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Genome-wide protein structure prediction and structure-based function annotation have been a long-term
goal in molecular biology but not yet become possible due to difficulties in modeling distant-homology
targets. We developed a hybrid pipeline combining ab initio folding and template-based modeling for
genome-wide structure prediction applied to the Escherichia coli genome. The pipeline was tested on 43
known sequences, where QUARK-based ab initio folding simulation generated models with TM-score 17%
higher than that by traditional comparative modeling methods. For 495 unknown hard sequences, 72 are
predicted to have a correct fold (TM-score > 0.5) and 321 have a substantial portion of structure correctly
modeled (TM-score > 0.35). 317 sequences can be reliably assigned to a SCOP fold family based on
structural analogy to existing proteins in PDB. The presented results, as a case study of E. coli, represent
promising progress towards genome-wide structure modeling and fold family assignment using
state-of-the-art ab initio folding algorithms.

ith the tremendous success of genome sequencing in past decades, it becomes an increasingly urgent

goal to determine structure of protein molecules as expressed by all genes in organisms, which is

essential to a systematical understanding of the functional roles that individual molecules play in the
interaction network of involved cellular procedures. However, experimental approaches, e.g. X-ray crystal-
lography and nuclear magnetic resonance (NMR), are far too slow and expensive for genome-wide protein
structural determinations. In human genome, for example, there are 6,054 proteins with an experimental struc-
ture in the Protein Data Bank (PDB)', which counts only for ~ 29% of nearly 21 k open reading frames (ORFs);
if counting the variations from alternative splicing and post-translational processing?, this fraction reduces to
< 0.6%. For the best-studied E. coli genome, there are only 23.8% proteins having experimental structure.

Thanks to the significant efforts made by the community in last four decades®™, the 3D structure models of an
increasing portion of genes in organisms can be built by computational programs’. Among the earliest attempts of
genome-wide protein structure modeling, for example, Fischer and Eisenberg'® successfully assigned structural
fold to 22% of 468 protein ORFs in M. genitalium by sequence profile alignments. Sanchez and Sali'* applied
MODELLER to S. cerevisiae which generated atomic models for substantial segments of 17% of all yeast proteins.
Later, Zhang and Skolnick'? generated full-length models by TASSER for all ORFs in E. coli with 68% proteins
having high confidence scores. Baker and coworkers'® identified homologous templates for 47% of ORFs in
S. cerevisiae and had 12% of small proteins below 150 residues built by Rosetta ab initio modeling. Despite the
impressive success, however, a major obstacle of the genome-wide protein structure prediction is on the modeling
of a substantial portion of hard proteins that have no close homologous templates in the PDB and therefore
request efficient ab initio folding algorithms to construct model predictions from scratch'.

Recent CASP experiments have witnessed considerable progress in ab initio protein folding''®. Of note,
QUARK was recently developed to construct low-to-medium resolution structures by assembling continuously
sized fragments (1-20 residues) excised from unrelated protein structures'”'®. In CASP9, for example, QUARK
successfully predicted models of correct folds (TM-score > 0.5) for 8 out of 18 Free Modeling (FM) target
proteins with length below 150 residues that have no analogous templates in the PDB. In CASP10, QUARK
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Figure 1| Distribution of E. coli genome sequences. (a) Classification of sequences based on their homology to the PDB structures. (b) Histogram of

sequence length in different categories.

had models of TM-score > 0.5 for two FM targets (R0006 and
R0007) with length > 150 residues, which represents probably the
largest size range of successful FM modeling in the history of CASP
experiments.

In this work, we intend to re-examine the capacity of genome-wide
protein structure prediction using the state of the art ab initio protein
structure modeling algorithms. Because the proteins of close homo-
logous templates are relatively easy to model using comparative
modeling tools”*', our focus is on the protein targets which have
no strong alignments by threading programs. We select E. coli gen-
ome for case study, partially because it is the best-studied species at
the molecule level which has the highest number of solve proteins
(except for human genome) to help testify the validity of our
approach. To quantitatively assess the quality of the ab initio model-
ing, we developed a confidence score based on the quality of fragment
collection and the convergence of the assembly simulations. As an
application of the low-resolution ab initio modeling, we assign the
modeled proteins with standard fold families as defined in the SCOP
database®. All the prediction and fold assignment data are publicly
available at http://zhanglab.ccmb.med.umich.edu/QUARK/ecoli/.

Results

Classification of the E. coli genome sequences. Escherichia coli is a
Gram-negative, rod-shaped bacterium that is commonly found in
the lower intestine of warm-blooded organisms. Since it can be
grown easily and inexpensively in laboratory setting, E. coli has
been intensively investigated for over 60 years as the most widely
studied prokaryotic model organism.

To analyze the genome data, we first download the list of all E. coli
sequences from UniProt database (http://www.uniprot.org/), which
contains 4,279 non-redundant entries. To identify targets of experi-
mentally solved structures, we obtained the PDB IDs by scanning the
UniProt annotation text. In case that one sequence matches with
multiple PDB chains, we choose the experimental structure which
has the highest sequence identity to the target sequence, where
the pair-wise sequence identity is calculated by NW-align (http://
zhanglab.ccmb.med.umich.edu/NW-align). In total, 1,019 E. coli
sequences have full or partial structures solved by experiments. Pro-
teins which have structures covering less than half of the sequence are
not considered here.

For the remaining 3,260 proteins, we use LOMETS*, a meta-
threading method of nine fold-recognition programs, to thread the
sequences through the PDB library. In 2,764 cases (64.6%), there is at
least one threading program that can identify a strong homolo-
gous template with a high confidence Z-score. These proteins are

categorized as Easy/Medium targets in LOMETS (see Methods). The
remaining 495 proteins are Hard targets since no close templates
could be identified by any threading programs. A pie chart of the
sequence distribution is showed in Figure 1a.

The distributions of the targets in terms of the sequence length are
presented in Figure 1b. The average length of the sequences with
solved structures is largely similar to that of the unsolved ones, which
indicates that there is no obvious bias of experimentally determined
structures towards protein size. Most of the Hard proteins, however,
have a relatively small size (< 400 residues). In particular, for pro-
teins with around 100 residues, 50% of cases belong to the Hard
targets. This is partially due to the attribution of the threading algo-
rithms, since the larger proteins tend to have better constructed
sequence profiles which can easily identify significant template hits
at least for part of the sequence domains.

Since the targets in Easy/Medium category have strong homolog-
ous templates, we use the Iterative Threading Assembly Refinement
algorithm, I-TASSER", to generate all model predictions with both
template alignment and full-length models deposited at http://
zhanglab.ccmb.med.umich.edu/QUARK/ecoli2. In the following,
our analyses are mainly focused on the modeling of the Hard proteins
which are generated by QUARK ab initio assembly simulations'”'®.

Identification of transmembrane proteins. Membrane proteins are
the molecules embedded in the cell surface, which fold with a highly
regular scaffold, i.e. a hydrophobic domain associated with the
bilayer lipid membrane capped by two intra- and extra-cellular
hydrophilic domains.

We use two transmembrane helix prediction programs to label the
membrane proteins in E. coli since most membrane proteins are
alpha-helical proteins. In TMHMM?2.0%, a protein is considered as
transmembrane protein if the predicted number of amino acids in
transmembrane helices is larger than 18. In MEMSAT3%, it is
regarded as a transmembrane protein, if the number of residues in
transmembrane segments is larger than 7. Due to the smaller cutoff,
MEMSATS3 has a slightly more number of predicted transmembrane
proteins than TMHMM?2.0. Nevertheless, most of the predictions by
the two programs are consistent, with a Pearson’s correlation coef-
ficient 0.98 based on the 4,279 target sequences in E. coli. Hence, we
use the average number of amino acids in transmembrane helices
predicted by the two programs to assign the member proteins, i.e. if
the average number of transmembrane residues is > 13, this target is
counted as a transmembrane protein.

In total, 1,076 out of the 4,279 sequences (25%) are predicted to be
transmembrane proteins where 74 of them have the solved structure
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Table | | Summary of template-based modeling and ab initio modeling on 21 known E. coli proteins with length < 150 residues
TM:-score of the best in top 5 models

UniProt Entry PDB ID Compact Length Template Modeller QUARK ModRefiner Estimated
ARIR_ECOLI 20xIA YES 88 0.415 0.439 0.614 0.614 0.614
EMRE_ECOLI 3b61A NO 110 0.360 0.362 0.314 0.319 0.605
EUTN_ECOLI 2z9hA YES 95 0.196 0.203 0.255 0.259 0.409
FLHD_ECOILI 2avuB NO 116 0.279 0.280 0.295 0.302 0.427
GCSH_ECOLI 3a7lA YES 129 0.406 0.439 0.280 0.269 0.351
ISCX_ECOLI Tuj8A YES 66 0.331 0.348 0.438 0.464 0.461
METJ_ECOLI TcmaA NO 105 0.185 0.220 0.254 0.247 0.397
MQSR_ECOILI 3hi2B YES 98 0.243 0.250 0.424 0.449 0.381
PTHP_ECOLI TpohA YES 85 0.349 0.437 0.568 0.570 0.440
RL14_ECOLI Tvi2K YES 123 0.203 0.215 0.380 0.392 0.388
RL17_ECOLI Tvs6N NO 127 0.198 0.236 0.256 0.255 0.468
RL20_ECOLI 1vs6Q YES 118 0.236 0.363 0.420 0.412 0.435
RL21_ECOLI Tvs6R NO 103 0.184 0.187 0.204 0.209 0.389
RL27_ECOL Tvs6W NO 85 0.138 0.179 0.170 0.177 0.348
RS16_ECOILI Tvs5P YES 82 0.210 0.241 0.336 0.336 0.377
RUSA_ECOLI 2h8eA YES 120 0.330 0.374 0.306 0.307 0.378
YBCO_ECOLI 3927A YES 96 0.330 0.328 0.416 0.407 0.356
YEEU_ECOLI 2h28A YES 122 0.327 0.329 0.363 0.378 0.344
YFJZ_ECOL 2eaQA YES 105 0.313 0.320 0.393 0.398 0.359
YHBY_ECOL 1In4A YES 97 0.260 0.436 0.488 0.515 0.453
ZAPB_ECOLI 2jeeA NO 81 0.711 0.490 0.512 0.523 0.786
Average 102 0.295 0.318 0.366 0.371 0.436

in the PDB. This ratio of transmembrane proteins is consistent with
the data in the former analysis on E. coli (23-26%)'>**. For most of
the E. coli sequences, UniProtKB has a record of ontology which
specifies if the targets contain transmembrane helix. 883 E. coli tar-
gets are assigned as transmembrane proteins from the UniProt
annotation, 97.6% of which are consistent with our membrane pre-
diction here. The remaining 21 proteins from the UniProt annota-
tion turn out to be false positives by our manual check since these
sequences contains too few hydrophobic transmembrane residues to
span the membranes.

Benchmark test of ab initio folding on known E. coli proteins.
Before the application of QUARK to the entire E. coli genome, we
firstly test the algorithm on the Hard proteins that have known
experimental structures. For this purpose, we use LOMETS to
thread all the 1,019 sequences of known structure through the
PDB where all homologous templates that have a sequence identity
> 30% to the query are excluded. This procedure results in 43 Hard
proteins, where 21 have a length < 150 residues and 22 have length
> 150 residues.

Summary of QUARK modeling on 21 small proteins. In Table I, we
present the folding results of QUARK on the 21 smaller size proteins,
where all homologous proteins with a sequence identity > 30% or
detectable to PSI-BLAST with E-value < 0.1 are excluded when the
fragments were generated for QUARK. In control, we also list the
modeling result by the widely-used comparative modeling tool,
Modeller’, which constructs models based on the LOMETS tem-
paltes. As expected, most of the targets have incorrect threading
templates with TM-score < 0.5; the exception is from ZAPB_
ECOLI that has a trivial single-long helix topology (TM-score =
0.711). The best in top five models by Modeller has an average
TM-score = 0.318, which is marginally higher than that of the
threading templates (0.295). This TM-score increase is mainly due
to length elongation of the full-length models by filling the alignment
gaps. There is no target that has a Modeller model with TM-score
> 0.5 in Table L.

Although without using global templates, QUARK generates
backbone model predictions with an average TM-score = 0.366,
where three targets (ARIR_ECOLI, PTHP_ECOLI and ZAPB_

ECOLI) have a TM-score > 0.5. After the atomic-level refinement
of ModRefiner®, the number of targets with correct fold increase to 4
(with YHBY_ECOLI added) and the average TM-score increases to
0.371, which is 17% higher than that by Modeller.

In the last column of Table I, we also present the estimated TM-
score based on the confidence score (Egs. 1 and 2 in Methods), which
is on average 19% higher than the actual TM-score. This difference is
mainly caused by proteins with the irregular shape (including trivial
super-long tail and open helices etc, as listed in Column 3 in Table I),
where QUARK tends to over-predict the quality due to the well-
contracted packing for these proteins in the assembly simulations.
If we exclude these irregular targets, the estimated TM-score of the
best in top 5 models is very close to the actual TM-score (0.409 vs.
0.405).

Hllustrative example from E. coli YmgB. In Figures 2a—d, we show two
successful examples of QUARK assembly simulations in this set.
Figure 2a is an a-protein of three-helix bundle from E. coli YmgB;
this protein is critical for biofilm formation and acid-resistance®.
QUARK folds the target with a high accuracy (RMSD = 2.91 A,
TM-score = 0.61). Although the target was solved in the dimmer
form (PDB ID: 20xl), each monomer has a hydrophobic core on its
own, which is constituted by the leucine (Leu), isoleucine (Ile) and
valine (Val) residues.

In Figure 2b, we plot the solvent accessibilities of the native struc-
ture and the model as calculated by EDTSurf”, in comparison with
the solvent accessibility prediction by neural network (NN)
(Residues 1-24 missed in experimental structure are not shown).
The average difference of solvent accessibility between the model
and the native structure is 7.4%, while the difference between the
sequence-based NN prediction and the native structure is 10.6%.
Although QUARK starts from the sequence-based solvent accessibil-
ity predictions, the QUARK assembly simulations improve the pack-
ing of helices by the incorporation of the inherent knowledge-based
force field.

Seven hydrophobic residues are highlighted in Figure 2b whose
actual solvent accessibility values are below 0.1. Except for Val72,
all the residues in the QUARK model have the same solvent access-
ibility as that of the native structure. As shown in Figure 2a, the
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Figure 2 | Examples of successful QUARK modeling results on known Hard E. coli proteins. In the structural superposition, QUARK models and

experimental structures are shown in green and red cartoons respectively. (a) Superposition of the QUARK model and the experimental structure for
ARIR_ECOLI with side-chains of the seven hydrophobic residues highlighted. (b) Solvent accessibility distributions for ARIR_ECOLI with data from
sequence-based prediction, QUARK model and experimental structure, respectively. (c) Superposition of the QUARK model and experimental structure
for PTHP_ECOLI, where the beta-turns are highlighted in blue in the experimental structure. (d) The four-state secondary structure distribution of

PTHP_ECOLI shown for sequence-based prediction, the QUARK model and the experimental structure. Coil, helix, strand and turn are marked in green,
red, yellow and blue, respectively. (e) Superposition of the QUARK model and the experimental structure for RSD_ECOLI, which contains 158 residues.
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hydrophobic interactions between the six residues in the second and
third helices, as well as the rotamer orientations, in the QUARK
model are highly close to that in the native structure. The modeling
of these interactions is the key for QUARK to correctly pack the
orientation of the two helices.

Hllustrative example from E. coli HPr. Target in Figure 2c is an af-
protein from E. coli histidine-containing phosphocarrier protein
HPr, containing three short helices paired with four B-strands. In
the QUARK model, the three helices and three strands have the same
orientation as the native structure, which results in a reasonably high
TM-score = 0.57. Two long-range f-strands, which have a sequence
separation of 28 residues, are successfully drawn together to form an
antiparallel B-sheet. However, the N-terminal -strand is misplaced
in the model.

In the native structure, there are 7 B-turns as defined by the
PROMOTIF program®. These p-turns (shown in blue in
Figure 2c) determine the relative orientation of the three helices
and four B-strands, since each B-turn joins two secondary structure
elements together. In our sequence-based NN prediction, 7 B-turns
were initially predicted from sequence where 6 of them agree with the
PROMOTIF assignments. The QUARK simulations eventually con-
struct 8 B-turns in the predicted model, which cover all the 7 pre-
dicted B-turns.

In Figure 2d, we show the distribution of standard secondary
structure (SS) elements (coil, helix, strand) along the sequence, where
the SS in native structure and QUARK model is defined by DSSP*
and that in target sequence is predicted by PSSpred (http://
zhanglab.ccmb.med.umich.edu/PSSpred). Compared with the
DSSP assignment, the Q3 accuracy of the PSSpred is 86%. This high
accuracy of SS and B-turn predictions is essential to the successful
QUARK modeling for this target.

Summary of QUARK modeling on 22 large proteins. In Table II, we
summarize the QUARK folding results on 22 big hard proteins which
have the length longer than 150 residues. The average TM-score of
this set of proteins (0.323) is lower than that of the smaller proteins
(0.371), which is however 16% higher than that of template-based

modeling by Modeller (TM-score = 0.279). There are five proteins
(CHEZ_ECOLI, MOAC_ECOLI, RSD_ECOLI, YFBM_ECOLI,
NCPP_ECOLI) which have TM-score > 0.4, and one protein with
TM-score > 0.5 (RSD_ECOLI). Again, after excluding the proteins
with irregular topology, the estimated TM-score of the QUARK
models (0.337) is close to the actual TM-score to the native structure
(0.338).

Figure 2e presents the superposition of the QUARK model and the
target structure from RSD_ECOLIL The experimental structure con-
tains 4 super-long helices and one short helix in the N-terminal. The
QUARK modeling correctly assembles the topology of the helix
bundle with a minor error in the orientation in the short N-terminal
helix.

Overall, the average TM-score of the QUARK models is 16.5%
higher than that by Modeller using LOMETS templates in the 43
Hard proteins, which corresponds to a p-value = 0.00019 in the
paired Student’s t-test. These modeling results are consistent with
the performance of QUARK in blind CASP experiments, in terms of
the folding rate of FM targets for both small and large size proteins.

Summary of ab initio structure predictions for unknown E. coli
proteins. QUARK ab initio folding algorithm is used to generate 3D
structures for all 495 Hard protein targets in the E. coli genome which
have no reliable templates identified by LOMETS. Since the
experimental structures are unsolved, to guide the use of the
QUARK predictions, we provide an estimated TM-score for each
target based on the confidence score calculations, which are
benchmarked mainly for single-domain proteins (see Eqs. 1 and 2).
For multiple domain proteins which all have domains modeled
separately (see Methods), the estimated TM-score is calculated as a
sum of TM-score of individual domains, with weight proportional to
the length of the domains.

In Figure 3, we present the histogram of the estimated TM-score
for the unknown E. coli protein set, in comparison with that for an
independent benchmark set of 145 non-redundant globular proteins
randomly selected from the PDB library with length in [70, 150]
residues (see Methods). The two histograms generally agree with

Table Il | Summary of template-based modeling and ab initio modeling on 22 known E. coli proteins with length > 150 residues
TM:-score of the best in top 5 models

UniProt Entry PDB ID Compact Length Template Modeller QUARK ModRefiner Estimated
CHEZ_ECOLI TkmiZ NO 214 0.349 0.358 0.441 0.430 0.515
PTGA_ECOILI 1glaF YES 169 0.172 0.232 0.241 0.248 0.319
ECOT_ECOL TecyA NO 162 0.175 0.265 0.194 0.194 0.325
GCHI1_ECOll 1fbxA NO 222 0.192 0.195 0.250 0.245 0.364
GFCB_ECOL 2in5A YES 214 0.310 0.342 0.321 0.326 0.354
HFLD_ECOL 1qz4A YES 213 0.240 0.258 0.350 0.354 0.392
ISPF_ECOL 3esjA YES 159 0.232 0.261 0.349 0.342 0.352
MOAC_ECOLI TekrA YES 161 0.277 0.330 0.399 0.405 0.364
MUKE_ECOLI 3euhC NO 234 0.225 0.245 0.269 0.274 0.342
PAGP_ECOII 3gpbA YES 186 0.212 0.244 0.223 0.222 0.280
PHNH_ECOLI 2fsuA YES 194 0.216 0.338 0.261 0.260 0.324
IPYR_ECOL TinoA YES 176 0.221 0.236 0.260 0.267 0.334
RIBA_ECOL 2bz0B YES 196 0.243 0.316 0.350 0.346 0.356
RSD_ECOL 2p7vA YES 158 0.205 0.297 0.587 0.585 0.455
SEQA_ECOL 3fmtA NO 181 0.227 0.246 0.340 0.342 0.372
YAEQ_ECOLI 3cOuB YES 181 0.256 0.299 0.348 0.348 0.326
YCEB_ECOL 316iA NO 186 0.209 0.259 0.235 0.233 0.354
YECM_ECOL Tk4nA YES 188 0.274 0.303 0.260 0.259 0.330
YFBM_ECOLI TrylA YES 167 0.192 0.255 0.399 0.401 0.364
YFEY_ECOL 2qzbB YES 191 0.185 0.189 0.313 0.317 0.296
NCPP_ECOL TubwB YES 170 0.285 0.469 0.453 0.453 0.369
ZINT_ECOL TtxIA YES 216 0.187 0.208 0.257 0.254 0.310
Average 188 0.231 0.279 0.323 0.323 0.354
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Figure 3 | Histograms of estimated and actual TM-scores. The blind set is from 495 unknown E. coli hard sequences and the benchmark set consists of

145 non-redundant proteins from the PDB.

each other. However, the unknown E. coli protein set has a slightly
higher percentage of proteins in the low TM-score regions than the
benchmark set, which is mainly due to the fact that the average length
of the unknown E. coli proteins is longer than that in the benchmark
test set (155 vs. 107 residues). We also show the distribution of the
actual TM-score to the native for the benchmark set proteins in the
figure (curve with triangle), which has a slightly flatter shape than
that of the estimation although the average values of them are almost
the same. For the proteins with TM-score = 0.45, however, the
distributions of the estimated and the actual TM-scores become very
close. Hence, we can infer that the estimated TM-score for the
unknown E. coli proteins should be most trustable for the proteins
with a TM-score = 0.45.

In total, there are 72 out of 495 targets whose estimated TM-score
is higher than 0.5, which are supposed to have the same folds as their
native structures®. Among the 72 successfully folded targets, 67 are
small proteins with length shorter than 150, and 62 are a-proteins.
This data highlights the fact that QUARK works better for small
proteins and a-proteins, which partially because these proteins gen-
erally have a smaller conformational space (i.e. with simpler topo-
logy) than the big proteins and B-proteins, and therefore relatively
easier to fold by ab initio folding approaches. Nevertheless, the
majority of the hard targets (64.8%), including big proteins and
B-proteins, have a prediction with a significant TM-score estimation
> 0.35.

Modeling of transmembrane proteins. The modeling of membrane
protein structures has been considered as a major challenge to com-
putational structure predictions, because there are too few mem-
brane proteins in the PDB which can be used as templates.
Structurally, the strong hydrogen bonding in the membrane causes
the backbone to form regular secondary structures, with the major
conformational variances from the arrangements of secondary struc-
ture elements and various loop connections. Such structural charac-
teristics are consistent with the QUARK methodology, where regular
secondary structure elements are excised from other proteins and
used to rearrange the global topology (see Methods).

Among the 72 successfully folded targets, 28 are from membrane
proteins. Figure 4 shows one example of the high confidence predic-
tion for YQJK_ECOLI, where the first QUARK model has an esti-
mated TM-score = 0.727. Following the ab initio solvent accessibility
prediction, most residues in the region of [35T, 86R] are hydro-
phobic except for the loop region that connects the two helices.
QUARK therefore folded the target into 2 domains, i.e. a C-terminal
transmembrane domain with two helix bundle embedded in the lipid
bilayer plus a single-helix extracellular domain. This topology is
consistent with the transmembrane prediction from MEMSAT3*
although the latter was not exploited in the QUARK assembly
simulations.

SCOP fold family assignments of E. coli proteins. As an application
of the genome-wide structure prediction, we assign the E. coli
proteins with standard fold families by matching the ab intio
models with known structures in the SCOP family database®. We
first compare the top QUARK models with the proteins in the PDB
using the structural alignment algorithm TM-align®>. If the QUARK
model includes multiple domains, DomainParser® will be used to
split the chain to domains. The PDB structures are then listed in
descending order based on their TM-score value to the QUARK
models. The nearest neighbor classification method* is then used
to classify the predicted models based on the TM-score list. In case
that the top PDB structure has no SCOP code in the SCOP database,
the code of the protein that is closest to the QUARK model is used.
Here, we note that the TM-score is calculated as the average of the
two TM-scores which are normalized by the target length and the
analogy length separately. We found that the TM-score normalized
by the target length may pick up some big proteins with artificial
alignments while the use of average TM-score from both target and
analog proteins help recognize the closest analogs with the similar
size.

Benchmark of fold assignment strategy. To examine the accuracy of
this fold assignment strategy, we apply the procedure on the 688 E.
coli sequences that have both known structure and SCOP ID. If we

| 3:1895 | DOI: 10.1038/srep01895

6



(b)

10

60

MSSKVERERRKAQLLSQIQQQORTDLSASRREWLETTGAYDRRWNMLLSLR
CCHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH HHHHH
54232223321221122012210211311320120000002102000001

20 30 40 50

SWALVGS SVMATWITRHPNMLVRWARRGFGVWSAWRLVKTTLKQQQLRG
HHHHHHHHHHHHHHHHCHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHCC =~ SS
0000000000001102103100200220000000021022213333245 SA

70 80 90
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accessibility for the target.

use the native structure as a probe to identify the closest PDB struc-
ture, 97% of targets can be assigned to a SCOP code which is correct
in the most detailed family level (the remaining 3% were mis-
assigned due to the close structural similarity between proteins in
the same families). If we use the predicted models as probe, the
targets are correctly assigned in the family, superfamily and fold
levels for 96%, 97% and 97% of cases, respectively. These results
confirm the feasibility of the structural analogy-based approach in
fold family assignments for the E. coli proteins.

Moreover, the TM-score between predicted models and the most
similar analogs in the PDB is found highly correlated with the actual
TM-score of the predicted model to the native. Figure 5 show the
actual TM-score of predicted QUARK models versus the TM-score
between model and its closest analog identified by TM-align from the
PDB, which has a Pearson’s correlation coefficient 0.71 for the first
model or 0.72 for the best in top five models. Accordingly, a positive
correlation between the accuracy of the SCOP family assignment and
the TM-score between QUARK model and the analogy protein was
observed, i.e. the targets with a closer analogy in the PDB have
generally a higher successful rate of fold assignment than that with-
out close analogy (data not shown).

Examples of SCOP family assignments on known E. coli proteins. In
Figure 6, we show two typical examples on the successful fold family
assignments at different level of modeling accuracy. Figure 6a is an
example from the histidine-containing phosphocarrier protein HPr
(PTHP_ECOLI), the experimental structure of which has an open-
faced beta-sandwich fold, consisting of four antiparallel beta-strands
and three alpha-helices. The QUARK model has the global topology
correctly modeled but with the first strand shifted and the last helix
tilted, which results in a medium TM-score (= 0.503) to the native.
The TM-align search identified an analog from another HPr protein
from Bacillus subtilis. Interestingly, this analogy protein has a struc-
ture much closer to the target than the QUARK model that was used
as a probe for the structure search. This high structural analogy helps
to correctly assign PTHP_ECOLI to the SCOP HPr-like family
(d.94.1.1) at the most detailed family level.

NCPP_ECOLI in Figure 6b is a hypothetical protein of hitherto
unknown function. The QUARK model has a quite low estimated
TM-score (= 0.369). Nevertheless, the two beta-hairpins and paired

helices in the core region are correctly assembled in the QUARK
simulations, which enable the TM-align structure comparison to
pick up an analogous ITPase-like protein from T. brucei (PDB ID:
2amhA). Similar to PTHP_ECOLI, the analogy protein by TM-align
for NCPP_ECOLI has a higher TM-score to the native (0.523) which
has all four beta-hairpins and the helix domain on the top much
better packed compared to the QUARK model. This allows the
TM-align structure comparison correctly transfer the SCOP ID at
up to the superfamily level (i.e. c.51.4: ITPase-like); but at the family
level, 2amhA is Maf-like (c.51.4.2) while NCPP_ECOLI is YjjX-like
(c.51.4.3).

1.0 T T T T T T T T T T
1 = First model

09 = Bestmodelintop5 o
i Linear fit of the first model
_| - - -Linear fit of the best model o

TM-score

0.1 —
03 0.4

T T T T

I I I T
0.5 0.6 0.7 0.8
TM-score between model and its closest analogy

Figure 5 | TM-score of the QUARK models versus TM-score between
model and its closest analogy for the benchmark set proteins.
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Here, although the analogy proteins closer to the target exist in the
PDB in both examples, we note that all the analogous proteins have
been excluded from the QUARK fragment library. These data dem-
onstrate the advantage of ab initio modeling in fold family assign-
ment. Since the ab inito models are constructed from scratch, a
substructure similarity to real PDB structures with a modest TM-
score are usually significant and sufficient to recognize the correct
global topology for fold family assignment as shown in the above
examples.

SCOP family assignment for unknown proteins. When we scan the
QUARK predictions of the 495 Hard proteins through the SCOP
database, we find 317 targets which have a TM-score between model
and analogy above 0.5. Based on correlations observed on the known
proteins, these targets should have the highest reliability for the fold
family assignments. In Figure 7, we show four illustrative examples of
the QUARK predictions and the SCOP family assignment from the
495 hard unknown proteins, which cover different topology of struc-
tures and in different range of model qualities.

First, YFCL_ECOLI in Figure 7a is an uncharacterized protein in
the UniProt database. QUARK generated a model of bromodomain-
like four-helix bundle, which has a high estimated TM-score = 0.806
because of the high normalized cluster size (0.645) of the first cluster,
ie. 64.5% of the decoy structures converge to this fold although the
replica-exchange Monte Carlo simulations start from different ran-
dom conformations. The closest analogy protein (PDB ID: 1ng6A) has
a slightly more tilted helix-hairpin structure which results in a slightly
lower TM-score to the model (0.608). Nevertheless, both the high TM-
score of estimation and the high TM-score in the analogy protein
comparison guarantee that the SCOP family assignment (a.182.1.1:
GatB/YqeY domain) is in a range of high confidence prediction.

Figure 7b is an example of transmembrane protein. Most residues
in the putative transmembrane region are hydrophobic with low
solvent accessibility value according to the QUARK prediction.

The QUARK model has a relatively low TM-score estimated
(0.448) due to the low decoy converge rate (0.134). However, the
TM-score between the model and the closest analogy is high (=
0.775); such similarity is highly significant considering that the
model was constructed from scratch by ab intio folding. The target
is eventually assigned into the IVS-encoded protein-like family
(SCOP ID: a.29.16.1), following the analogy structure comparison.

Figure 7c is for the target YDAF_ECOLIL The QUARK simula-
tions generate a model prediction of 4 antiparallel beta-strands sand-
wiched with an alpha-helix at the N-terminal. The prediction has a
confidently estimated TM-score (= 0.502), which is structurally
closest to Disulfide bond isomerase, DsbC, N-terminal domain.
The target is therefore assigned to the family of the N-terminal
domain of Thiol:disulfide interchange protein DsbG (SCOP ID:
d.17.3.1), which has a high confidence based on the estimated TM-
score of the modeling and the close analogy to the template.

Finally, the target YDBJ_ECOLI in Figure 7d is also an af3-protein
which has a relatively low estimated TM-score (0.416). The sequence
contains six cysteines, which form two well-packed disulfide bonds
in the QUARK full-atomic model as highlighted in the left of Fig. 7d.
The TM-align search picks up a close analog structure from the
periplasmic protein in Bacteroides vulgatus ATCC 8482 with a
TM-score = 0.510, which categorizes the target in the BT0923-like
family (SCOP ID: d.98.2.1).

Discussion

We developed a hybrid pipeline to predict 3D structure of all
sequences in the E. coli genome, where targets with close homo-
logous templates are generated by threading-based fragment
assembly method (I-TASSER)" and those without homologous
templates built by ab initio folding algorithm (QUARK)". The
emphasis of the study is on the ab initio folding of the hard
proteins which has been a major obstacle in the genome-wide
structure prediction studies.
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We first benchmarked the algorithms on the 43 Hard E. coli pro-
teins with structures experimentally solved, which demonstrate that
the quality of the models by ab initio folding is significantly higher
than that by traditional comparative modeling approaches. Although
no templates are used, QUARK built models of correct fold (TM-
score > 0.5) for five targets (ARIR_ECOLI, PTHP_ECOLI,
ZAPB_ECOLI and RSD_ECOLI) where none of them can be gener-
ated by the template-based modeling approaches. On average, the
TM-score of the QUARK ab initio models is 16-17% higher than that
of the template-based modeling for both small and large-size pro-
teins, corresponding to a statistically significant p-value (<2 X 107*)
in paired Student’s ¢-test.

The QUARK ab initio folding algorithm is applied to model all 495
Hard proteins in the E. coli genome, where 72 protein targets, includ-
ing 28 transmembrane proteins, are predicted to have correct folds
with an estimated TM-score > 0.5. In addition, 321 (64.8%) of the
targets have a substantial fraction of structures correctly modeled
with an estimated TM-score > 0.35. To assign the fold family of
the E. coli proteins, we match the ab initio models to the known
structures in the SCOP database. 317 targets have a close analogy
with a TM-score > 0.5 where a reliable SCOP family assignment can
be obtained for the target sequences.

In conclusion, despite the rapid accumulation of the experimental
structures in the PDB library, there are still a substantial number of
proteins in genomes which lack close homologous templates that can
be detected by current fold-recognition approaches. The data ana-
lysis in this study shows that the current state of the art ab initio
folding procedure is ready to generate useful structural and function
predictions for the hard proteins of small-to-medium size. Further
development of ab initio fold algorithms, including the hybrid
approaches combining sparse spatial restraints from NMR and
mutagenesis experiments, should significantly enlarge the scope of
the genome-wide structure prediction and structure-based function
annotations.

Methods

Outline of genome-wide structure prediction procedure. The procedure for
modeling the tertiary structures of the entire E. coli genome is illustrated in Figure 8.

For a given sequence, the multiple-threading program, LOMETS?, is used to detect
homologous templates from the PDB library. For each threading program, the
significance of the target-template alignments is measured by Z-score which is
defined by the difference of raw alignment score and the mean in the unit of
derivation. A target sequence is defined as “Hard” if none of the threading
programs in LOMETS detects a template with Z-score higher than the specific cutoffs;
a target is defined as “Easy” if on average at least one template per threading program
has the Z-score higher than the cutoff; otherwise, the target is classified as a
“Medium” target.

QUARK? is developed to model the structure of the Hard sequences, where a set of
200 structural segments with length from 1 to 20 residues are first generated at each
position of the sequence by gapless threading. Full-length models are then assembled
from the segments by replica-exchanged Monte Carlo (REMC) simulations®, which
are accommodated by a composite knowledge- and physics-based force field.
Meanwhile, non-covalent contact and distance profiles are extracted from the
segments that come from the same PDB structures, which are used to guide the
REMC structural assembly simulation'®. To facilitate the movements, protein
conformations are specified in two sets of Cartesian and torsion-angle systems, both
being at a reduce-level (i.e. each residue is represented by the backbone heavy atoms
and the side-chain center of mass).

For each target, 10 parallel QUARK simulations are implemented, each starting
from a different random number. In each simulation, 200 cycles of REMC sweeps are
conducted. Following the simulations, structural decoys from the last 150 cycles in the
10 low-temperature replicas are submitted to SPICKER™ for structure clustering.
Finally, the full-atomic models are built from the top cluster models by ModRefiner
which refines the hydrogen-bonding network and physical realism through a two-
step Monte Carlo based energy minimization®.

For the proteins of multiple domains, we first split the sequences into individual
domains based on the LOMETS threading alignments and the secondary structure
prediction from PSSpred. Full-length models are then constructed by QUARK for
each domain. In the second step, the domain models are assembled together by 1,000
short Monte Carlo simulation runs, which start from random connection of the
domain structures on different orientations. During the simulations, the domain
structures are kept rigid, while regions in the domain linkers are flexible which keeps
the domain orientation updated. The domain assembly is guided by the same
knowledge-based potential as used by QUARK. Finally, the conformation with the
lowest energy is selected as the final full-length model. For the 495 Hard E. coli
proteins, we found that 61 proteins are putative multi-domain targets which are
modeled using this procedure. Table S1 lists the domain parsing results of the targets
which all have more than 250 residues.

For the Easy/Medium targets, we use the standard I-TASSER pipeline to
generate the full-length models, which was designed to reassemble the continuous
fragments from the threading alignments'. I-TASSER has been extensively tested in
both benchmarking and blind experiments, and consistently ranked as the best
method for template-based protein structure predictions in recently CASP
experiments® .
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Figure 8 | Flowchart of structure modeling and fold family assignment for E. coli genome sequences.

Estimation of model accuracy. It is important to estimate the accuracy of the
predicted models without knowing their experimental structures, since this
estimation will essentially determine how the biologists use our model predictions.

Here, we find that two factors are highly correlated with the actual quality of the
final QUARK models, which may be used as quantitative estimators of the modeling
accuracy. First, in general Metropolis Monte Carlo simulations, the number of decoys
at each conformational cluster 7, is proportional to the partition function Z, i.e.

nZ.= | e PEAE. The logarithm of normalized cluster size is then related to the free-

energy of the simulation, i.e. F= —kzT log Zl(;g(n[ /Nor), where n,,, is the total
number of decoys submitted for clustering. In other word, the conformation with the
larger cluster size should correspond to the state of lower free-energy. As a test, in
Figure S1a we present the TM-score of the final models versus the normalized cluster
size (n,/n;r) on a set of 145 non-redundant benchmark proteins with known struc-
tures, which indeed shows a strong correlation with a Pearson’s correlation coefficient
(PCC) equal to 0.73 for the first model and 0.76 for the best in top five models.

Second, the quality of the final models is strongly influenced by the quality of initial
fragments that are used to assemble the final models. In Figure S1b, we show the
correlation between the average alignment score of the top 6 fragments with a length
= 20 and TM-score of the first and the best in top 5 models, which have PCC =—0.59
and —0.65, respectively.

Thus, we define a confidence score, C-score, as the linear combination of the
normalized cluster size of the first cluster and the average gapless threading score of
the top fragments (f-score):

C—score = nc/ o + w(f —score) (1)

where the weight w = —0.03 is used to balance the two terms. Figure S1c shows the C-
score versus the TM-score of the final QUARK models. The correlation coefficients

increase to 0.75 and 0.79 for the first and the best in top 5 models, respectively. If we
define a model with TM-score > 0.5 to native as of correct fold and use C-score =
—0.258 as the cutoff of correct predictions, the false positive rate and false negative
rate are 0.034 and 0.296 respectively for the best in top 5 models. The C-score cutoff
here corresponds to the highest Matthews correlation coefficient (MCC) value 0.714.

Following the correlation in Figure Slc, we can further estimate the true TM-score
of the predicted models to the native based on the C-score, i.e.

)

{ TM — score' =0.5948 +0.5887 x C-score
TM — score® =0.6501 +0.6299 x C-score

where TM-score' and TM-score® are TM-score for the first and best in top five
models, respectively. In our benchmark test, the average errors between the estimated
and the true TM-scores based on Eq. 2 are 0.0833 and 0.0778 for TM-score' and
TM-score’, respectively.
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