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Abstract – A simple lattice-gas model, with two fundamental energy terms —elongation and
nucleation effects, is proposed for understanding the mechanisms of amyloid fibril formation.
Based on the analytical solution and Monte Carlo simulation of 1D system, we have thoroughly
explored the dependence of mass concentration, number concentration of amyloid filaments and the
lag-time on the initial protein concentration, the critical nucleus size, the strengths of nucleation
and elongation effects, respectively. We also found that thickening process (self-association of
filaments into multi-strand fibrils) is not essential for the modeling of amyloid filaments through
simulations on 2D lattice. Compared with the kinetic model recently proposed by Knowles et al.,
highly quantitative consistency of two models in the calculation of mass fraction of filaments is
found. Moreover our model can generate a better prediction on the number fraction, which is
closer to experimental values when the elongation strength gets stronger.

Copyright c© EPLA, 2011

Amyloid proteins can spontaneously converge from
isolated water-soluble monomers into large insoluble
aggregated fibrils under appropriate conditions either
in vitro or in vivo. If these amyloid fibrils abnormally
accumulate in tissues and organs, the patient may suffer
from amyloidosis; more seriously, if this happens in the
brain, degeneration of neuronal processes and synaptic
abnormalities may appear, such as Alzheimer’s and
Parkinson’s diseases etc. [1–3]. Thus fully uncovering the
mechanisms of amyloid fiber formation will lead a key
step in improving the medical diagnosis and therapy of
amyloid-related diseases [4,5].
In the past decade, many high-resolution amyloid fiber

structures were resolved by X-ray crystallography and
solid state NMR [6–10]; some common key steps in the
formation of amyloid fibrils were identified [11,12]; more
and more quantitative relationships between fibrillation
kinetics and experimental conditions (such as protein
concentration, temperature, pH value and etc.) were
established [13–15].
Among them, one of the most striking findings would

be that protein aggregation may be a generic property of
polypeptide chains, which relies on their common peptide
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backbone rather than specific amino acid sequences [16].
As we can see, despite large variations of amyloid proteins
in secondary structure (dominated by α-helix, β-sheet,
or random coil) and tertiary structure (either globu-
lar or intrinsically disordered) prior to fibrillation, all
fibrils share a similar morphology. They are unbranched
and rope-like, typically 10 nm in width and 0.1–10µm in
length, which reflects a common continuous cross-β-sheet
substructure, with β-strands perpendicular to and inter-
strand hydrogen bonds parallel to the fibril axis [6].
The above statement serves as a basis of our present

study, i.e. a molecular-level coarse-grained lattice-gas
model, which is built on a n-dimensional discrete lattice
system, with each site either empty (noted by “0”) or
occupied (noted by “1”) to represent water molecules and
amyloid proteins in cross-β-structure, respectively. And we
define a filament as a set of occupied lattice points that
are adjacent to each other in the same row or same column
(its size should be larger than the critical nucleus size nc);
while a fibril as a bundle of connected filaments on 2D and
3D lattice (as illustrated in fig. 1).
As the intersheet interactions are always weaker than

the intrasheet hydrogen bonding interactions in fibril, we
can make a fair separation of these two types of inter-
actions, and focus more on the energy contribution that
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Fig. 1: (Colour on-line) An illustration of the 1D and 2D lattice-
gas model.

stabilizes the fibril structure. Most amyloid filaments need
first to form some kind of folding nucleus with critical
size around 2–6 monomers before aggregation can further
proceed [11]. These nuclei usually are not very stable and
take a long time to form, which can be accounted by a
large positive-energy barrier on the free-energy surface,
although whether the major contribution to this barrier
is entropy or enthalpy is still controversial [17,18]. After
the nucleation stage, filaments grow linearly by subse-
quent monomer addition at both ends [12]. Fibril elonga-
tion often proceeds rapidly, with a negative-energy contri-
bution at each step to stabilize the existing structure.
Therefore we can introduce some empirical energy terms,
that account for the above key processes, respectively, to
describe the fibrillation of amyloid proteins. And the total
energy of a fibril system can be constructed as

E =Enuc+Ee = εnNf − εeNi, (1)

if the interaction energies between water molecules and
within amyloid peptides are neglected. Enuc and Eelg
represent the energy terms for nucleation and elongation
separately; εn and εe denote the energy strength of
nucleation and elongation effects; Nf and Ni denote the
total number of single-strand filaments and aggregated
peptide pairs in the system.
In fact, as natural amyloid fibrils are unbranched and

grow mainly in one dimension, we can constrain our
studies on 1D discrete lattice, in which the system energy
can be further expressed as

E1d = εn
∑
i

(1− gi)gi+1 · · · gi+nc − εe
∑
i

gigi+1, (2)

where nc � 2 stands for the critical nucleus size. gi can
take either +1 or 0 value, representing whether site i is
occupied by the amyloid peptide or not. In the current
case, the total protein concentration is a constant, with∑
i gi = n.
Although the above energy form looks quite simple,

quantitative calculation is not an easy task, as there are
enormous possible fibril structures needed to be considered
when the system size is large. Here an exact combinatoric
formula for the partition function of 1D system under

free boundary condition is given, which constitutes the
theoretical foundation of following applications of the
lattice-gas model:

Z(n< nc) = 1,

Z(nc � n�N − 1) =
n∑
m=0

�(n−m)/nc�∑
d=0

Cd−1
n−m−(nc−1)d−1

·Cmm+dCd+mN−n+1e
[(n−m−d)εe−dεn]/(kBT ),

Z(n=N) = e[(N−1)εe−εn]/(kBT ), (3)

where Cmn =
n!

m!(n−m)! . m and d are two internal variables.
N stands for the size of the lattice system; n for the
total number of occupied sites; and thus φ= n/N is the
fraction of occupied sites, corresponding to the protein
concentration.
The derivation of eq. (3) is straightforward. Since the

first and last formula are quite simple, we will focus on
the second one —a case when only a part of the lattices is
occupied. First, we remove m monomers from n occupied
sites, and partition the remaining n−m occupied sites
into d regions, with the restriction that each region
contains at least nc sites. This gives the partition number
Cd−1
n−m−(nc−1)d−1. Second, we insert m monomers between
the d regions. As all monomers are equal, there are Cmm+d
different ways. Next we divide N −n empty sites into
d+m+1 intervals between occupied regions. Each of the
d+m− 1 internal intervals requires at least one empty
site, while two outer ones can be empty. Thus we add
two virtual empty sites at both ends of N −n successive
empty sites, then partition them into d+m+1 pieces. All
possible ways are Cd+mN−n+1. Finally multiplying all factors,
as well as the Boltzmann factor e[(n−m−d)εe−dεn]/(kBT )

together, we get the desired result.
Many interesting statistical properties of the fibril

system could be learned from the partition function [19],
among which two important ones are the mass concen-
tration of filaments (defined as the total number of
aggregated peptides in the filaments divided by system
size N) and the number concentration of filaments
(defined as the total number of single-strand filaments
divided by system size N), i.e.

〈M〉=−kBT
N

(
∂ lnZ

∂εn
− ∂ lnZ
∂εe

)
, (4)

〈P 〉=−kBT
N

∂ lnZ

∂εn
. (5)

Quantitative relationships of mass and number concen-
tration of filaments on the initial protein concentration,
critical nucleus size, and variable combinations of nucle-
ation and elongation effects are explored in fig. 2. As we
can see in fig. 2(A), the curves for mass concentration of
filaments on the initial protein concentration gets steeper
with the increase of system size, which means there exists
some critical value of the protein concentration for amyloid
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Fig. 2: (Colour on-line) Dependence of mass and number
concentration of filaments on protein concentration obtained
though eqs. (3)–(5). (A) Influence of system size, with εn =
εe = 0, nc = 2. (B) Influence of different nucleus size, with εn =
εe = 0, N = 1000. (C,D) Different combinations of nucleation
and elongation effects, with N = 1000, nc = 2.

fibril formation (φ∗). If the fraction of occupied sites in the
system is below this threshold (φ� φ∗) at the beginning no
apparent filaments can be detected. A similar result on the
critical protein concentration for amyloid fiber formation
has also been reported by Lomakin et al. [20]. The critical
protein concentration shows a strong positive correlation
with the critical nucleus size, which however seems to have
less effect on the slope of the curves for the mass concen-
tration of filaments (see fig. 2(B)).
The effect of nucleation and elongation energy can be

qualitatively read from a comparison in fig. 2(C) and (D).
In general, the negative elongation energy promotes the
formation of amyloid fibrils; while the positive nucleation
energy requires a larger critical protein concentration. A
combination of both energy terms produces a steeper curve
for the mass concentration of filaments, and a less steep
one for the number concentration of filaments by contrast,
which means a higher cooperativity is achieved mainly
through the formation of longer filaments.
The partition function mainly deals with the thermal

equilibrium state. More prosperous dynamic properties
about the fibrillation process could be learned from direct
Monte Carlo simulations of 1D lattice-gas model, whose
basic step is the state exchange of two neighboring sites.
In fig. 3(A), (C), (E), typical MC trajectories under vari-
ous protein concentrations, strengths for nucleation and
elongation effect are illustrated. And their correspond-
ing impacts on the lag-time (which here is defined as the
time when mass concentration of filaments reaches 10% of
the total protein concentration) are quantitatively summa-
rized in fig. 3(B), (D), (F), i.e. τlag ∝ φ−5, τlag ∝ eεn and
τlag ∝ e−εe , respectively. The latter two exactly obey the
Boltzmann relationship; while the first one gives a scal-
ing exponent which is obviously larger than (nc+1)/2
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Fig. 3: (Colour on-line) Time evolution of the mass concen-
tration of filaments and corresponding lag-time (τlag) as func-
tions of the initial protein concentration (φ), nucleation effect
(εn) and elongation effect (εe). (A) Fibril growth at various
concentrations, with N = 1000, εn = 10kBT, εe = 5kBT, nc = 2.
Each curve represents an independent Monte Carlo simula-
tion. (B) Lag-time vs. concentration. Each error bar represents
20 simulation runs. (C) Fibril growth at various nucleation
effects, with N = 1000, φ= 0.04, nc = 2. (D) Lag-time vs. nucle-
ation effect. (E) Fibril growth at various elongation effects, with
N = 1000, φ= 0.04, nc = 2. (F) Lag-time vs. elongation effect.

as predicted by the classical nucleation theory [21]. This
means the lag-time can be effectively shortened by an
increase in protein concentration and elongation effect,
and largely extended by the increase of the nucleation
effect.
The predictions of the current model on the relation-

ship between initial protein concentration and final mass
concentration of filaments are further validated by the
experimental data of three different amyloid proteins, i.e.
Csg Btrunc [22], α-synuclein [23] and Apo C-II [24]. The
good agreement as shown in fig. 4 confirms the reliabil-
ity and usefulness of the lattice-gas model in quantitative
exploration of the mechanisms of amyloid fiber formation.
Although real amyloid filaments grow in only one

dimension, they do self-associate to form bundles. Thus
whether this thickening process is essential for the model-
ing of amyloid fiber formation is still doubtful. In the last
part, we will extend the lattice-gas model to the 2D (or
3D) system and make a quantitative evaluation. In this
case, the total energy of a two-dimensional lattice system
can be written as (here we choose the x-axis as the fiber
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Fig. 4: (Colour on-line) Comparison of theoretical predictions
with experimental data on the mass concentration of filaments.
For a better illustration, each data set is normalized by the
value under its maximum protein concentration. The red
squares stand for the experimental data of the amyloid protein
Csg Btrunc, blue triangles for α-synuclein, and pink circles
for Apo C-II. Three dashed lines are calculated by the 1D
lattice-gas model (eqs. (3) and (4)), with different best-fitting
energy parameters (the red line with εn = 0, εe = 4kBT ; the
blue line with εn = 0.5kBT, εe = 3.2kBT ; and the pink line with
εn = 0.5kBT, εe = 3.3kBT ). The protein concentration is set the
same as in experiments.

growing direction)

E2d = εn
∑
i

(1− gi,j)gi,j+1 · · · gi,j+nc

−ε1e
∑
i,j

gi,jgi,j+1− ε2e
∑
i,j

gi,jgi+1,j , (6)

where gi,j can take either +1 or 0 value, representing the
status of being occupied of site (i, j). ε1e and ε

2
e represent

the interaction strength along two perpendicular axis,
respectively. Compared to the energy form of the 1D
lattice-gas model (eq. (2)), the major difference lies in
that eq. (6) not only considers the energy contribution
from protein-protein interaction within each filament, but
also includes the interaction between different filaments,
which is a key to understand how single-strand filaments
aggregate into multi-strand fibrils [25].
In fig. 5, the results of Monte Carlo simulations on a

two-dimensional lattice system with different strengths
of the thickening process (expressed through the energy
parameter ε2elg) are compared. We can see that in general
the mass concentration of filaments gets larger, while
the number concentration of filaments gets smaller
with the increase of the interaction strength between
different filaments. This means the thickening process
helps the amyloid fiber formation mainly through the
stabilization of long filaments. However the limited differ-
ence in M and P (less than 10%), considering relatively
big changes in the interaction strength between different
filaments, shows that the thickening process may not be
as effective as elongation for the fibril formation, which
coincides with the fact that the self-association of fibrils
happens after the filaments grow.
Kinetic models based on chemical master equations

have recently witnessed considerable success in describing
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Fig. 5: (Colour on-line) (A) Mass concentration and (B)
number concentration of filaments with and without thickening
process. Blue circles represent the results without thickening
process, εn = 5kBT , ε

1
e = kBT , ε

2
e = 0; red rectangles for the

results with thickening process, εn = 5kBT, ε
1
e = kBT, ε

2
e = kBT .

Each data point on the plot corresponds to the statistical
average of 100 Monte Carlo simulations of the 2D lattice-gas
model on a N = 30× 30 square lattice, with each run taking
106 movements.

the fibrillation process of amyloid proteins [26,27]. An
interesting question therefore raised is the relationship
between these two models. As a special example, here
we compare the static solutions of Knowles’ model [27],
a recently proposed kinetic model, with the equilibrium
statistical results predicted by the lattice-gas model. Since
both models are built on similar mechanisms —nucleation,
elongation, and fragmentation (not so apparent in the
lattice-gas model) in describing the formation process of
amyloid fibrils, we argue that if the parameters in the two
models satisfy the following Boltzmann’s relationship:

k+mtot/k− ∝ eεe/(kBT ), (7)

knmtot/k− ∝ e−(εn−εe)/(kBT ), (8)

where mtot is the initial protein concentration; k+,
k− and kn represent the reaction rates of nucleation,
elongation and fragmentation in Knowles’s model [27],
respectively, we can expect the statistical results of the
lattice-gas model will be in quantitative agreement with
the static solution of the kinetic model, when the initial
protein concentration is not very high. This conjecture
is well validated through numerical comparison of both
models on the prediction of mass fraction of filaments
(mass concentration of filaments divided by initial protein
concentration).
In fig. 6(A), we can see that under the same fibril-

lation conditions (with Boltzmann relationship exactly
held), predictions of both models on the mass fraction
of filaments are astonishingly the same. Even on the
number fraction of filaments (see fig. 6(B)), both models
give similar results in a large region of model parameters
(k+mtot/k−� 1). However as the strength of elongation
effect gets stronger, the difference between the two models
becomes more pronounced. The kinetic model predicts
that the number fraction of filaments grows at the same
rate as the mass fraction of filaments, which consequently
leads to an almost constant value for the average length of
filaments (M/P ); while the lattice-gas model predicts the
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Fig. 6: (Colour on-line) Comparison of the lattice-gas model
with Knowles’ model on (A) mass fraction of filaments and
(B) number fraction of filaments. The solid lines represent the
dependence of mass (and number) fraction of filaments on two
Boltzmann factors eεe/(kBT ) and e−(εn−εe)/(kBT ) as predicted
by the 1D lattice-gas model with N = 500, n= 50 (eq. (3));
the dashed lines show the dependence of static mass (and
number) fraction of filaments on the dimensionless parameters
k+mtot/k− and knmtot/k− as predicted by Knowles’ model.
Two contour plots are matched together with k+mtot/k− =
eεe/(kBT )/8 and knmtot/k− = e−(εn−εe)/(kBT )/8 (see eqs. (7)
and (8)).

average length of filaments will increase with the growth
of the elongation effect. Judging from the experimental
data on amyloid fiber formation [28,29], we believe that
the lattice-gas model offers a more reasonable result, since
it is based on a truly thermal reversible system, while
Knowles’ model only includes forward reactions but no
backward reactions, which will lead to an overestimation
on the effect of fragmentation [30].
In conclusion, we have proposed a lattice-gas model

for understanding the mechanisms of amyloid fibril
formation, which possesses a most dramatic characteristic
—simplicity. In fact in the current model, all atomic
details of amyloid proteins are completely neglected.
Even peptide interactions are highly simplified. Only
the inter-peptide ones are kept. They are characterized
by empirical energy terms, which are directly correlated
with the aggregation process of amyloid fibrils. Despite
the highly simplified nature of the current model in the
description of structural, chemical and energetic details
of amyloid proteins, many detailed dynamic proper-
ties of fibril formation and quantitative relationships
between initial experimental condition and final fibril
concentration are predicted with high precision. In fact,
a quantitative comparison with a sophisticated kinetic
model demonstrates the consistency of two different
models in the calculation of the mass fraction of fila-
ments. And the lattice-gas model can generate a better
prediction on the number fraction, which is closer to
experimental values when the elongation strength gets
stronger.
Another advantage is generality. Due to its extremely

simplified physical picture, the lattice-gas model can be
easily extended to account for more complicated struc-
tures and interactions. A possible worthwhile extension
is the inclusion of different energy forms. For briefness,
here we have only considered two most fundamental

energy forms —nucleation and elongation, even though
the real fibrillation process of amyloid proteins can be
far more complex than what we have described. For
instance, conformational transition [6,31], on and off-
pathway competition [32], homo- or heterogeneous nucle-
ation [20,33], secondary nucleation [34–36], autocatalytic
surface growth [9], merging [9,25] and branching [37],
may all play important roles. Thus a thorough explor-
ing of these model systems should significantly enhance
our current understandings on the mechanisms of amyloid
fibril formation, and also shed light on the diagnosis and
therapy of amyloid-related diseases.
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