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INTRODUCTION

Virtual screening is a computer-aided approach to prioritize

molecules likely to display bioactivity for pharmaceutical targets. A

variety of virtual screening methods have been applied at an early

stage of drug discovery as a complement to experimental techniques

to promptly and cost-effectively identify and optimize lead

compounds.1–3 When the structure of a protein target is available,

molecular docking is a typical choice for receptor structure-centric

virtual screening.4,5 This method tries to fit small molecules into

the structure of receptor proteins, evaluating their binding affinity

using scoring systems usually constituted by semiempirical potential

functions. The most advantageous feature of molecular docking

tools is that they can provide the binding mode of a molecule in a

given target protein as well as the binding affinity.

Accurately identifying the structural characteristics of ligand

binding to a target protein is a critical step to elucidate proteins’

functionalities. Proteins almost always interact with many types of

molecules to perform their biological functions.6 These interactions

include the binding of non-natural ligands such as drugs as well as

natural ligands. Considerable efforts have been carried out to

develop computational tools for predicting ligand binding sites.7–12 A

determined binding site of a target protein can be used to detect

residues related to the ligand binding, thus provides important

insights on proteins’ function study and drug design. Furthermore,

if we accurately predict the conformation of a particular ligand

bound in the binding site using molecular docking method, key

determinants of molecular recognition can be easily characterized

and this knowledge can be utilized for efficient design of drugs

with optimized sensitivity and specificity. For a target protein

whose ligand binding site is unknown, blind docking can be used

to predict structural features of ligand binding.13,14 In the blind

docking, ligand docking conformations are searched on the entire

protein surface.

Grant sponsor: NSF Career Award; Grant number: DBI 0746198; Grant sponsor: National

Institute of General Medical Sciences; Grant numbers: GM083107, GM084222

*Correspondence to: Yang Zhang, Center for Computational Medicine and Bioinformatics,

Department of Biological Chemistry, University of Michigan, 100 Washtenaw Avenue, Ann Arbor,

MI 48109. E-mail: zhng@umich.edu.

Received 21 March 2011; Revised 30 June 2011; Accepted 4 August 2011

Published online 30 August 2011 in Wiley Online Library (wileyonlinelibrary.com).

DOI: 10.1002/prot.23165

ABSTRACT

We developed BSP-SLIM, a new method for

ligand–protein blind docking using low-resolution

protein structures. For a given sequence, protein

structures are first predicted by I-TASSER; puta-

tive ligand binding sites are transferred from

holo-template structures which are analogous to

the I-TASSER models; ligand–protein docking

conformations are then constructed by shape and

chemical match of ligand with the negative image

of binding pockets. BSP-SLIM was tested on 71

ligand–protein complexes from the Astex diverse

set where the protein structures were predicted by

I-TASSER with an average RMSD 2.92 Å on the

binding residues. Using I-TASSER models, the me-

dian ligand RMSD of BSP-SLIM docking is 3.99 Å

which is 5.94 Å lower than that by AutoDock; the

median binding-site error by BSP-SLIM is 1.77 Å

which is 6.23 Å lower than that by AutoDock and

3.43 Å lower than that by LIGSITECSC. Compared

to the models using crystal protein structures, the

median ligand RMSD by BSP-SLIM using

I-TASSER models increases by 0.87 Å, while that

by AutoDock increases by 8.41 Å; the median

binding-site error by BSP-SLIM increase by

0.69 Å while that by AutoDock and LIGSITECSC

increases by 7.31 Å and 1.41 Å, respectively. As

case studies, BSP-SLIM was used in virtual screen-

ing for six target proteins, which prioritized

actives of 25% and 50% in the top 9.2% and 17%

of the library on average, respectively. These

results demonstrate the usefulness of the tem-

plate-based coarse-grained algorithms in the low-

resolution ligand–protein docking and drug-

screening. An on-line BSP-SLIM server is freely

available at http://zhanglab.ccmb.med.umich.edu/

BSP-SLIM.
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Acquisition of receptor structure is a prerequisite for

molecular docking. An important issue in docking

experiments is that the performance of docking calcula-

tions is significantly influenced by the conformational

variations in the main-chains or/and side-chains of

ligand binding region in the receptor. Both experimen-

tally solved or theoretically predicted protein structures

can be used for docking experiments. To obtain satisfac-

tory results, however, an experimentally determined

high-resolution ligand–bound (holo) receptor structure is

usually preferred for docking experiments.15,16 Further-

more, cross-docking experiments, where ligands are

docked to receptors derived from other crystal holo-

structures than their cognate one, have shown that using

the receptor from the holo-structure that contains the

bound ligand provides accurate reproduction of native

ligand pose.17 These evidences demonstrate that classical

docking methods provide reliable results when the con-

formation in binding site is specifically fit to ligand

structure.

Applying the theoretically predicted protein structures

to docking experiments is a challenging issue in the field

of structure-based drug design. Currently, over 11 mil-

lion protein sequences are deposited in the UniProt

database,18 but only 60 k proteins have experimentally

solved structures deposited in the PDB (http://

www.rcsb.org/pdb), which means only one in 200 pro-

teins in UniProt has a structure in PDB, while in 2004

and 2007 this number was one in 50 and 100 proteins,

respectively. This rapidly increased gap between sequence

and structure impedes the identification of novel drug

targets and the subsequent development of therapeutic

drugs. To overcome this problem, various structure pre-

diction approaches have been developed to generate the

theoretical models of target proteins when the experi-

mental structure of an interesting target is unavailable.19

Comparative modeling can be used to generate the

structures of proteins with evolutionarily related solved

proteins, called templates. For proteins with close

homologous templates, comparative modeling approaches

can provide high-resolution models with a root-mean-

square deviation (RMSD) of 1–2 Å from their experi-

mental structures. However, the accuracy of a compara-

tive model is strongly related to the sequence identity

and evolutionary distance between the target and tem-

plate.20 The accuracy of the models considerably deteri-

orates when the sequence identity is below 30%,21 the

‘‘twilight zone’’ of structure modeling. For proteins with

analogous or distant homologous templates, threading is

an efficient tool to identify appropriate templates, which

often provides models with an RMSD of 2–6 Å.22 Most

of the structural errors are attributed to the structural

inaccuracy at the unaligned loop regions.23 Although

construction of models with correct fold has been the

goal of many protein structure prediction methods,

especially for targets without close homology tem-

plates,23–25 the structural models of low-resolution

(e.g., >�3Å) are essentially useless for the classic dock-

ing experiments. In general, predicted protein structures

with local structural distortions yield much lower

enrichments of known actives in a compound database

than the conformation in crystal structure.15,16 This is

mainly due to structural errors present near the binding

pocket in the modeled protein structure, resulting in

significant drop-off in the ability to recognize ligands in

the binding pocket.

SLIM (Shape-based LIgand Matching with binding

pocket) is a recently developed high speed receptor-based

virtual screening tool by Lee et al.15 The basic idea of

this method is that the key factors determining ligand–

receptor interactions are the complementarity of shape

and chemical properties between the ligand and binding

pocket. SLIM uses a 3D shape similarity comparison

between the inner shape (negative image) of a binding

pocket and ligand molecules, simultaneously considering

their chemical similarities. A noteworthy feature of SLIM

is that this method offers better screening performance

than docking tools for the homology-modeled receptor

structures. It suggests that the SLIM method has strong

potential as a docking tool applicable to low-resolution

protein models generated with analogous or distant ho-

mologous templates.

Meanwhile, the template based methods showed prom-

ising use in predicting ligand binding sites based on pre-

dicted protein structures.10,26 Because the identification

of structural analogies relies only on the global topology

of compared structures,27 these methods can successfully

tolerate the local modeling error in the binding site pre-

dictions.

In this work, we aim to develop a novel docking

method for the low-resolution model of target proteins

whose ligand binding sites have not been experimen-

tally characterized. The developed method, called BSP-

SLIM (Binding Site Prediction with SLIM), is an inte-

grated tool in which algorithms for the template-based

ligand binding site prediction are incorporated with

the SLIM docking method. It should be mentioned

that a similar template-based approach was recently

proposed by Brylinski and Skolnick10 who tried to

predict the ligand binding sites by matching the target

structures on the threading templates. Having in mind

that many important ligand-binding templates (espe-

cially the evolutionarily unrelated proteins) may be

missed in threading alignments, all holo protein struc-

tures in the library are searched in our method. We

will first describe the methodological details of BSP-

SLIM and then present the benchmark results of

ligand recognition based on weakly homologous pro-

tein models. As an illustration of practical use, we

apply the BSP-SLIM method to the blind virtual

screening of six target proteins. An on-line BSP-SLIM

server for single ligand blind docking is freely avail-
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able for academic users at http://zhanglab.ccmb.med.

umich.edu/BSP-SLIM.

MATERIALS AND METHODS

BSP-SLIM algorithm

BSP-SLIM is a blind docking method, which first

exploits the structural template match to identify puta-

tive ligand binding sites, followed by fine-tuning and

ranking of ligand conformations in the binding sites by

the SLIM-based shape and chemical feature comparisons.

The overall flowchart of the BSP-SLIM method is illus-

trated in Figure 1.

Template holo-structure search

For a given target protein structure, a set of template

crystal holo-structures, which have similar global topol-

ogy to the target protein, are identified from the struc-

ture library using the TM-align program.27 TM-align

utilizes an iterative dynamic programming procedure

based on the TM-score28 rotation matrix to identify the

best alignment between protein structures. Because of the

Figure 1
Overview of the BSP-SLIM methodology. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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inherent consistence of the target score and rotation ma-

trix as well as the power of TM-score in combining both

alignment accuracy and coverage, TM-align provides

faster and more robust alignments than most of struc-

tural alignment algorithms in the field.27 To remove the

easy cases which could be detected by homologous com-

parison, we exclude from our library all the homologous

holo-templates whose sequence identity is >30% to the

target protein. For each target, 200 template structures

with the highest TM-score are collected at this structure

search step. If different ligands bind to the same holo-

receptor structure, they are assigned as different templates

in our template library. The identified ligand–protein tem-

plates are superimposed on the target protein structure

using rotation matrix obtained from the TM-align.

Filtering of searched templates

For each superimposed template holo-structure, struc-

ture similarity at ligand binding region is evaluated by

local structure comparison between the template and tar-

get structure. First, the binding site residues of the target

structure are identified using those of the template struc-

ture. If the Ca distance between a template binding site

residue and its nearest target residue is within 3 Å, the

target residue is assigned as a binding site residue. Once

the binding site residues on the target are assigned, vari-

ous quantitative comparison of the template and target

binding site residues, including the number of aligned

residues, RMSD, sequence identity, and coverage (the

number of aligned residues divided by a total number of

template binding site residues), can be calculated.

The identified template holo-structures are filtered by

both global and local structure similarity to the target

structure. In this study, we used the minimum TM-score

of 0.5 as a global structure similarity cutoff.29 The mini-

mum number of binding site residues of 5 and the mini-

mum coverage of 0.5 are used as the cutoff values of

local structure similarity.

Determination of putative ligand binding
sites

The geometric centers of ligands bound to the filtered

template holo-receptors are clustered by their spatial

proximity. An average linkage clustering procedure was

employed with a cutoff distance of 2 Å. The coordinates

of putative binding sites are defined by the geometric

centers of each ligand cluster.

Negative image generation for SLIM-based
docking

The negative images of binding pockets at every pre-

dicted binding site are generated for SLIM-based dock-

ing. First, a box centered by a predicted binding site is

defined. The box with the size of 20 Å for X, Y, and Z is

divided into a set of grid points using a grid spacing of

2 Å. To specifically extract the inner shape of a binding

pocket, the grid points in the box are successively dis-

carded by grid filtering criteria as outlined in Figure 2.

To generate the negative images of different sizes, we use

three specific cutoff distances. For a given initial confor-

mation of a ligand, all the distances between ligand heavy

atoms and the geometric center of the ligand are calcu-

lated and the longest distance (dmax) is determined. The

cutoff distance values of dmax 2 1, dmax, and dmax 1 1 Å

are used to remove grid points located more than the

cutoff distances from the predicted binding site, resulting

in three negative images of different sizes at each pre-

dicted binding site.

To measure chemical complementarity between a bind-

ing pocket and ligand, chemical features are incorporated

on the surface of the negative image based on the chemi-

cal features of atoms consisting of the binding pocket.

Seven chemical features, that is H-bond donor, H-bond

acceptor, cation, anion, ring, hydrophobe, and hydroxyl

group, are assigned to receptor atoms. The chemical fea-

ture at each grid point constituting the negative image is

complementarily assigned by that of the nearest receptor

atom of the grid point. The complementary chemical fea-

ture pairs between the receptor atom (R) and grid point

(G) are defined as follows: donor (R) – acceptor (G),

acceptor (R) – donor (G), cation (R) – anion (G),

anion (R) – cation (G), ring (R) – ring (G), hydrophobe

Figure 2
Schematic representation of the procedures used to generate the

negative images of a predicted binding site. [Color figure can be viewed

in the online issue, which is available at wileyonlinelibrary.com.]
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(R) – hydrophobe (G), and hydroxyl group (R) –

hydroxyl group (G). The chemical features are only

assigned to a grid point located within 2.524.5 Å from

its nearest receptor atoms.

SLIM-based docking

The shape and chemical feature similarities between

ligand and a set of negative images are scored. For shape

and chemical feature comparison in terms of the confor-

mational flexibility of ligands, multiple conformers of

each ligand are generated using OMEGA program.30

Best overlays for each ligand conformer onto each nega-

tive image are implemented by OEChem toolkit (version

1.7) inertial frame alignment algorithm31 and then the

shape Tanimoto coefficient (Sshape) between the overlaid

ligand and negative image is calculated. To assign the

chemical features in each ligand, we use the Implicit-

MillsDean color force field,32 which defines the H-bond

donor, H-bond acceptor, cation, anion, ring, and hydro-

phobe. In addition to these six chemical features,

hydroxyl group is also defined. The chemical feature sim-

ilarity between the overlaid ligand and negative image

(SCF) is defined as:

SCF ¼
X

i;j

wij

expðrijÞ ð1Þ

where rij is the distance between the assigned chemical

features, i and j, in the negative image and overlaid

ligand, respectively. wij is assigned as follows: wij 5 1

when their chemical features of the pairs were identical,

wij 5 1 for hydroxyl group (i) – donor/acceptor (j) and

vice versa, wij50.5 for donor (i) – cation (j) and

vice versa, wij 5 0.5 for acceptor (i) – anion (j) and

vice versa, and wij 5 1 for ring/hydrophobe (i) – ring/

hydrophobe (j).

In the BSP-SLIM method, putative ligand binding sites

are determined by the geometric centers of template-

bound ligands as clustered by their spatial proximity. The

number of the templates belonging to each cluster repre-

sents the extent of binding site conservation among

receptors with the structural homologies and analogies. If

a ligand pose is obtained from overlay with a negative

image generated at a binding site, the number of tem-

plates (Scons) is counted in the cluster corresponding to

the binding site. To remove redundant template recep-

tors, we only use templates when their receptors share

<70% sequence identity with each other in same cluster.

To estimate the total similarity score (Stotal), means

and standard deviations of all the scores of Sshape, SCF,

and Scons are calculated. Stotal of the ith overlaid ligand

pose (Si,total) is defined as the sum of the Z-transformed

Sshape (Si,Z,shape), SCF (Si,Z,CF), and Scons (Si,Z,cons).

Si;total ¼ Si;Z ;shape þ Si;Z ;CF þ w � Si;Z ;cons ð2Þ

where the weight w (w 5 0.62) was determined by mini-

mizing the average ligand RMSD of docked ligands over

independent training targets.

All ligand conformations generated by BSP-SLIM are

sorted by their docking scores and then an RMSD toler-

ance value of 4 Å is applied to determine if two docked

conformations are similar. If RMSD between two docked

conformations is less than the tolerance value, only

docked pose of higher score is retained and the other

eliminated.

Protein-ligand template library

We downloaded the PDB files of X-ray crystallographic

structures and solution NMR structures containing at

least one protein molecules and ligand from the Protein

Data Bank. The X-ray structures with >3 Å resolution

were eliminated from the library. Ligand molecules in the

PDB files were identified in the heteroatom section. Het-

eroatoms having identical chain id and sequence number

were grouped into a heteroatom group. If a distance of

any atom pair from different heteroatom groups was

122 Å, the two heteroatom groups were merged into

one group, identifying it as multipart ligands. If a dis-

tance of any atom pair from different heteroatom groups

was <1 Å, the first detected heteroatom group was

retained and the other eliminated. Heteroatom groups

with <10 heavy atoms were removed. Duplicated pro-

teins and ligands in a PDB file were removed except for

the first detected ones. All of DNA and RNA molecules

were also discarded. If any atom in a heteroatom group

was covalently linked to the protein, all part of the heter-

oatom group was identified as covalently linked ligand

and removed from the ligand library. Proteins that did

not contain any ligand were excluded. The identified

heteroatom groups correspond to ligand structures. If

any atom of a residue in a protein structure was within

4 Å of its cognate ligand, the residue was defined as

binding site residue.

Ligand initial structures for docking
experiments

For docking experiments, the coordinates of ligands

for each target were extracted from the PDB files for all

the benchmark targets. OpenEye’s OMEGA program

(version 2.3)30 was used to generate initial 3D structures

with all hydrogen atoms. The prepared initial ligand

structures were also used to estimate the performance of

AutoDock, which was used as a control program in this

study (see below).

To consider the conformational flexibility of ligands in

SLIM and BSP-SLIM, multiple conformers of each initial

ligand structure were pregenerated using the OMEGA

program before docking. All rotatable bonds present

in each ligand were considered for conformer generation.

Low-Resolution Ligand-Protein Docking
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A maximum of 200 conformers was allowed for each

ligand, based on a default root-mean-square deviation

(RMSD) cutoff of 0.8 Å and an energy window of

10 kcal/mol.

Controlled programs

As a control, we compare our method with widely used

ligand binding site prediction program, LIGSITECSC 8 and

ligand docking program, AutoDock.33

LIGSITECSC is protein binding site prediction tool

based on the notion of surface-solvent-surface events and

the degree of conservation of the involved surface resi-

dues.8 First, the protein is embedded onto a 3D grid box

consisting of a set of grid points. If the number of sur-

face-solvent-surface events of a solvent grid exceeds a

minimal threshold, this grid is marked as pocket. The

pocket grid points are clustered according to their spatial

proximity. The clusters are ranked according to the num-

ber of grid point in the cluster. In this study, the default

parameters were used for binding site prediction of target

proteins.

AutoDock (version 4.2) is one of the most frequently

used docking tools.4 This is a grid-based docking

method. In the grid-based method, a target protein is

embedded in a grid box consisting of a set of grid points

and then interaction energies between various kinds of

probes located at each grid point and the protein are cal-

culated prior to docking. The grid points containing the

pre-calculated energy values are used as a lookup table

during the docking simulation. AutoDock uses a semi-

empirical free energy force field with a Lamarckian

Genetic Algorithm to evaluate docking poses.33 Ligand

and receptor atoms are represented by heavy atoms and

polar hydrogen atoms. Preprocessing of ligand and recep-

tor structures for docking was implemented using Rac-

coon.34 A grid spacing of 0.375 Å was used for grid

point generation. Box sizes for each target were set to

cover the entire protein structure. 10 and 100 runs of

genetic algorithm-based dockings were used to examine

the docking performance variation by the degree of

ligand sampling. Other docking parameters were set to

default values.

Blind virtual screening experiments

Nonhomologous protein models of six target proteins

(CDK2, EGFr, FGFr1, PDE5, Thrombin, and TK) were

built from the amino acid sequences using I-TASSER and

the top models with the highest C-score were used for

further experiments. To generate the negative images of

different sizes at each predicted binding site, we applied

four specific cutoff distances of 4.0, 5.5, 7.0, and 8.5 Å

from the binding site after the grid filtering processes.

Active compound sets for each target were obtained from

the directory of useful decoys (DUD).35 In the case

where the number of actives is more than 100, the

number was adjusted to 100 by random selection. The

numbers of active compound sets for the six targets are

summarized in Table III. The background screening

library for virtual screening experiments (120,160

compounds) was obtained from the Asinex Platinum

Collection. The Asinex Platinum compound set is a large

collection of lead-like compounds with structural

diversity and was used to evaluate the performance in

real-case large-scale virtual screening experiments. A

maximum of 100 conformers for each compound were

generated using the OMEGA program before docking.

As a control, we carried out the virtual screening

experiments using DOCK636 against the models of the

six target proteins. DOCK6 was used due to its less

expensive computation run time and the advantage in

handling multiple compounds for large-scale virtual

screening. The target receptor structures were prepared

by Chimera37 and docking site of each target protein

was determined using the ligand structure transferred

from a holo-crystal structure upon the structure superpo-

sition with the protein model. Binding pocket spheres

within 10 Å from every atom of the crystal ligand were

selected to define docking region. OEChem toolkit was

used to assign Gasteiger-Marsilli partial charges to a

library compound. Docking poses generated by default

‘‘anchor and grow’’ protocol were ranked by the total

grid score.

Template ligand-based blind docking
experiments

We have evaluated the blind docking performance

when the identified template-ligands are used instead of

the negative images. Here, we name the method using

the template ligands ‘‘template ligand-based blind dock-

ing (TLBD).’’ In the TLBD method, best overlays for

each target ligand conformer onto each template ligand

are determined based on the sum of the shape Tanimoto

and scaled color values ranging from 0 to 2, where 2.0

represents an exact match of both shape and functional

groups between the target ligand conformer and the tem-

plate ligand. To measure chemical complementarity, we

used the ImplicitMillsDean color force field. All best

overlays were sorted by their similarity score and then an

RMSD tolerance value of 4 Å was applied to determine

top five docking poses with conformational diversity.

RESULTS

Benchmark set

Benchmark proteins for BSP-SLIM were taken from

the Astex diverse set.38 This set consists of diverse

protein-ligand complexes with high-resolution and

presents interesting drug targets for pharmaceutical and
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agrochemical industry. In the Astex diverse set, we

excluded complex structures in which the ligand binding

site is shared by more than one protein chain. The final

benchmark set consists of 76 complexes and listed in

Table I. We only considered 71 benchmark targets whose

template holo-structures are observed when we applied

the filtering criteria described in ‘‘Filtering of Searched

Templates’’ section of BSP-SLIM Algorithm (the excluded

five targets are 1GPK, 1JD0, 1JLA, 1R1H, and 1YV3).

Protein structure prediction

Protein 3D models were built from the sequences of the

benchmark proteins, using I-TASSER.26,39,40 I-TASSER

is a hierarchical approach to protein structure predictions

which consists of two steps. The first step is the template

structure identification from the PDB library using a

locally installed meta-server threading program

(LOMETS).41 In the second step, the continuously

aligned fragments (>5 residues) excised from the

LOMETS template structures are assembled into full-

length models by the replica-exchange Monte Carlo simu-

lations42 under the guide of consensus restraints from the

LOMETS templates. The models are selected from the

low-temperature replicas by the SPICKER clustering pro-

gram43 with the final atomic structures constructed by

REMO through the optimization of hydrogen-bonding

networks.44 For the purpose of testing models on nonho-

mologous structure predictions, all structural templates

with a sequence identity to the target >30% or detectable

by PSI-BLAST with E-value <0.5 were excluded from the

threading library in the I-TASSER modeling. For each

target protein, we generated a variety of models ranked by

a confidence score called C-score,45 which is a com-

bination of the significance score of threading template

Table I
Protein/Ligand Names and the Results of I-TASSER Structure Predictions in the Benchmark Set

Entry Chain Ligand TM-scorea RMSDb Entry Chain Ligand TM-scorea RMSDb

1GKC A BUM 0.74 2.52 1Q41 A IXM 0.66 0.83
1GPK A HUP 0.88 1.65 1Q4G A BFL 0.71 5.07
1HNN A SKF 0.66 5.92 1R1H A BIR 0.25 10.52
1HP0 A AD3 0.82 4.40 1R55 A 097 0.87 0.81
1HQ2 A PH2 0.81 7.11 1R58 A AO5 0.80 1.69
1HVY A D16 0.70 4.84 1R9O A FLP 0.86 2.52
1HWW A SWA 0.75 2.52 1S19 A MC9 0.85 2.30
1IA1 A TQ3 0.82 1.73 1S3V A TQD 0.86 0.97
1IG3 A VIB 0.85 1.00 1SJ0 A E4D 0.81 2.50
1J3J A CP6 0.63 5.96 1SQ5 A PAU 0.74 2.22
1JD0 A AZM 0.88 0.48 1SQN A NDR 0.84 0.97
1JJE A BYS 0.91 2.35 1T40 A ID5 0.83 6.32
1JLA A TNK 0.59 2.91 1T46 A STI 0.84 1.91
1K3U A IAD 0.92 2.37 1TOW A CRZ 0.92 1.22
1KE5 A LS1 0.80 1.42 1TT1 A KAI 0.78 4.08
1L2S A STC 0.83 1.61 1U4D A DBQ 0.79 1.84
1L7F A BCZ 0.44 7.70 1UML A FR4 0.89 2.21
1LPZ B CMB 0.88 0.84 1UNL A RRC 0.88 2.03
1LRH A NLA 0.67 3.77 1UOU A CMU 0.67 3.62
1M2Z A DEX 0.86 1.17 1V0P A PVB 0.84 1.18
1MEH A MOA 0.67 1.05 1V48 A HA1 0.75 3.29
1MMV A 3AR 0.32 8.61 1V4S A MRK 0.91 2.22
1MZC B BNE 0.75 1.16 1VCJ A IBA 0.64 7.03
1N1M A A3M 0.88 5.12 1W1P A GIO 0.74 0.85
1N2J A PAF 0.63 0.58 1W2G A THM 0.78 1.79
1N2V A BDI 0.84 1.51 1X8X A TYR 0.84 1.08
1N46 A PFA 0.82 1.64 1XM6 A 5RM 0.76 3.81
1NAV A IH5 0.82 1.67 1XOQ A ROF 0.88 0.83
1OF1 A SCT 0.76 1.86 1XOZ A CIA 0.84 1.40
1OF6 A DTY 0.70 2.25 1Y6B A AAX 0.67 1.56
1OPK A P16 0.57 2.32 1YGC H 905 0.91 1.55
1OQ5 A CEL 0.23 7.37 1YQY A 915 0.41 10.53
1OWE A 675 0.92 0.96 1YV3 A BIT 0.21 12.58
1OYT H FSN 0.89 3.58 1YVF A PH7 0.78 4.20
1P2Y A NCT 0.87 1.71 1YWR A LI9 0.74 1.36
1P62 B GEO 0.78 1.16 1Z95 A 198 0.86 0.94
1PMN A 984 0.74 1.18 2BR1 A PFP 0.80 1.13
1Q1G A MTI 0.82 1.37 2BSM A BSM 0.62 3.27

Average 0.75 2.92

aTM-score of the full-length I-TASSER model compared to the native.
bThe Ca RMSD (Å) of the I-TASSER model to the native in the binding site residues.
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recognitions and the structure convergence score of the

structure assembly simulation, and highly correlated with the

quality of the final models. Only the first model of the high-

est C-score was used for further experiments. As a quality

assessment of the I-TASSER models, the TM-scores28 and

binding-site Ca RMSD between the modeled structures and

the experimental structures are listed in Table I.

BSP-SLIM results in comparison with SLIM

First, the performance of our developed BSP-SLIM is

compared to that of SLIM against the benchmark pro-

teins. The SLIM method originally uses only one binding

site, which is in general determined from the geometric

center of the cognate ligand bound to holo-receptor. To

directly evaluate the two methods under a blind docking

condition, the algorithms of the SLIM method for nega-

tive image generation were modified. Box centroid was

determined by a geometric center of the cognate ligand

in the holo-structure and a larger box of 50 Å size for X,

Y, and Z was used for grid point generation. For the I-

TASSER models, the box centroid is obtained from native

crystal ligand structures transferred into the model pro-

tein structures upon the structure superposition. Remain-

ing grid points after successive grid filtering procedures

were clustered by their spatial proximity using a cutoff

distance of 3.46 Å, which is the longest distance between

different grid points in a cubic lattice. Multiple binding

sites were defined by the geometric center of grid points

belonging to each grid cluster.

We evaluate the performance based on three quantities:

the distance of the geometric center of the docked ligand

from that of cognate ligand in crystal holo-structure

(binding-site error), the RMSD of the docked ligand

from the cognate ligand (ligand RMSD), and success

rate. The success rate of binding site prediction is defined

as the percentage of targets which have a binding-site

error below 4 Å; similarly, the success rate of ligand pose

prediction is defined as the percentage of targets which

have a ligand RMSD below 4 Å.

As shown in Figure 3(A,C), BSP-SLIM shows a signifi-

cant improvement on the ability in positioning target

Figure 3
Summary of ligand binding modeling results by BSP-SLIM, SLIM, LIGSITECSC, and AutoDock. A: Percentage of targets vs. binding-site errors using

I-TASSER protein models. B: Percentage of targets versus binding-site errors using crystal protein structures. C: Percentage of targets versus ligand

RMSD using I-TASSER protein models. D: Percentage of targets versus ligand RMSD using crystal protein structures. AutoDock (10) and

AutoDock (100) mean that the AutoDock docking simulations consisted of 10 and 100 docking runs, respectively. The binding-site error and ligand

RMSD were presented using the best of top five prediction results. Dashed lines depict the cutoff distance for estimating the success rate.
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ligands at their native positions, as well as in reproducing

their native ligand conformations, compared to SLIM

when using the I-TASSER protein models. The median

value of binding-site error by BSP-SLIM (1.77 Å) is 3.82

Å lower than that of SLIM (5.59 Å) (see Table II). The

success rate of binding site prediction by BSP-SLIM

(78.8%) is 195% higher than that by SLIM (26.7%). The

median value of the ligand RMSD by BSP-SLIM (3.99 Å)

is 3.12 Å lower than that of SLIM (7.11 Å). The success

rate of binding pose prediction by BSP-SLIM (50.7%) is

417% higher than that by SLIM (9.8%). The results

clearly show that the utilization of putative ligand bind-

ing sites predicted by template-based transfer is highly

useful to enhance the performance of SLIM-based blind

docking.

Figure 4 shows the accuracy of the binding site assign-

ment as predicted based on both I-TASSER models and

the experimental structures. Obviously, the number of

putative binding sites does not significantly change the

docking performance. Actually, SLIM has a higher num-

ber of binding sites according to the data; but the accu-

racy of binding site assignment is much worse. On aver-

age, the minimum binding-site error among all the pre-

dicted binding sites for the I-TASSER models (and

crystal protein structures) are 6.50 Å (5.92 Å) and 2.68 Å

(2.23 Å) in SLIM and BSP-SLIM, respectively.

In Figure 5, we show two typical examples of negative

images which were generated at different binding sites. In

case where the binding site is defined as the geometric

center of a cognate ligand and the longest distance

between any ligand atom and the centroid is used as a

cutoff distance to obtain a negative image of a specific

size, the extracted negative image has a similar shape to

the ligand [Fig. 5(A)]. In contrast, if the binding site is

defined as a position remote from the geometric center

of the cognate ligand [Fig. 5(B)], the generated negative

image may have a totally different shape from the cog-

nate ligand and thus cannot be appropriately used for

accurate shape and chemical feature similarity compari-

son. These examples indicate that accurate assignment of

ligand biding site is essential to yield reliable results from

the SLIM-based docking and better performance of BSP-

SLIM comes from the ability of the template-based

method in precisely predicting ligand binding sites.

The extent of binding site conservation used only in

BSP-SLIM is an additional factor that may affect the

docking performances. An improvement is achieved,

when the binding site conservation is incorporated in the

original SLIM docking scoring function. For example, the

median ligand RMSD of BSP-SLIM with the refined scor-

ing function is 0.37 Å lower than that with the original

one. The extent of the improvement by binding site con-

servation, however, is not as noticeable as by accurate

assignment of ligand biding site.

Table II
Summary of Binding-Site Prediction and Ligand Docking Results on 71

Astex Diverse Targets

Median binding-site error,
� (successful rate)a

Median ligand RMSD, �
(successful rate)a

Crystal Model Crystal Model

BSP-SLIM 1.08 (84.5%) 1.77 (78.8%) 3.12 (69.0%) 3.99 (50.7%)
SLIM 5.61 (39.4%) 5.59 (26.7%) 7.53 (16.9%) 7.11 (9.8%)
AutoDock (10) 1.21 (71.8%) 8.23 (22.5%) 3.39 (56.3%) 10.03 (8.4%)
AutoDock (100) 0.69 (87.3%) 8.00 (29.5%) 1.52 (74.6%) 9.93 (15.4%)
LIGSITECSC 3.79 (52.1%) 5.20 (32.3%) NA NA

aA target is defined as successful when the binding-site error or the ligand RMSD

is < 4 Å.

Figure 4
Number of predicted ligand binding sites versus the minimum binding-site errors. The minimum binding-site error for a given target protein was

determined by the closest distance of all predicted binding sites from the geometric center of the native ligand. A: Crystal structures. B: I-TASSER

models.
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As a control, we also run BSP-SLIM and SLIM on the

experimental protein structures [Fig. 3(B,D)]. As expected,

the docking performance of BSP-SLIM on crystal structure

becomes obviously better than that on I-TASSER

models in the high-resolution regions (e.g., binding-site

error < 2 Å). However, the results are comparable in the

low resolution binding regions, demonstrating the ability

of BSP-SLIM on low-resolution target structures. Again,

BSP-SLIM showed a significant better performance than

SLIM in both binding site error and the ligand RMSD in

all binding-resolution ranges when using the crystal pro-

tein structures.

Comparison of BSP-SLIM and LIGSITECSC in
ligand binding site prediction

The ability of BSP-SLIM to position ligands at their

native sites is compared with that of LIGSITECSC [Fig.

3(A,B)]. LIGSITECSC is one of the most widely used tools

for ligand binding site prediction, where potential ligand

binding sites are identified using pocket detection algo-

rithms based on a geometric analysis.8 BSP-SLIM outper-

forms LIGSITECSC when using both I-TASSER structures

as well as experimental structures. The success rates of

binding site prediction of BSP-SLIM and LIGSITECSC are

84.5% and 52.1% when using the crystal protein struc-

tures, respectively (Table II). The success rate of LIGSI-

TECSC deteriorates much more significantly than that of

BSP-SLIM if the modeled protein structures are used

instead of the crystal ones. Using the I-TASSET protein

models, the success rate of BSP-SLIM is dropped off by

5.7% while that of LIGSITECSC by 19.8%. When I-TASSER

models are used, the success rate of BSP-SLIM (78.8%) is

144% higher than that of LIGSITECSC (32.3%). The me-

dian value of the binding-site error by BSP-SLIM (1.77 Å)

is 3.43 Å lower than that of LIGSITECSC (5.20 Å).

Comparison of BSP-SLIM with autodock in
blind ligand docking

Although ligand binding site prediction is important

to tell what residues the ligands interact with on the pro-

tein molecules, we often need to know how the ligands

interact with the proteins, that is the pose of ligand–pro-

tein complexes. Here, we examine the ability of BSP-

SLIM in blind ligand–protein docking mainly in compar-

ison with that of AutoDock. AutoDock is currently the

only freely available docking tool specifically adapted for

blind docking experiments.14

In the blind docking, ligand docking conformations

are searched on the entire protein surface. To evaluate

the AutoDock performance, we make two sets of Auto-

Dock runs using 10 and 100 genetic algorithm-based

docking iterations (or GA runs) (Fig. 3). When using the

crystal protein structures, AutoDock implemented by 10

GA runs yields a success rate of 71.8% in binding site

prediction (Table II), which is lower than that of BSP-

SLIM (84.5%). Increasing the sampling to 100 GA runs

enhances the docking performance of AutoDock and

yields a slightly better accuracy (87.3%) than BSP-SLIM,

although this will significantly increase the CPU cost.

If using the I-TASSER modeled proteins structures,

however, the success rate of AutoDock with 10 and 100

GA runs are rapidly reduced to 22.5% (with a 49.3%

drop-off) and 29.5% (with a 57.8% drop-off), respec-

tively, indicating a significant dependence of AutoDock

performance on the protein structure resolution. Overall,

BSP-SLIM outperforms AutoDock in binding site predic-

tion with 10 and 100 GA runs by 250% and 167%,

Figure 5
Comparison of negative images generated at two different binding sites. The binding site is displayed as red spheres. The illustrated figures were

prepared using the PDB entry 1IA1. A: The geometric center of the cognate ligand in the holo-structure was used as the coordinates of the binding

site. B: The binding site was translated by 5 Å in X, Y, and Z direction from the geometric center of the cognate ligand. The receptor and ligand are

shown in a ribbon and a stick representation, respectively. The extracted negative images are displayed as a mesh representation. [Color figure can
be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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respectively, when using the I-TASSER protein models.

The median values of binding-site error by BSP-SLIM is

6.46 Å and 6.23 Å lower than that of AutoDock with 10

(8.23 Å) and 100 GA runs (8.00 Å), respectively.

The reason for the difference in the sensitivity of two

approaches is their force fields and search engines. Auto-

Dock uses semi-empirical free energy force field based on

all heavy atoms and polar hydrogen atoms to evaluate

docking conformations.33 The pair-wise energy terms

consist of 6/12 potential-based dispersion/repulsion, 10/

12 potential-based hydrogen bond, screened Coulomb

potential for electrostatics, and desolvation potential. The

energy value calculated by the potential functions varies

sensitively with distance between two interacting atoms.

This is necessary to specifically capture the features of

the binding pocket that are critical for ligand recognition

when the resolution of receptor structure is high. For the

low resolution receptor structures, however, this high

specificity of all atom ligand docking method is signifi-

cantly deteriorated by the structural distortions of the

binding pocket. In BSP-SLIM, however, the binding

pocket is decided mainly by the global structural similar-

ity of the target and templates which is much less sensi-

tivity to the local distortion of the protein models.

Again, when using the crystal structure, AutoDock

with 100 GA runs shows a better performance than BSP-

SLIM in ligand pose prediction. The median ligand

RMSD by AutoDock with 100 GA runs and BSP-SLIM is

1.52 Å and 3.12 Å, respectively. When the I-TASSER

models are used, however, the docking pose accuracy of

AutoDock is reduced dramatically while that of BSP-

SLIM only drops off modestly. Overall, BSP-SLIM on the

modeled protein structures yields a median RMSD of

3.99 Å, where those for AutoDock with 10 and 100 GA

runs are 10.03 Å and 9.93 Å, respectively. The success

rate of BSP-SLIM (50.7%) is 229% higher than that of

AutoDock with 100 GA runs (15.4%).

Despite the advantage of BSP-SLIM, it should be men-

tioned that the difference of BSP-SLIM and AutoDock in

the ligand pose predictions in the range below 2 Å, a

region which is essential for practical drug screening, is

small when using predicted receptor models [see

Figure 6
Examples of docking poses successfully generated by BSP-SLIM using the I-TASSER predicted model structures. The native and docked ligands are

shown in a stick representation colored gray and black, respectively. Crystal protein structures are displayed as gray lines. The PDB entries of the

target holo-structures used for these figures are (A) 1P62, (B) 1XOQ, (C) 1HP0, and (D) 1V48.
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Fig. 3(C)]. This is mainly limited by the resolution of

the receptor structures which have an average structural

deviation around 3 Å in the binding site. It is currently

infeasible to have the ligand pose predictions much beyond

the resolution limit from the protein structure prediction.

In Figure 6, we present four typical examples where

ligands were successfully docked with the I-TASSER pre-

dicted models, from human deoxycytidine kinase (PDB

ID: 1P62) with ligand RMSD 5 1.55 Å, human phospho-

diesterase 4D (PDB ID: 1XOQ) with a ligand RMSD 5
1.59 Å, inosine-adenosine-guanosine-preferring nucleoside

hydrolases (PDB ID: 1HP0) with a ligand RMSD 5 2.14 Å,

and purine nucleoside phosphorylase (PDB ID: 1V48)

with a ligand RMSD 5 2.41 Å. The binding site Ca-RMSD

of the protein models to the native for the four targets are

1.16 Å, 0.83 Å, 4.40 Å, and 3.29 Å, respectively.

Application of BSP-SLIM in virtual ligand
screening

In addition to docking accuracy, the computational

speed of docking programs determines their applicability

for large-scale and high-throughput virtual ligand screen-

ing. An average docking time of BSP-SLIM on one target

is 11 s, which is 42 and 413 times faster than AutoDock

with 10 GA runs (460 s) and 100 GA runs (4543 s),

respectively. The high docking speed shows the advantage

of BSP-SLIM in the application for large-scale virtual

ligand screening, whereas blind docking by classical dock-

ing tool usually requires much higher computing time

which can be impractical for high-throughput experi-

ments. Case studies to demonstrate the performance of

BSP-SLIM in virtual ligand screening are described.

The results of I-TASSER structure predictions and the

number of putative ligand binding sites predicted by

template-based transfer for each target protein (CDK2,

EGFr, FGFr1, PDE5, Thrombin, and TK) are summarized

in Table III. The I-TASSER models of the six target pro-

teins are illustrated in Figure 7, where all homologous

templates with sequence identity >30% or detectable by

PSI-BLAST were excluded from the threading template

library during the I-TASSER structure assembly. Putative

ligand binding sites predicted through the binding site

prediction procedures of BSP-SLIM are also displayed in

the model structures. The figures show that most of the

predicted binding sites are assigned in the region where

the crystal ligands are bound.

The performances of BSP-SLIM in real-case large-scale

virtual screening experiments for the six targets are

presented in Figure 8, which include DUD actives and

120,160 background compounds obtained from the Asinex

Platinum Collection. For quantitative measurement of

virtual screening performances, we plot receiver-operat-

ing-characteristic (ROC) curves from the prediction

results. The plots show that the performance of BSP-SLIM

in prioritizing active compounds is on average significantly

better than random selection. The average area-under-

curve (AUC) calculated from the ROC curves is 0.76 (Table

IV). As a control, we also run DOCK6 on the model struc-

tures. We note that the ligand binding site used for the

DOCK6 simulations was defined by crystal ligand structure

transferred from a holo-crystal structure, thus the DOCK6

experiments are not blind docking. DOCK6 yields 0.49

AUC on average, indicating an overall worse hit ranking

ability than BSP-SLIM.

BSP-SLIM prioritizes known active compounds of 25%

and 50% in the top 9.2% and 17% of the screening

library on average, respectively, while DOCK6 only does

it in the top 26.1% and 55.5% (Table IV). These results

suggest that computationally inexpensive docking algo-

rithms of BSP-SLIM should be a useful approach for high-

throughput virtual screening based on theoretically pre-

dicted drug target whose ligand binding site information is

not available. Here, we have presented the virtual screening

performance results on a randomly selected set of six tar-

gets. Despite the demonstrated advantage of BSP-SLIM in

the virtual screening application, it should be mentioned

that virtual screening performance is usually target-depend-

ent and thus large-scale analyses based on more protein

targets might be needed for further validation.

Comparison of BSP-SLIM with TLBD

We have compared the blind docking performance of

the BSP-SLIM method and the template ligand-based

blind docking (TLBD) method in terms of the RMSD of

the docked ligand from the cognate ligand [Fig. 9(A)].

The TLBD method showed better pose prediction ability

than BSP-SLIM in the high-resolution regions. (e.g.,

ligand RMSD < 3 Å). However, the results were compa-

rable in the low resolution binding regions. The median

value of ligand RMSD by TLBD (3.38 Å) is 0.61 Å lower

than that by BSP-SLIM (3.99 Å).

The number of steric clashes between ligand and re-

ceptor heavy atoms is compared in Figure 9(B). Steric

clash was evaluated by the ‘‘overlap factor,’’ which is the

ratio of the distance between two atom centers to the

Table III
The Results of I-TASSER Structure Predictions, the Number of Putative

Ligand Binding Sites Predicted by Template-Based Transfer and the

Number of Active Compounds in the Screening Library For Virtual

Screening Target Proteins

TM-scorea RMSDb
Number of

predicted sites
Number
of actives

CDK2 0.86 1.99 22 72
EGFr 0.86 3.49 14 100
FGFr1 0.90 0.91 18 100
PDE5 0.93 1.22 6 88
Thrombin 0.91 4.28 13 72
TK 0.93 1.65 3 22

aTM-score of the full-length I-TASSER model compared to the native.
bThe Ca RMSD (Å) of the I-TASSER model to the native in the binding site resi-

dues.
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sum of their van der Waals radii. If the overlap factor of

any atom pair is less than 0.65, it is defined as a steric

clash. The results clearly show that TLBD causes severe

steric clashes, compared to BSP-SLIM. It results from the

docking algorithm of TLBD which determines the dock-

ing poses of target ligand based on structural overlay

onto template-ligands without taking into account the

binding site geometry.

We have plotted the best ligand RMSD as a function

of similarity score of the target ligand to the template

ligand producing the best ligand RMSD [Fig. 10(A,B)].

BSP-SLIM showed much lower correlation (r 5 20.26)

with the similarity than TLBD (r 5 20.64), demonstrat-

ing that the ligand pose prediction ability of the template

ligand-based approach is strongly dependent on the

structural similarity between target and template ligand.

To further characterize the template-ligand dependence

of the TLBD method in blind docking performance, we

have plotted the percentages of successful targets in terms

of similarity score cutoff [Fig. 10(C)]. In this plot, the

percentage of successful targets was determined as a per-

centage of successful targets (< 4 Å) among a set of

benchmark targets having the template ligand similarity

score below any cutoff. In the case where target ligand

has high similarity to template ligand (e.g., � 2.0 and �
1.75), TLBD outperformed BSP-SLIM. However, BSP-

SLIM showed comparable or better performance for the

benchmark targets whose native ligand has lower similar-

ity to template ligand (e.g., � 1.5 and � 1.25). This also

shows obvious dependence of the TLBD performance on

the structural similarity between target and template

ligand.

Next, we have applied the TLBD method in a large-

scale EGFr virtual screening experiment (Fig. 11). TLBD

showed an enhanced ability in prioritizing the EGFr

active compounds, compared with BSP-SLIM. However,

when the best similarity scores between template ligands

and active compounds were artificially reduced by 0.1,

the performance of TLBD was seriously deteriorated and

worse than that of BSP-SLIM. It demonstrates that the

presence of a template ligand highly similar to active

compounds is necessary to obtain reliable virtual screen-

ing performance and slight reduction of the similarity

may cause significant drop-off of the performance.

Figure 7
The structures of the I-TASSER models used for large-scale virtual screening validation. The overall structures of the models are displayed by a

ribbon representation. Ligand structures shown in a stick representation were transferred from holo-crystal structures of each target upon the

structure superposition. Predicted ligand binding sites by BSP-SLIM are also displayed by green spheres.
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Together, the data indicate that the TLBD method has

merit in blind docking. To yield good performance, how-

ever, the existence of a template ligand having very high

structural similarity to target ligand is necessary. In addi-

tion, TLBD causes severe steric clashes between ligand

and receptor due to its docking algorithm which does

not take into account the binding site geometry.

DISCUSSION AND CONCLUSIONS

Molecular docking is one of the most commonly used

computational tools for structure-based drug design. It

results from its ability to theoretically predict the binding

mode as well as binding affinity of small molecules for

given target proteins. Since most drug target proteins

have no experimental structure available, a challenging

issue is how one can generate reliable docking results

using low-resolution models from protein structure pre-

dictions. To tackle this issue, we have developed BSP-

SLIM, a novel docking method that utilizes putative

ligand binding sites transferred from structural analogies

of other crystal protein holo-structures. The binding

poses are then refined by the SLIM docking algorithm

based on binding pocket shape and chemical feature

complementarities. Because the template-based binding-

site transferring uses the global topology similarity of

receptor structures and the ligand poses are determined

by low-resolution docking method, the performance of

BSP-SLIM is much less sensitive to the local structural

errors in the predicted model structures.

Table IV
AUC Values and Percentage of the Ranked Compounds Necessary to

Find 25% and 50% of the Actives, Yielded by BSP-SLIM and DOCK6

AUC
% of db to find
25% of actives

% of db to find
50% of actives

BSP-SLIM DOCK6 BSP-SLIM DOCK6 BSP-SLIM DOCK6

CDK2 0.59 0.35 16.4 54.7 34.5 72.4
EGFr 0.81 0.39 4.2 32.6 14.5 79.9
FGFr1 0.68 0.49 10.8 14.3 18.3 58.2
PDE5 0.89 0.57 1.9 13.6 7.1 44.3
Thrombin 0.66 0.66 21.6 3.1 27.0 19.6
TK 0.95 0.47 0.5 38.0 0.8 58.5
Avg. 0.76 0.49 9.2 26.1 17.0 55.5

The average values are also depicted in the table.

Figure 8
ROC plot validation of BSP-SLIM blind virtual screening on CDK2, EGFr, FGFr1, PDE5, Thrombin and TK model.

H.S. Lee and Y. Zhang

106 PROTEINS



We tested the approach on benchmark proteins from

the Astex diverse set with the receptor structure predicted

by I-TASSER, an algorithm which has shown significant

advantage in recent blind CASP experiments,40,46 large-

scale benchmark test,39,45 and genome-wide protein

structure predictions.47,48 To avoid contamination of

homologous templates, all solved proteins with a

sequence identity to the target >30% or detectable by

PSI-BLAST were excluded from our threading template

library and the ligand-binding template library. It was

shown that the template-based binding-site inference by

the structure comparison can significantly improve the

ability of SLIM-based ligand docking. Compared to

SLIM, BSP-SLIM has the binding-site prediction accuracy

increased by 195% and the median ligand RMSD

reduced by 3.12 Å.

Furthermore, when the ability of the binding site pre-

diction was compared with that of a geometry-based

method, LIGSITECSC, the BSP-SLIM method outper-

formed the geometry-based one for both experimentally

solved and theoretically predicted protein structures. The

ability of the geometry-based method in detecting bind-

ing sites significantly decreased by the local structural

distortions present in the predicted structures, whereas

BSP-SLIM showed consistent performance. It is noted

that our control of BSP-SLIM was made mainly on the

classic methods which have the programs publicly down-

loadable to facilitate the calculations on our benchmark

proteins. The BSP-SLIM takes a template-based binding-

site prediction procedure similar as FINDSITE proposed

by Brylinski and Skolnick10 which identified ligand bind-

ing sites from threading templates. In BSP-SLIM, the

binding site is detected by structurally matching target

models to all structural analogies in our library which

are not necessarily detectable by threading algorithms.

The employment of the threading-free template search

indeed results in small but statistically significant

improvement of BSP-SLIM over FINDSITE in binding-

site predictions. The detailed comparisons of the bind-

ing-site predictions with FINDSITE have been described

somewhere else (Roy et al., 2011, submitted).

When compared with the widely-used blind docking

tool, AutoDock, BSP-SLIM demonstrated remarkable

advantage in docking on low-resolution structures pre-

dicted by I-TASSER. For example, the success rate of

binding site prediction of BSP-SLIM is 167% higher than

AutoDock. Meanwhile, the median ligand RMSD to the

native by BSP-SLIM is 5.94 Å lower than AutoDock. We

believe that the robustness of BSP-SLIM on low-resolu-

tion protein structures mainly stemmed from the conser-

vation of ligand binding among homologous and analo-

gous proteins. Confining the docking calculation in reli-

able regions increases docking accuracy by excluding false

positive binding sites that would be present in the pre-

dicted structures. In addition, the low-resolution docking

algorithm of SLIM, which is much tolerant to structural

deformation in the ligand binding region than all atom-

based docking methods, is able to improve the docking

accuracy.

Finally, as illustrative examples of virtual ligand screen-

ing, we applied BSP-SLIM to the docking of six target

proteins where the structure models are generated by I-

TASSER from the target protein’s sequence without using

homologous templates. BSP-SLIM was able to efficiently

prioritize known active compounds in the screening

libraries, offering the possibility of utilization of theoreti-

cally predicted protein structures to docking experiments

for structure-based drug design.

Several studies on low-resolution docking approaches

have been reported. FINDSITELHM,12 an evolution-based

ligand docking approach by homology modeling, super-

imposes a target ligand onto a conserved substructure

Figure 9
A: Docking performance comparison of BSP-SLIM with TLBD. Percentage of targets is plotted in terms of ligand RMSD using I-TASSER protein

models. B: Comparison of the number of steric clashes between ligand and receptor heavy atoms.
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(called an anchor) derived from template-bound ligands

to predict the binding mode of the target ligand. Q-

DockLHM is a docking method using knowledge-based

potential for low-resolution flexible ligand docking.49

Protein and ligand are represented by a coarse-grained

model and ligand conformations are sampled using the

Replica Exchange Monte Carlo docking protocol with

harmonic RMSD restraints imposed on the predicted

anchor-binding pose. Although FINDSITELHM, Q-

DockLHM and BSP-SLIM all use binding-sites transferred

from template structures, BSP-SLIM does not employ the

anchor conformation derived from the template-bound

ligands in order to predict native binding mode of a tar-

get ligand. It suggests that our method can be widely

applied to docking experiments for ligands with diverse

scaffolds, regardless of the existence of conserved sub-

structures.

Our research has aimed at developing receptor struc-

ture-centric blind docking methodology. Docking per-

formance of BSP-SLIM is independent of the structures

of template ligands once the putative ligand binding sites

are determined by the template ligands. Using the identi-

fied template ligands instead of the negative images may

be an alternative approach for blind docking. We have

evaluated the docking performance of the Template

Ligand-based Blind Docking (TLBD) method. In particu-

lar, the TLBD method showed better pose prediction

ability than BSP-SLIM in the high-resolution region.

Figure 10
The ligand RMSDs by (A) BSP-SLIM and (B) TLBD as a function of similarity scores of the target ligand to the template ligand producing the

ligand RMSD. A correlation of the ligand RMSDs with the similarity scores was determined by Pearson product moment correlation coefficient. C:

The percentage of successful targets plotted in terms of similarity score cutoff.
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However, the ligand structure-centric TLBD method

causes severe steric clashes between ligand and receptor. In

addition, the existence of a template ligand with very high

structural similarity to target ligand was necessary to yield

good performance. Both of the blind docking methods

have their own superior features. We suggest that the

template ligand-based method is a tool complementary,

especially in the case where highly similar template ligand

to target one exists, to BSP-SLIM and can enhance the per-

formance of blind docking and virtual screening.

Given the robustness of an integrated methodology in

which the template-based ligand binding site prediction

are incorporated with the low-resolution docking, we

believe that BSP-SLIM, combined with I-TASSER, should

constitute a promising pipeline for predicting receptor-

ligand interactions, starting from target proteins’ sequen-

ces. In addition, the application of the computationally

inexpensive BSP-SLIM algorithm should be useful in

large-scale virtual screening based on theoretically pre-

dicted structures of important disease targets.
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