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ABSTRACT

We have developed a new COFACTOR webserver
for automated structure-based protein function
annotation. Starting from a structural model, given
by either experimental determination or computa-
tional modeling, COFACTOR first identifies
template proteins of similar folds and functional
sites by threading the target structure through
three representative template libraries that have
known protein–ligand binding interactions, Enzyme
Commission number or Gene Ontology terms. The
biological function insights in these three aspects
are then deduced from the functional templates,
the confidence of which is evaluated by a scoring
function that combines both global and local
structural similarities. The algorithm has been
extensively benchmarked by large-scale bench-
marking tests and demonstrated significant advan-
tages compared to traditional sequence-based
methods. In the recent community-wide CASP9
experiment, COFACTOR was ranked as the best
method for protein–ligand binding site predictions.
The COFACTOR sever and the template libraries are
freely available at http://zhanglab.ccmb.med.umich
.edu/COFACTOR.

INTRODUCTION

The biological function of a protein molecule is decided
by its 3D-shape, which eventually determines how the
molecule interacts with other molecules in living cells.
As such, considerable efforts have been made to
determine the structure of the protein molecules and to
deduce the biological functions based on their 3D-shape
(1–3). One of the most common structure-based
approaches in protein function annotation is to detect
homologous template proteins by global structure com-
parisons and then transfer known functional annotations

from the templates (2,4,5). However, the evidence of
global structural similarity is usually insufficient for
accurate functional inference, as proteins possessing
similar global fold can perform different biological func-
tions. The classic examples include the proteins with
a-/b-barrel fold, which is inhabited by both enzymatic
and non-enzymatic proteins (6). Accordingly, many con-
temporary approaches have been designed to identify
local structural similarity of functionally important
residues for drawing functional inferences (7,8).
However, the functional annotation based on local struc-
ture alone can result in high false-positive rate, especially
when the target protein has a low sequence identity to
the template proteins or the target structure on its own
has a low-resolution 3D structure (3,9).
In this study, we describe a newly developed

COFACTOR server, which combines both global and
local structural comparison algorithms to deduce the bio-
logical functions of proteins, starting from their 3D struc-
ture. The output of the server includes function
annotations in three key aspects: protein–ligand binding
interactions, Enzyme Commission (EC) (10) and Gene
Ontology (GO) (11). Keeping in mind that high-resolution
experimental structures are unavailable for most of the
protein targets in genome databases, the algorithm has
been extensively trained for low-resolution structures
generated from computational structure predictions.
Meanwhile, experimental structures undoubtedly meet
the highest structural requirement and the predic-
tion accuracy improves using these structures. In both
large-scale benchmark (12) and blind experiments (2),
the COFACTOR method has demonstrated significant
advantages over other state-of-the-art sequence- or
structure-based comparative methods.

MATERIALS AND METHODS

COFACTOR algorithm

The input to the COFACTOR server is the 3D-structure
of a target protein, which can be obtained from

*To whom correspondence should be addressed. Tel: +1 734 647 1549; Fax: +1 734 615 6553; Email: zhng@umich.edu

Published online 8 May 2012 Nucleic Acids Research, 2012, Vol. 40, Web Server issue W471–W477
doi:10.1093/nar/gks372

� The Author(s) 2012. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/3.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

 at U
niversity of M

ichigan on Septem
ber 7, 2012

http://nar.oxfordjournals.org/
D

ow
nloaded from

 

http://zhanglab.ccmb.med.umich.edu/COFACTOR
http://zhanglab.ccmb.med.umich.edu/COFACTOR
http://nar.oxfordjournals.org/


either structure prediction or experimental determination.
Figure 1 shows a general overview of the procedure
followed on the COFACTOR server and the analysis
done using the server, which includes detection of struc-
tural analogs in the PDB library and prediction of three
different aspects of protein function, namely, EC
numbers, GO terms and ligand binding sites. The
structure-based function inferences are made in two
steps, i.e. global structural alignment followed by local
structural similarity search.

Global structural similarity identification
COFACTOR first identifies the template proteins of
similar fold/topology by matching the query structure
with all proteins in three newly developed representative
functional libraries, which have known protein–ligand
binding information, EC numbers and GO terms
(J. Yang, A. Roy and Y. Zhang, submitted for
publication). The global structure match is conducted by
TM-align (13), a heuristic algorithm for global protein
structure alignment, which starts from multiple seed align-
ments (gapless threading, secondary structure match and

the combination of the two), followed by Needleman–
Wunsch dynamic programming refinement (14). The
objective function of the TM-align searching is
TM-score (15):

TM� score ¼ max
1

L

XLali

i¼1

1

1+ di
d0

� �2

2
64

3
75 ð1Þ

where di is the distance between ith pair of Ca atoms of
query and template and Lali is the number of aligned
residue pairs identified by TM-align. d0 is given by
d0 ¼ 1:24

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L� 153
p

� 1:8 and L is the length of the query
protein. Since TM-score weights the short-distance residue
pairs stronger than the long-distance ones, it is more sen-
sitive to the global topology of proteins than the trad-
itional structural similarity measurement RMSD.
Meanwhile, because only the aligned residues are
calculated in the summation which is normalized by the
target length, TM-score in Equation (1) counts for both
alignment accuracy and the alignment coverage in a single
parameter. Generally, a protein pair with TM-score >0.5

Figure 1. Illustration of structure-based function annotation by the COFACTOR server, starting from the query structure (shown in green).
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indicates that they have the same fold while that with
TM-score <0.3 have random structural similarity (16).

The global structural alignment between the query and
template structures is useful for exploring fold/family
relationships of newly solved structure or predicted struc-
tural models. However, some folds are functionally
diverse and in these cases, function can be accurately pre-
dicted only by evaluating the similarity of active/binding
site residues that are involved in the function. Moreover,
in many cases, the functional motifs remain conserved
during the evolution to maintain the function, even
when the global structural similarity dwindles. Thus, a
local sequence and structural comparion of functional
sites may provide a more reliable way of functional anno-
tation for the query proteins.

Accordingly, on COFACTOR server, all template
proteins with a non-random structural similarity (i.e.
TM-score> 0.3) (16) to the query structure (or up to 100
top templates regardless of TM-score are used if <100
non-random templates are identified) in each of the
three function libraries (see below) are screened further
based on their local similarity to query structure.

Local functional site identification
In the second step, a heuristic algorithm has been
developed to identify the best local functional site match
between the query and template structures. In Figure 2, a
multiple sequence alignment is first constructed and evo-
lutionarily conserved residues in the query sequence are
identified based on their Jensen–Shannon divergence
(JSD) score (17). The conformations of various triplet
residues from the conserved residue pool are excised
from the query structure to construct a set of local
3D-structural motifs. Each of the local query motifs is
then superimposed onto the known functional site
residues of the template protein.

To further refine the local structural match of the func-
tional sites, the complete structure of the query and
template proteins are brought together in the same refer-
ence frame, based on the rotation and translation matrices
acquired from the initial motif superposition. A sphere of
radius r is then defined around the geometric center of
template motif, where r is the maximum distance of any
template functional site residue from the geometric center.
The residues from query and template proteins within the
sphere are re-aligned by an iterative alignment procedure
similar to TM-align (13), i.e. scoring matrix is repeatedly
calculated from the current structural superposition and is
used to generate new optimized superposition by dynamic
programming, until converged. The sphere thus represents
a pseudo-functional site, under which the local structural
and sequence similarity (Lsim) between query and template
proteins is evaluated by

Lsim ¼
1

Nt

Xi¼Nali

i¼1

1

1+ di
d0

� �2+
1

Nt

Xi¼Nali

i¼1

Mii, ð2Þ

where Nt represents the total number of residues present
within the template sphere, Nali is the number of
query-template aligned residue pairs within the sphere,

di is the Ca distance between ith aligned residue pair, Mii

is the normalized BLOSUM62 substitution scores between
ith pair of residues and d0 is the distance cutoff chosen to
be 3.0 Å. The second term in Equation (2) is to account for
the evolutionary information of the functional sites. For
each binding pocket on the template, this procedure is
implemented for all the conserved query motifs and the
one with the highest Lsim is recorded (Figure 2).

Functional analyses

The COFACTOR server provides a variety of available
annotations for the query protein using the templates,
including EC number, GO and protein–ligand binding
sites. We provide a brief overview of the three aspects of
predicted functions by COFACTOR server below.

Enzyme Commission number
For the purpose of classifying enzymatic proteins, all
enzyme protein structures with annotated EC number(s)
have been collected from the PDB library (18) with the
active site residue information mapped using Catalytic
Site Atlas (19). As of January 2012, this compiled
enzyme template library contains 8392 protein structures.
The active site motifs of the template structures are im-

portant for the local structural comparison and the query
active site identification. For the template structures where
the active site residues are known, the template motifs are
defined by these annotated functional sites (19).
Otherwise, the algorithm uses spatially clustered and evo-
lutionarily conserved residues for generating the template
motifs (A. Roy, S. Mukherjee, P. S. Hefty and Y. Zhang,
submitted for publication). For the former cases, residue
correspondences from the local alignment results are
mapped onto the query structure, which are used for pre-
dicting catalytic residues in the query; while in the latter,
only predicted EC numbers are reported.
The confidence score for EC number prediction reflects

both local and global similarities between query and
template proteins and is defined as:

C� scoreEC ¼
2

1+e�ð0:25LsimSSBS+TM�score+2:5IDStrÞ
� 1, ð3Þ

where Lsim defined in Equation (2) and TM-score in
Equation (1) measure local and global similarity between
query and template enzyme, respectively, IDstr is identity
between query and template in structurally aligned region
of TM-align alignment, and SSBS is sequence similarity
between predicted active site residues of query and
known active site residues of template. Finally, the top
five scoring hits are reported.

Gene ontology terms
The GO is a widely used machine-legible approach for
automatic functional annotation. To this end, a second
library of protein structures that have known GO terms
was created using PDB-GO mapping taken from the Gene
Ontology Annotation database (http://www.ebi.ac.uk/
GOA/) and SIFTS project (http://www.ebi.ac.uk/pdbe/
docs/sifts/). This library contains 24 035 non-redundant
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protein chains, associated with 13 757 unique GO terms,
as of January, 2012.
The procedure of identifying and scoring the identified

homologs in the GO template library is similar to that
used for EC number prediction, however the template
motifs for the local structural comparisons are generated
using both known active and ligand-binding site residues
rather than active residues only. Furthermore, based on
the assumption that each protein domain contributes in-
dependently to the protein function, the GO terms
ascribed to the top five ranking hits are reconciled based
on the PIPA algorithm (20), so that the consensus predic-
tions identifies the intersection of functions among the top
hits and provides specific annotation to the query protein.

Protein–ligand binding sites
Ligand binding pockets and ligand-interacting residues in
the query protein are identified based on both global and
local structural similarities to a comprehensive binding
site template library, which contains 76 679 binding sites,
including information on protein–protein, protein–nucleic

acid, protein–lipid and protein–small molecule
interactions.

The binding pose of the template ligands in the query
structure is predicted based on the superposition matrix
acquired from the local alignment of query and template
binding site residues. A quick rigid body Metropolis
Monte Carlo simulation of the superposed ligand is
followed to improve the local geometry, where the
energy term to guide the simulation is defined as the
sum of the number of contacts made by template ligand
with the predicted binding site residues, the reciprocal of
the number of ligand–protein clashes, and the contact
distance error which is calculated as difference between
inter-atomic ligand–protein contact distance in template
and that in query model. Here, contacts are those inter-
actions that are within a distance of 0.5 Å plus the sum of
the van der Waals radius of protein atom and ligand atom,
while clashes are those in which the inter-atomic distance
is less than sum of their van der Walls radii. The side
chains of ligand binding residues are further optimized
using Scwrl4 (21).

Figure 2. Flowchart of functional site identification by the COFACTOR server. (i) Conserved residues in query sequence are identified based on
Jensen–Shannon diverge score, which are then used to glean local 3D-fragments from the query structure. (ii) Each local 3D-motif of query is aligned
with the fragments collected from functional site of template protein and the local similarity between query and template protein is evaluated using
Lsim Equation (2). Finally, the best match among all the probable sets with the best local match (i.e. highest Lsim) is selected. The residues of query
protein (yellow) are shown in cyan, while those in template protein (gray) are shown in magenta.
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Finally, the predicted ligand conformations from all
templates are clustered based on the spatial proximity
with a distance cutoff 8 Å. If a binding pocket binds
multiple ligands (e.g. an ATP-binding pocket may also
bind MG, PO4

3� and ADP), ligands within the same
pocket are clustered further based on their chemical simi-
larity (Tanimoto coefficient cutoff=0.7) using the
average linkage clustering procedure to rank the predicted
binding sites.

From each cluster, the protein–ligand complex with
highest ligand-binding confidence score (C-scoreLB) is
eventually selected as the functional site predictions for
the query protein. C-scoreLB is defined as:

C� scoreLB ¼
2

1+e�
N

Ntot
� 0:25Lsim+TM�score+2:5IDStr+

2
1+Dh i

� �� � � 1,

ð4Þ

where N is the number of template ligands in a cluster and
Ntot is the total number of predicted ligands using the
templates. Lsim defined in Equation (2) and TM-score
defined in Equation (1), measuring local and global simi-
larity of the query to the template protein, respectively.
IDstr is sequence identity between the query and the
template in the structurally aligned region. hDi is the
average distance of the predicted ligand to all other pre-
dicted ligands in the same cluster.

OUTPUT

For each submitted protein, the user will be notified by
email when the job is completed and the result data are
reported on the COFACTOR homepage. Each of the
COFACTOR result page consists of four main
tables (see, e.g., http://zhanglab.ccmb.med.umich.edu/
COFACTOR/example/).

In the first table, structural alignments of the query with
the top 10 template proteins ranked by TM-score,
identified from the PDB library, are displayed using an
interactive Jmol applet (22,23). The table provides
details of the structural alignment as generated by
TM-align (13), including TM-score, alignment coverage
(fraction of residues aligned in the query), RMSD and
the sequence identity in the structurally aligned region.
Each of the structural alignments can be viewed inter-
actively in the Jmol applet by clicking the corresponding
radio buttons. The links for downloading the coordinate
files of superposed structures are provided in the same
table.

The second table presents the top five enzyme templates
ranked by confidence scores and the predicted catalytic
residues in the query. These predicted catalytic residues
are visually displayed using the Jmol applet in the same
table.

The third table lists top scoring template proteins that
are annotated with GO terms. Usually, each template
protein is associated with multiple GO terms that
describe different aspects of biological and cellular func-
tions. As the template proteins have additional functional
domains, rather than simply transferring GO annotation,

the server presents the most frequently occurring GO
terms in each of the three functional aspects (molecular
function, biological process and cellular component),
which are reconciled from the top five homologs. A
mouse hover over each GO term provides its definition.
The last table contains information on protein–ligand

binding location in the query structure. Top 10 predictions
are presented with the information on the template
protein, the template ligand and the query residues
which are likely to be involved in binding interactions.
These predictions and interactions are visualized using
the Jmol applet, where the ligand atoms are shown as
spheres and binding site residues in query are highlighted
using ball and stick (Figure 3).

PERFORMANCE OF WEB SERVER

The COFACTOR algorithm has been extensively trained
and tested on large-scale benchmarks. In a recent study
(12), COFACTOR was tested on 501 proteins, which
harbor 582 natural and drug-like ligand molecules.
Starting from the low-resolution structural models
generated by I-TASSER (24), the method successfully
identifies ligand-binding pocket locations for 65% of
apo receptors with an average distance error 2 Å. The
average precision of binding-residue assignments is 46
and 137% higher than that by FINDSITE (4) and
ConCavity (25), which were designed to identify
protein–ligand binding sites.
In the recent community-wide CASP9 experiment

where all predictions were made before the experimental
results were released (2), COFACTOR achieved a
binding-site prediction precision 72% and Matthews cor-
relation coefficient 0.69 for the 31 blind test proteins,
which was significantly higher than all other participating
methods. As CASP9 assessors concluded, among all 33
participant groups ‘Two groups (FN096, Zhang; FN339,
I-TASSER_FUNCTION) performed better than the rest,
while the following 10 prediction groups performed com-
parably well’ (2).
To examine the ability of this approach to predict two

other unambiguously defined concepts of functions: EC
numbers (10) and GO (11) terms, especially with new
settings taken by the COFACTOR server, we tested the
server approach on a large benchmark set of 450
non-homologous proteins collected from PDB. As experi-
mental controls, we select those commonly used
approaches that are based on sequence–profile alignment
(26), profile–profile alignment (27) and HMM–HMM
alignment (28). In all experiments, close homologs of
query proteins were intentionally removed from the
template libraries using a sequence identity cut-off 30%,
before the predictions were made. Supplementary Figure
S1 summarizes the performance of COFACTOR to
identify the correct function and the improvement
achieved in function prediction. For instance, if we
consider the identity of first three digits of EC number
as a criteria to evaluate the correctness of prediction, func-
tional annotations were transferred correctly from the top
hit of COFACTOR in 156/318 enzymatic test proteins,
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which is approximately 27, 9 and 12% higher than the
results obtained using the top hit by PSI-BLAST (26),
MUSTER (27) and HHsearch (28), respectively.
Similarly after removing close homologs from the
template library, for the 337 test proteins, GO terms are
annotated correctly (Fsim> 0.5, see Supplementary
Material) by COFACTOR for 49 and 64% proteins
using the top one and the best in top five template
proteins, respectively (Supplementary Table S1). Using
the top one (best in top 5) template proteins,
PSI-BLAST, MUSTER and HHsearch can predict GO
terms correctly for 38% (49%), 44% (60%) and 41%
(56%), respectively.
Here, we should note that the PSI-BLAST, MUSTER

and HHsearch methods start only from query sequences,
which are therefore much faster than the entire pipeline of
sequence-to-structure-to-function in COFACTOR since
the latter starts from the structural models predicted by
I-TASSER (although the procedure of structure search by
COFACTOR itself takes only less than 1 h in general).
Nevertheless, these data demonstrate encouraging results
that the use of protein structure information can help to
obtain significant gains in the function annotations.

CONCLUSIONS

We have developed the COFACTOR server for auto-
mated structure-based functional annotation. One of the
major advantages of the COFACTOR algorithm is the
combination of the global and local structural compari-
sons. Although the global structural similarity is import-
ant for functional inference, we have witnessed a number
of examples in both the benchmark and the CASP experi-
ments, where COFACTOR successfully identified the
correct functional homologs, which have different global
folds but with similar binding sites, using the local struc-
tural comparisons (12).

Meanwhile, since COFACTOR scoring function
includes the global structure similarity, it is more robust
to the local structural variations in the target structural
models than other methods, such as ConCavity (25),
which rely only on the local pocket comparisons. This
allows for the COFACTOR server to identify correct
function homologs even using low-resolution structure
models, which is of practical importance and usefulness,
given the fact that most protein sequences lack experi-
mental structure and only low-resolution structure can
be generated by computational protein structure predic-
tions (12).

Nevertheless, since the COFACTOR is essentially a
template-based comparative method, no function predic-
tions can be correctly generated if there is no homologous
template protein present in the function libraries. It is
therefore critical for the COFACTOR to have complete
and updated template libraries. Currently, we have had
the structure and ligand-binding libraries updated every
week, since the information is collected directly from the
PDB library (18). However, the data of GO and EC clas-
sifications are collected from other secondary resources
(19,29,30), the updates of which are therefore not as
regular and rely on the update of these resources. All
the libraries are freely downloadable at http://zhanglab.
ccmb.med.umich.edu/COFACTOR/library.html. Finally,
the current algorithm is designed for single chain
proteins. If multiple chains are submitted, the first chain
in the PDB file is used by server automatically. We plan to
extend the algorithm for multiple chain proteins and add
the feature to the server in near future.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Table 1, Supplementary Figure 1 and Sup-
plementary References [31–33].

Figure 3. An excerpt of the result page showing ligand-binding site analysis for a Glyoxalase family protein from Bacillus anthracis (PDB ID: 2qqz).
The server identifies high global and local similarity to Lactoylglutathione lyase of Agrobacterium tumefaciens, suggesting that the query also has a
similar metal-ion binding site, which is required for catalysis in Glyoxalase I enzymes. The protein–ligand interactions are visualized using the Jmol
applet.
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