually start from threading templates

rather than the best structural alignments and the latter

requests the information of the native, which was not

available when the predictions were made. On the con-

trary, a global GDT score comparison may favor the full-

length models because the template alignment has a

shorter length than the models. In a direct comparison

of the rmsd over the same aligned regions, we find that the

first I-TASSER model is closer to the native than the best

initial template in 86 of 105 TBM cases while the other 13

(6) cases are worse than (equal to) the template. The

average rmsd is 4.9 and 3.8 Å for the templates and

models, respectively, over the same aligned regions

[31��].

Free modeling
When structural analogs do not exist in the PDB library or

could not be successfully identified by threading (which is

more often the case as shown by Figure 1), the structure

prediction has to be generated from scratch. This type of

predictions has been termed as ‘ab initio’ or ‘de novo’

modeling, a term that may be easily understood as a

modeling ‘from first principle’. In CASP7, it is named

as ‘free modeling’ which I think reflects more appropri-

ately the status of the field, since the most efficient

methods in this category still consider hybrid approaches

including both knowledge-based and physics-based

potentials. Evolutionary information is often used in

generating sparse spatial restraints or identifying local

structural building blocks.

The best-known idea for free modeling is probably the one

pioneered by Bowie and Eisenberg who assembled new

tertiary structures using small fragments (mainly 9-mer)

cut from other PDB proteins [43]. On the basis of similar

idea, Baker and coworkers developed ROSETTA [40],

which has worked extremely well for free modeling in the
www.sciencedirect.com
CASP experiments and made the fragment assembly

approach popular in the field. In the new developments

of ROSETTA [44��,45�], the authors first assemble struc-

tures in a reduced knowledge-based model with confor-

mations specified by the heavy backbone atoms and Cbs. In

the second stage, Monte Carlo simulations with an all-atom

physics-based potential are performed to refine the details

of the low-resolution models. An exciting achievement was

demonstrated in CASP6 by generating a model for T0281

(70 residues) of 1.6 Å away from the crystal structure. In

CASP7, ROSETTA built a model for T0283 (112 residues)

with rmsd = 1.8 Å over 92 residues (Figure 2, left panel).

Despite significant success, the computer cost of the

procedure (�150 CPU days for a small protein <100 resi-

dues) is still too expensive for the routine use.

Another successful free modeling approach, called TAS-

SER [36] by Zhang and Skolnick, constructs 3D models

based on a purely knowledge-based approach. Continu-

ous fragments of various sizes are excised from threading

alignments and used to reassemble protein structures in

an on-and-off lattice system. A newer version of I-TAS-

SER was recently developed by Wu et al. [46��], which

refines the TASSER cluster centroids by iterative Monte

Carlo simulations. Although the procedure uses structural

fragments and spatial restraints from threading templates,

it often constructs models of correct topology even when

the topologies of individual templates are incorrect. In

CASP7, among 19 FM and FM/TBM targets, I-TASSER

builds correct topology (�3–5 Å) for 7 cases with

sequences up to 155 residues long. Figure 2 (right panel)

shows one example of T0382 (123 residues) where all

initial templates have a wrong topology (>9 Å) but the

final model is 3.6 Å away from the X-ray structure.

Significant efforts have been made on the purely physics-

based protein folding and structure prediction. The very

first milestone of successful ab initio protein folding is

probably the 1997 work of Duan and Kollman, who folded

the villin headpiece (a 36-mer) by MD simulations in

explicit solvent for two months on parallel supercompu-

ters with models up to 4.5 Å [47]. With the help of the

worldwide-distributed computers, this small protein was

recently folded by Pande and coworkers [48] to 1.7 Å with

a total simulation time of 300 ms or approximately

1000 CPU years. To reduce the computing cost, Scheraga

and coworkers [49�] developed a reduced physics-based

model, called UNRES, which represents protein confor-

mations by Ca, side-chain center, and a virtual peptide

group. The low-energy UNRES models are then con-

verted to all-atom representations based on ECEPP/3. In

CASP6, a structure genomic target of TM0487 (T0230,

102 residues) was folded to a structure within 7.3 Å by the

approach. Using ASTRO-FOLD on the ECEPP/3 optim-

ization, Floudas and coworkers [50] recently constructed

a model of 5.2 Å for a four-helical bundle protein of 102

residues in a double-blind prediction.
Current Opinion in Structural Biology 2008, 18:342–348
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Figure 2

Representative examples of free modeling in CASP7 generated by two different approaches. T0283 (left panel) is a TBM target (from Bacillus

halodurans) of 112 residues; but the model is generated by all-atom ROSETTA (a hybrid knowledge-based and physics-based approach) [45�] based

on free modeling, which gives a TM-score 0.74 and a rmsd 1.8 Å over the first 92 residues (the overall rmsd is 13.8 Å mainly because of the

misorientation of C-terminal). T0382 (right panel) is a FM/TBM target (from Rhodopseudomonas palustris CGA009) of 123 residues; the model is

generated by I-TASSER (a purely knowledge-based approach) [31��] with a TM-score 0.66 and a rmsd 3.6 Å. Blue and red represent the model and the

crystal structure, respectively.
Conclusions
Since a detailed physicochemical description of protein

folding principles does not yet exist, the protein structure

prediction problem is largely defined by the evolutionary

or structural distance between the target and the solved

proteins in the PDB library. For the proteins with close

templates, full-length models can be constructed by

copying the template framework. Recent studies show

that if using the best possible template structures in PDB,

the state-of-the-art modeling algorithms could build high-

quality full-length models for almost all single-domain

proteins with an average rmsd �2.3 Å; this suggests that

the current PDB structure universe may be approaching

complete for solving the protein structure prediction

problem [9��]. However, most of the target–template

pairs are evolutionarily too distant to be detected with

the current threading approaches.

The development of efficient threading algorithms to

detect weakly/distant homologous templates has been a

central theme in the field and may persist as a principal

direction, as the gap between threading and the best

structural alignment is obvious and tempting. However,

progress in reducing this gap is slow or incremental since

the invention of the PPA techniques. There is no single-

threading method that outperforms all others on every

target; this results in the prevalence of the meta-servers

and MQAP which generate predictions by collecting and
Current Opinion in Structural Biology 2008, 18:342–348
selecting models from a set of other threading programs.

On the contrary, the template structure refinement has

enjoyed promising progress. In the recent CASP7 exper-

iment [23�], automated threading plus structure refine-

ment servers outperforms by a margin the threading-only

and the MQAP-based meta-servers. Nevertheless, the

template refinement mainly occurs at the topology level.

The demand for atomic-level structural refinements,

which can generate models of use in drug screening

and biochemical function inference, is keener than ever,

especially when more and more template structures

become available through the structure genomics and

traditional structural biology.

Free modeling is certainly the ‘Holy Grail’ of the protein

structure prediction because its success would mark the

eventual solution to the problem. Although a purely phy-

sics-based ab initio simulation has the advantage in reveal-

ing the pathway of protein folding, the best current free-

modeling results come from those which combine both

knowledge-based and physics-based approaches. Although

there are consistent successes in building correct topology

(3–6 Å) for small proteins, the more exciting high-resol-

ution free modeling (<2 Å) is rarer and computationally

expensive. There is evidence that the current atomic

potentials have the lowest energy near the native state

and the bottleneck of high-resolution folding seems to be

the insufficient conformational sampling [44��]. However,
www.sciencedirect.com
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a golf-hole-like energy landscape without middle-range

funnel should not be the one taken in nature, which can be

a deeper reason for the failure of conformational search.

Thus, the bottleneck for free modeling comes from the

lack of both funnel-like force fields and efficient space

searching, especially for proteins of larger sizes.
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