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INTRODUCTION

Calpains are a vital conserved family of Ca21-depend-

ent cysteine proteases which catalyze the limited proteol-

ysis of many specific substrates.1,2 At present, there are

at least 16 known calpain isoform genes in humans,

among which 14 genes encode proteins that have cysteine

protease domains and the other two encode smaller regu-

latory proteins that are associated with some catalytic

subunits forming heterodimeric proteases.3 Calpains play

a crucial role through cleaving calpain substrates in

numerous biological processes, including the regulation

of gene expression, signal transduction, cell death and

apoptosis, remodeling cytoskeletal attachments during

cell fusion or motility, and cell cycle progression.3,4

Many previous studies have demonstrated that calpain

malfunction leads to a variety of diseases,2,5 including

muscular dystrophies,6 diabetes,7 and tumorigenesis.1

Knowing the exact positions of the substrate cleavage

sites is very important to revealing the working mecha-

nisms of calpain because the locations of the cleavage

sites are closely related to how calpains precisely modu-

late substrate functions.8 Although cleavage sites can be

determined with various conventional experimental

approaches, it is both very laborious and time-consuming
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ABSTRACT

The calpain family of Ca21-dependent cysteine proteases plays a vital role in many important biological processes which is

closely related with a variety of pathological states. Activated calpains selectively cleave relevant substrates at specific cleav-

age sites, yielding multiple fragments that can have different functions from the intact substrate protein. Until now, our

knowledge about the calpain functions and their substrate cleavage mechanisms are limited because the experimental deter-

mination and validation on calpain binding are usually laborious and expensive. In this work, we aim to develop a new com-

putational approach (LabCaS) for accurate prediction of the calpain substrate cleavage sites from amino acid sequences. To

overcome the imbalance of negative and positive samples in the machine-learning training which have been suffered by

most of the former approaches when splitting sequences into short peptides, we designed a conditional random field algo-

rithm that can label the potential cleavage sites directly from the entire sequences. By integrating the multiple amino acid

features and those derived from sequences, LabCaS achieves an accurate recognition of the cleave sites for most calpain pro-

teins. In a jackknife test on a set of 129 benchmark proteins, LabCaS generates an AUC score 0.862. The LabCaS program is

freely available at: http://www.csbio.sjtu.edu.cn/bioinf/LabCaS.
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to test all of the residues throughout the substrate

sequence. To bridge the gap left over by experiments,

many computational methods have been proposed to

attempt to identify potential calpain substrate cleavage

sites using sequences information.9–11

Tompa et al.10 computed the amino acid residue pro-

pensities around the cleavage sites and established a posi-

tion-specific scoring matrix (PSSM)-based method by

using all 106 calpain cleavage sites in 49 substrates. They

found that in l-calpain and m-calpain, leucine (L), thre-

onine (T), and valine (V) residues often appears in the

P2 position and lysine (K), tyrosine (Y), and arginine (R)

in the P1 position. Boyd et al. established a web server

called PoPS, which can help researchers to build their

own computational models and predict protease specific-

ity based on the specific training datasets submitted by

the users. This method mainly scored each subsequence

in the substrate by combining the PSSM and weight of

the subsite with the sliding window technique.12

Verspurten et al.13 developed SitePrediction to predict

substrate cleavage sites by using the frequency and substi-

tution matrix scoring strategy. Recently, duVerle et al.

constructed a web service for the prediction of calpain

cleavage sites and then further updated their predictor

using the multiple kernel learning approach.14,15 Liu

et al.16 constructed a software package named GPS-CCD

for the prediction of calpain cleavage sites based on the

no interval alignment scoring method.

The above computational methods can be generally

grouped into two categories: (1) propensity score

method; and (2) machine learning-based two-class classi-

fication approaches. A common strategy in the first

group is to first calculate the amino acid propensities

around the true cleavage sites in the training dataset, and

then calculate a total score in a predefined fixed size slide

window, which is used to compare with a derived opti-

mal threshold to judge whether the residue located in the

center of the window is cleavable or not. The merit of

this type of approach is that it is usually highly efficient,

while one of the most important shortcomings is that it

is very sensitive to the dataset size, where the generated

threshold is often heavily biased, especially in small sam-

ple size problems. In the second group, by partitioning

the whole dataset into positive (represented by cleavable

peptides) and negative (represented by noncleavable pep-

tides) subsets, a machine learning based classifier is used

for prediction, where typical algorithms include artificial

neural networks and support vector machine (SVM). The

merit of the approaches in the second category is that

they can partially reduce the small sample size effects,

while the shortcoming is that the performance can be

significantly affected by the extreme imbalance between

positive and negative samples (ratio between the sizes of

positive and negative subsets can be as small as 1:250).

In most cases, to reduce the imbalance effects, one can

apply the random downsampling in the negative subsets

to generate a balanced training dataset, which however

will ultimately greatly reduce the amount of useful infor-

mation.

In this article, we present a novel method LabCaS to

predict the substrate cleavage sites from the flanking

sequences of substrates. We develop LabCaS based on the

conditional random fields (CRFs) algorithm,17 which is

a sequential supervised machine learning technique. We

find that the CRF model is particularly suitable for this

study. As a solid machine learning algorithm, CRF is ro-

bust to the small sample size problem when learning pre-

dicting rules from limited experimentally verified calpain

substrate cleavage sites. Another outstanding advantage

of CRFs compared with traditional two-class classifiers

applied in predicting calpain substrate cleavage sites is

that it is a typical sequential learning machine and is

insensitive to the ratio between positive and negative

training subsets, so all the negative samples can be used

to establish the prediction model that can avoid informa-

tion loss in downsampling process. Considering that the

single-view feature only represents part of the protein’s

information, multiple sequence derived features are inte-

grated to be fed into LabCaS by two different ensemble

fusion strategies, that is, feature level fusion and decision

level fusion. Our results show that the decision level

fusion is a better choice. Experimental results demon-

strate the success of LabCaS.

MATERIALS AND METHODS

Materials

The most recent 130 calpain substrate sequences with

368 cleavage sites constructed by Liu et al.16 are used for

the training purpose in this study because it is the largest

dataset up to now. These experimentally verified calpain

substrates with their cleavage sites were obtained by

searching the scientific literature from PubMed and then

combining with the data collected by Tompa et al. and

duVerle et al.10,14 The pair-wise sequence identity in the

130 sequences is less than 40%. We removed one of the

samples (ID: A2ASS6) in this study because its sequence

is too long (35,213 residues) to be dealt with in the

current CRF model. We obtained a total of 129 calpain

substrate sequences consisting of 367 cleavable sites and

91,743 noncleavable sites.

Methods

Instead of the fragment-based two-class classification

approach applied in the traditional way for prediction of

the potential cleavage sites by splitting the whole

sequence into many short peptides, the developed Lab-

CaS works following a new protocol by labeling the

cleavable residues directly from the entire amino acids

sequence with CRF algorithm. Motivated by the fact the
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calpain substrate recognition and proteolysis are not con-

trolled by a single determinant but by multiple ones

including secondary structure (SS), sequential motif

score, and others,10 we implemented ensemble learning

in LabCaS by fusing predicted outputs from five base

CRF models trained on different representation features.

The improved cleavage site recognition accuracy from the

ensemble strategy demonstrates the importance for taking

the consideration of multiple determinants.

Prediction features

Amino acid residue preference feature. Sequence

logos are a diagram representation of amino acids or

nucleic acids in multiple sequence alignment in order to

visualize and analyze sequence conservation patterns.18

Each logo consists of stacks of symbols (amino acids or

nucleic acids), one stack for each corresponding position

in the sequence. The total height of each stack indicates

the degree of the sequence conservation at the corre-

sponding position, while the height of each symbol

within the stack represents the relative occurrence of the

amino or nucleic acid at that position. As an illustration,

Figure 1 displays a sequence logo of 367 positive peptides

raging from P10 to P10
0 generated by the WebLogo 3

server,19 where the cleavage site is between P1 and P1
0.

Based on the statistics, we can compute the sequence

conservation Rseq(Pi) at a specific position Pi that is

defined as the difference between the maximum possible

entropy Emax(Pi) and the entropy of the observed symbol

distribution Eobs(Pi):

RseqðPiÞ ¼ Emax � Eobs ¼ log2N��
�
XN

n¼1

ðpnðPiÞÞlog2ðpnðPiÞÞ
�
; ð1Þ

where pn(Pi) is the observed frequency of symbol n at the

position Pi, and N is the number of distinct symbols,

equal to 20 for a protein sequence in this study. Although

Figure 1 does not contain strong evidence of sequence

conservation throughout the 20-mer input, we can still

find that pentapeptide P2–P3
0 shows some residue prefer-

ences, especially at the position P2 with approximately

0.7204 bits according to Eq. (1) and Table I. So, we fur-

ther analyze the amino acids propensities of amino acids

at positions P2–P3
0. Our results reveal that the most sig-

nificant preference is that 28.5% of cleavable sites have a

P2 leucine (L). Aside from the P2 site specificity, we note

a modest preference for alanine (A) at P1
0 and proline (P)

at P3
0. Alanine (A) is present in 18.5% of all P1

0 positions

and proline (P) occurrs in 20.1% of all P3
0 positions.

Solvent accessibility sequences information. The

solvent accessibility (AC) of a residue is related to its

cleavability, and hence can be used to enhance the pre-

diction performance of calpain substrate cleavage sites.15

Several other methods, such as Cascleave20 and SitePre-

diction,13 have exploited the predicted AC to predict the

substrate cleavage sites. Two-state (exposed or buried)

AC can be predicted by using the SSpro grogram21 as an

additional feature description. The substrate cleavage sites

are generally considered to be relatively exposed, but

there are indeed examples where the proteolytic cleavages

happen at solvent inaccessible regions.22 Therefore, a na-

ı̈ve two-state AC cutoff may reject some true positive

cleavage site predictions. In our study, we use the real-

value AC predictions that was generated by the I-TASSER

protein structure prediction package,23,24 where the AC

value was trained by the neural network machine with

the combination of sequence profiles and protein three-

dimensional (3D) structural models. The AC value ranges

from 0 (buried residue) to 9 (highly exposed residue)

Figure 1
Sequence logo diagram representation of the occurrences of AA residues

in the calpain substrate cleavage site from P10 to P10
0. [Color figure can

be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

Table I
Propensities Analysis of Amino Acids Around Calpain Cleavage Site at

Position P2–P3
0

Amino acids P2 P1 P1
0 P2

0 P3
0

A 0.035 0.068 0.185 0.095 0.092
C 0.011 0.003 0.003 0.005 0
D 0.024 0.019 0.016 0.035 0.014
E 0.049 0.057 0.041 0.12 0.03
F 0.019 0.052 0.019 0.022 0.022
G 0.022 0.098 0.054 0.065 0.049
H 0.008 0.035 0.011 0.014 0.022
I 0.038 0.008 0.03 0.046 0.046
K 0.038 0.087 0.073 0.057 0.111
L 0.285 0.052 0.076 0.06 0.068
M 0.016 0.024 0.019 0.019 0.03
N 0.052 0.046 0.033 0.033 0.052
P 0.019 0.011 0.011 0.106 0.201
Q 0.052 0.071 0.046 0.084 0.033
R 0.03 0.084 0.071 0.024 0.065
S 0.063 0.122 0.174 0.087 0.057
T 0.117 0.087 0.076 0.046 0.03
V 0.109 0.019 0.054 0.063 0.041
W 0.003 0.005 0.003 0 0.016
Y 0.011 0.052 0.005 0.019 0.022
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which quantifies the degree of the surface area of a given

residue that is accessible to the solvent. In the large-scale

benchmark test,25 the I-TASSER AC prediction was

shown to have a correlation coefficient 0.83 with the real

AC of experimental structures assigned by the DSSP.26

Pair-wise alignment similarity score (BL). Under the

assumption that similar short peptides probably possess

similar biological functions, we try to infer the cleavabil-

ity of a query peptide based on the pair-wise similarity

between the query and those in the training dataset. The

similarity between the query and the cleavable sites in

the dataset can be evaluated by the pair-wise sequence

alignment with a substitution matrix, such as BLO-

SUM62. The similarity, S(A1, A2), between two short

peptides A1 and A2 of (m 1 n) residues can be defined

as:

SðA1;A2Þ ¼
X
�m�i�n

SðAi
1;A

i
2Þ; ð2Þ

where Ai
1 and Ai

2 are the amino acids at the ith residue

in peptides A1 and A2, respectively. Because some ele-

ments of the BLOSUM62 matrix are negative, S(A1, A2)

could be negative. We set S(A1, A2) 5 0 if S(A1, A2)<0,

as has been done previously.16 The final score of a query

peptide is the average of all the similarity scores obtained

by a pair-wise comparison between the query and each

of the training samples. Here, m and n are set to 10 and

4 because a previous study16 has proved that this was an

optimal choice.

SS sequence information. As calpains hydrolyze, its

substrate proteins in a limited manner, resulting in frag-

ments keeping intact domains, it has been suggested that

calpains prefer to cleave the substrates in flexible regions

between structured domains.6 Hence, the SS context is

an important factor for determining whether the pres-

ence of a particular substrate motif can be accessed and

cleaved by calpain. The dataset of calpain substrates used

in this study allows us to perform a comprehensive anal-

ysis of the structural determinants that characterize the

calpain substrate specificity. We predict the SS type (he-

lix, strand, or coil) for each residue using PSIPRED.27

Physical-chemistry property sequence information.
Grouping amino acids according to their physical-chem-

istry (PC) properties is helpful for reducing the noise

caused by mutations, and thus improving the accuracy of

protein structure and function predictions.28–30 Consid-

ering this point, we divided 20 amino acids into five

groups and each group stands for a PC property of the

amino acids, as shown in Table II. Amino acid residues

V, A, F, I, L, and M with strong hydrophobicity form the

hydrophobic group, the residues C, G, P, H, N, Q, S, and

T present obvious polarity so they form the polar group,

W and Y are form the aromatic group, D and E are form

the acidic group, and R and K are in the basic group.

Prediction models

Labeling calpain substrate cleavage sites using
CRFs algorithm. The task of calpain substrate cleavage

sites prediction is to assign a label from a finite set of

labels to each residues of a calpain substrate sequence.

CRFs, a sequential labeling algorithm, were first used for

labeling natural language sequence data by Lafferty.17

Given a random vector over sequences x 5 [x1, x2, . . .,
xT], CRFs try to obtain the most probable random vector

over the corresponding labeled sequences y 5 [y1, y2, . . .,
yT], that is, y� ¼ arg max

y
PðyjxÞ. CRFs are undirected

graphical models, and the conditional probability P(y|x)

can be computed directly. Recently, CRFs have attracted

much attention and been successfully applied in bioinfor-

matics literature for dealing with biological sequences.31

We formulate the prediction of calpain substrate cleav-

age sites based on the CRF labeling approach, a calpain

substrate’s corresponding sequence can be denoted as x

5 [x1, x2, . . ., xT] (xi [Y) where Y varies in different

representation modes. For example, Y is the set of

twenty amino acid letters when the corresponding

sequence is amino acid sequence, 10 single digits if the

corresponding sequence is the predicted solvent accessi-

bilities or the BLOSOM62-based pair-wise alignment

similarity scores, the set of H, C, and E when the corre-

sponding sequence is the predicted SSs, the set of 1, 2, 3,

4, and 5 standing for the five different amino acid groups

if the corresponding sequence is the PC properties. In

the case of identifying the potential cleavage sites, the

corresponding label sequence is denoted as y 5 [y1, y2,

. . ., yT] (yi [ L), where L is the set of C and N which

stand for the cleavage sites and noncleavage sites, respec-

tively. According to the fundamental Hammersley–

Clifford theorem of random field,32 the conditional

distribution over a labeled sequence y given a calpain

substrate corresponding sequence x is as follows:

PðyjxÞ ¼ 1

ZðxÞ
YT
t¼1

exp

�X
i

X
j

kij fijðyt�1; ytÞ

þ
X

j

X
k

ljkgjkðyt ; xÞ
�
; ð3Þ

where

Table II
Grouping of Amino Acids According to their Physical-Chemistry

Properties

Property Group

Hydrophobic P1 5 [V,A,F,I,L,M]
Polar P2 5 [C,G,P,H,N,Q,S,T]
Aromatic P3 5 [W,Y]
Acidic P4 5 [D,E]
Basic P5 5 [R,K]
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ZðxÞ ¼
X

y 0

YT
t¼1

exp

�X
i

X
j

kij fijðy 0t�1; y
0
t Þ

þ
X

j

X
k

ljkgjkðy 0t ; xÞ
�
; ð4Þ

where Z(x) is a normalization factor; fij(yt-1,yt) is a tran-

sition feature function of the labels at position t and t21

in the labeled sequence; gjk(yt, x) is a state feature func-

tion of the label at position t and the observation

sequence; kij and ljk are model parameters corresponding

to feature functions fij(�) and gjk(�) which are typically

Boolean functions; i and j denote the ith and jth kind

labels, respectively; k represents the kth kind sequence

pattern.

One of the most important things for applying

CRFs in identifying the substrate cleavage sites is to

identify the model parameters of Eq. (3), which can

be typically learned on the training dataset using a

maximum likelihood approach. That is, maximizing

the conditional log likelihood of the training exam-

ples over the parameter space.33 Given N (N 5 129)

substrate sequences with known labels of each residue

of D 5 [x(i), y(i)]N
i¼1, where x(i) 5 [x

ðiÞ
1 , x

ðiÞ
2 , . . .,

x
ðiÞ
T ] is an observation sequence from a substrate, and

y(i) 5 [y
ðiÞ
1 , y

ðiÞ
2 , . . ., y

ðiÞ
T ] is a desired label sequence.

The conditional log likelihood can be defined as

follows:

‘ðuÞ ¼
XN

i¼1

log PðyðiÞjxðiÞÞ; ð5Þ

where y is the parameter vector. By substituting Eq.

(3) into Eq. (5) and maximizing ‘(y), we can finally

achieve the appropriate parameter vector û and con-

struct the CRFs model based on D. For detailed pro-

cess of solving û, please refer to ref 17. With the con-

structed CRFs, the most probable label sequence prob-

ability p* for an input sequence x can then be

inferred according to the dynamic programming algo-

rithms or some approximate inference algorithms as

follows:

p? ¼ arg max
y

PûðyjxÞ ð6Þ

The pocket CRF (http://sourceforge.net/projects/pocket-

crf-1/files/pocket_crf/), an open source implementation

of CRFs for labeling sequential data, is adopted to

perform our experiments.

Ensemble prediction. As we can represent a substrate

with five different encoding methods as discussed above,

that is, amino acid (AA), AC, BL, SS, and PC, hence, five

CRF models can be obtained on each of the sequential

representation accordingly denoted as CRF-AA, CRF-AC,

CRF-BL, CRF-SS, and CRF-PC respectively. In this study,

the five outputs are integrated together using the product

rule as the final prediction:

EðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiY5

j¼1

p�j ðyjxÞ
5

vuut : ð7Þ

Cross-validation and performance
assessment

In this study, we tested our proposed method using

leave-one-protein-out jackknife cross-validation which

takes one protein sequence out for testing while keeping

the remaining protein sequences for training. This proce-

dure will be terminated when all the proteins have been

tested individually. The predictive ability of LabCaS is

assessed using several measures, namely, sensitivity (SN),

specificity (SP), the Mathews correlation coefficient, and

the overall accuracy (ACC). It should be pointed out that

the aforementioned four measurements rely on the

selected prediction thresholds. Hence, another threshold-

independent criteria, the Area Under the ROC curve

(AUC) is also applied for evaluating the performances.

When all the residues of training sequences in the dataset

have been labeled by the CRF algorithm based on the

validation tests, we will get a continuous numeric value

to represent the confidence of a residue belonging to its

predicted class (cleavable or not). Then, gradually adjust-

ing the classification threshold will produce a series of

confusion matrices. From each confusion matrix, a ROC

point, the coordinate of which is (TP/TP1FN, FP/

FP1TN), can then be computed. A series of ROC points

constitute the ROC curve, where the AUC value can be

finally calculated.

RESULTS AND DISCUSSIONS

Statistical results affected by dataset scale

According to Figure 1, the AA prevalence at P2 was

observed to be leucine (L), threonine (T), and valine

(V), consistent with Tompa’s study.10 Slight differences

were observed at other positions in the current dataset

compared to the previous study. For example, at the

position P1, serine (S), glycine (G), and lysine (K) are

found to be the top three most popular AAs in the cur-

rent study, while in the ref.10 lysine (K), threonine (T),

and arginine (R) were reported as the top three. Accord-

ing to Figure 1 alanine (A), serine (S), and leucine (L)

are the most common AAs at position P1
0. This is con-

trary to Tompa et al. who found that threonine (T),

lysine (K), and arginine (R) are the most common AAs

at position P1
0. These differences could be caused by the

different sizes of datasets used for statistics. The current

study is based on 129 substrate sequences consisting of

Y.-X. Fan et al.
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367 cleavage sites, which is much larger than the dataset

used in previous statistics that contains 49 substrate

sequences of 106 cleavage sites.

Analysis of determinants that characterize
calpain substrate specificity

The distributions of the AC values generated by I-

TASSER are displayed in Figure 2.23,24 The AC values

range from 0 (buried residue) to 9 (highly exposed resi-

due) which quantifies the degree of the surface area of a

given residue that is accessible to the solvent. Near the

noncleavage sites, from position P5–P5
0, the distribution

is uniform at each position. This is especially true for the

residues of degree 0 (buried residues), which account for

�25% and the residues of degree 4 (moderately exposed

residues) which account for �23% at each position.

However, near the cleavage sites from position P5–P5
0,

there are relatively few residues of 0 degree with a

maximum of �14% at the position P2. There are a

significantly greater number of residues with degree 4

exposures at positions P1–P5
0 near the cleavable sites

than near the noncleavable sites, with residues with

degree 4 exposure accounting for 31% of all residues

near cleavable sites. The distribution also demonstrates

that most residues are moderately exposed and only very

few residues are highly exposed (9 degree) near the cleav-

age sites. In the vicinity of the noncleavage sites, the bur-

ied residues account for a greater proportion of residues.

The frequencies of SS types occurring at each position

from P10 to P10
0 reveal that calpain most frequently

cleaves substrates that contain coils or loops (Fig. 3),

which is in agreement with the earlier findings.20 Despite

the fact that coil regions account for 45% of the residues

Figure 2
Distributions of predicted AC from P5 to P5

0 positions in the vicinity of cleavage sites and noncleavage sites; the values range from 0 (buried

residue) to 9 (highly exposed residue) [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.].

Figure 3
Distributions of predicted SSs from P10 to P10

0 positions in the 129

substrate sequences. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]
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in our sample, the SS composition at position P10–P1 is

approximately 60% coil as shown in Figure 4, which

steadily increases up to 70% at position P1
0–P10

0. The

amount of helix is more than 30% at position P10–P1

and slightly lower than 30% at position P1
0–P10

0. The

amount of strand structure is relatively small, accounting

for only 6%. These statistics demonstrate that the cleav-

ing is more likely to happen in the flexible regions than

the rigid domains, which supports former hypothesis.6

The distributions of different PC categories of AA resi-

dues are displayed in Figure 4. The region near the cal-

pain cleavage site contains mainly polar residues, but

also a significant proportion of hydrophobic residues. It

is interesting to find that hydrophobic residues increase

to 50% at position P2 and significantly decrease to 20%

at position P1. In contrast, polar residues, aromatic resi-

dues, and basic residues decrease at position P2, and then

increase at position P1.

Performance affected by imbalanced training
samples in two-class classifiers

As we have discussed above, the task of predicting sub-

strate cleavage site was widely formulated as a two-class

classification problem, that is, classifying cleavable pep-

tides from nonleavable ones. For example, kernel func-

tion based classifiers are applied in previous studies.15,20

To demonstrate the effects caused by the extremely

imbalanced negative and positive training samples of cal-

pain substrate cleavage sites, we apply the widely used

SVM as a benchmark algorithm for a test as kernel learn-

ing has been adopted in Ref. 15. For the calpain substrate

prediction purpose, we then use a similar dataset for a

demonstration, which consists of 91 non-redundant sub-

strate sequences with 244 cleavage sites (a slight differ-

ence occurred because of the update of CaMPDB data-

base used for constructing dataset). The inputs to the

SVM are encoded by the classical binary encoding

scheme in the window of P2–P3
0 positions because this

local environment shows the most significant discrimina-

tive feature. The cost parameter C and kernel parameter

g of SVM were optimized based on the grid-searches on

C [ [26, 25, . . ., 221, 222] and g [ [23, 22, . . ., 224, 225].

Figure 5 illustrates the average classification performances

by the jackknife test at the sequence level under different

configurations in the training dataset between negative

and positive samples: 20:1, 21:1, 22:1, 23:1, 24:1, 25:1, 26:1,

and 27:1. As revealed by Figure 5, the performance is

indeed heavily affected by the ratio between negative and

positive samples. Take the case of 27:1 as an example that

is the closest to the reality, the AUC is 0.634, which is

significantly lower than the AUC of other cases.

Performance of single feature input

We assessed the abilities of five individual features to

predict the calpain substrate cleavage sites using the CRF

model. The corresponding ROC curves are displayed in

Figure 6. Among the five features, the AA preference fea-

ture (AA) achieves the highest AUC value of 0.821, fol-

lowed by the peptide pairwise alignment similarity score

(BL) which yields an AUC value of 0.811. AA categories

based on PC properties yields an AUC value of 0.735

which is higher than the AUC value of 0.700 obtained by

the predicted AC. The AUC values for features based on

predicted SS is 0.694.

Figure 4
Distributions of different PC categories of AA residues at P10–P10

0

positions. [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]

Figure 5
The AUC values of different proportions between negative and positive

samples. [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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Ensemble prediction achieved by feature
level fusion

Obviously, as shown in Figure 6, significant differences

exist among different single features, indicating single-

view feature can only reflect part of the information of a

target. It has been proven in many reports 20,30 that

combining different features can improve predictive per-

formance. According to the forward search idea, different

features can be added step by step starting from the best

single-view feature for inputting to the CRF model, that

is, starting from AA feature in this study (Fig. 6). The

results are displayed in Figure 7. First, the combination

of AA and SS is chosen for the next round because it

yields the best AUC value of 0.835 after testing the four

different groups BL, SS, AC, and PC with AA. Then,

starting from the group of AA and SS, we obtain a tri-

ple-features group consisting of AA, SS, and PC with an

AUC value of 0.838, and so forth. Finally, an AUC of

0.840 is observed when combining all five types of fea-

tures. These results have demonstrated that the perform-

ance can be improved by the combination of multiview

features because different features can be complementary

to each other. It is worth pointing out here that it is not

always the case that the best performance will be

achieved based on the combination of all available fea-

tures, which is the case of this study. At the same time,

the paired t-tests were carried out among the five sub-

methods for different features using 129 AUC values gen-

erated in the jackknife cross validation tests (one AUC

value for one sequence) as tabulated in Table III. If the

resulting p-value is below the desired level, for example,

0.05, the differences between the tested features can be

considered significant. Taking feature AA as an example

as shown in Table III, the differences of AA and SS, AA

and PC, AA and AC, are statistically significant, however,

the p-value between sub-methods of AA and BL is

0.9507, which is larger than 0.05. It is also interesting to

find from Figure 7 that the performances yielded from

the combinations of statistically different features are

generally better than combinations of features of no sig-

nificance difference. For example, the combination of AA

and SS generates an AUC score 0.835, while fusion of AA

and BL gives an AUC value 0.825. This phenomenon is

supported by the general acknowledgement in the

machine learning field that diversity is closely related

with the ensemble model and higher diversity will yield

better results.34

Ensemble prediction achieved by decision
level fusion

An improved AUC of 0.840 has been achieved by per-

forming ensemble prediction through combination of

Figure 6
The prediction performances achieved by different single-view feature

inputs. [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]

Figure 7
ROC curves in different feature level fusion cases. [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com.]

Table III
The Comparison Results Among the Five Sub-Methods Using the

Paired t-Test

AA BL AC PC SS

AA – 0.9507 4.8129e-09 1.2834e-05 2.5705e-08
BL 0.9507 – 7.7942e-10 7.0403e-06 1.7332e-08
AC 4.8129e-09 7.7942e-10 – 0.0056 0.3664
PC 1.2834e-05 7.0403e-06 0.0056 – 0.0225
SS 2.5705e-08 1.7332e-08 0.3664 0.0225 –
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multiple features. In this section, we will try to construct

another type of decision level fusion based consensus

predictor. Instead of the feature level fusion, five inde-

pendent base predictors will be trained on the five differ-

ent single sequence features. The five independent out-

puts can be used as inputs of a consensus predictor. The

product rule is used for the combination of five base pre-

dictors [Eq. (7)].35 The result generated by each single

feature is then combined step by step according to the

forward search algorithm as illustrated in Figure 8. As

shown in Figure 8, a best AUC value of 0.862 is obtained

by the combination of four base predictors from AA, BL,

SS, and PC features. By comparing the results shown in

Figures 7 and 8, we find that performance from decision

level fusion is better than the feature level fusion, which

has been improved by 2%. The p-value of the paired

t-test to compare the 129 jackknife cross validation AUC

values from decision level fusion and feature level fusion

approaches is 4.802e-004, which demonstrates the deci-

sion level fusion strategy is statistically better than the

feature level fusion method. The reason could be simply

that a combination of the different views of features will

increase the information redundancy although it will rep-

resent more knowledge. Hence, based on the analysis

above, we finally implemented LabCaS based on the deci-

sion fusion protocol.

In addition to the aforementioned leave-one-out

(LOO) jackknife validation, 5-fold and 10-fold cross-vali-

dations were also carried out to evaluate the prediction

robustness of the constructed LabCaS. According to the

results of decision level fusion displayed in Figure 8, the

ROC curves for the fusion of four base predictors of AA,

BL, SS, and PC were drawn in Figure 9. The AUC values

were 0.836 (5-fold) and 0.851 (10-fold), respectively. As

demonstrated by Figure 9, the performances of LOO, 10-

fold, and 5-fold are decreasing, indicating that the train-

ing dataset size affects the prediction models. That is to

say, in the 5-fold test, 26 substrate sequences are singled

out for tests, where only 103 sequences are left for train-

ing the model; while in the 10-fold test, there are 116

training samples, and in the LOO jackknife test, there are

a total of 128 training samples. Considering that there

are only very limited experimentally verified calpain sub-

strates with known cleavable sites, it is critical to develop

much more robust computational approaches in this

regard.

Comparison with existing methods

GPS-CCD was developed by Liu et al.16 as a web-tool

for calpain substrate cleavage sites prediction. GPS-CCD

achieved the prediction of a putative calpain substrate

cleavage peptide via similarity scoring. Table IV compares

Figure 8
ROC curves in different decision level fusion cases. [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 9
ROC curves in LOO validation, 5-fold and 10-fold cross-validations.

[Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

Table IV
Comparison of LabCaS with GPS-CCD

SP Method SN (%) ACC (%) MCC Threshold

95% LabCaS 49.05 94.82 0.1253 0.0037
GPS-CCD 45.92 94.87 0.0998 High

90% LabCaS 63.22 89.89 0.1107 0.0026
GPS-CCD 60.87 89.98 0.0908 Medium

85% LabCaS 71.93 84.95 0.0998 0.0020
GPS-CCD 66.58 84.99 0.0773 Low
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LabCaS with GPS-CCD in the three cases of fixed SP on

the same dataset consisting of 129 substrate sequences.

LabCaS outperforms GPS-CDD in all tested situations.

When the SP is set to the most stringent 95%, the sensi-

tivity of LabCaS is 3% higher than the sensitivity of

GPS-CCD; and when we set the SP to 85%, the sensitiv-

ity of LabCaS is approaximately 5% higher than the sen-

sitivity of GPS-CCD.

SVM(RBF) is another web-tool for calpain substrate

cleavage site prediction which was built by duVerle

et al.14,15 Following the steps described in the original

paper, we downloaded the 104 calpain substrates from

the latest CaMPDB database14,15 and reduced their

homology at the threshold 95% by using CD-HIT.36 At

last, 96 non-redundant calpain sucstrate sequences were

obtained. We designed a 10 3 10 cross validation test

based on this non-redundant dataset the same as SVM

based predictor by using our proposed LabCaS method.

The final average AUC value of LabCaS is 0.8440 on the

96 non-redundant sequences, which is higher than

0.7686 reported in SVM(RBF).15 To further compare the

LabCaS with the SVM-based approach, we searched the

129 calpain substrate sequences in the benchmark dataset

of this paper against the latest CaMPDB database and

found 77 sequences are not included in the 104 records

of CaMPDB.14,15 These 77 calpain substrate sequences

are submitted to the web-server of SVM(RBF) for calcu-

lations. In accordance to the scores outputted by

SVM(RBF), the AUC value is 0.6139 (the probabilities of

sites without outputs from SVM(RBF) are set to zeros).

The prediction results of these 77 calpain substrates by

our LabCaS in the jackknife test are also extracted to cal-

culate the AUC value and 0.8703 is obtained, which is

significantly better than the SVM(RBF) approach. All

these results demonstrate that the LabCaS is better than

the state-of-the-art calpain cleavage site predictors and

will play an important complementary role with existing

methods.

Rat microtubule-associated protein tau: A
case study and comparison

Axonal specific microtubule-associated protein tau

plays important roles in complex diseases such as Alzhei-

mer’s disease and chronic traumatic encephalopathy. In

the living cell, both calpain and caspase-3 are capable of

tau processing. Although it has been known that tau pro-

tein is a substrate for calpain in vitro for a long time,37

the specific calpain cleavage sites have never been

reported until a recent study by Liu et al.,38 which has

identified three novel calpain cleavage sites in rat tau,

that is, Ser120;Lys121, Gly147;Ala148, and Arg370;Glu371.

We then submit the primary sequence to SVM(RBF),14

GPS-CDD16 for predictions and compare their outputs

with LabCaS’s, and the results are tabulated in Table V.

LabCaS successfully predicted two cleavable sites for rat

tau of Ser120;Lys121 and Gly147;Ala148 with the highest

confidence threshold of 0.0037, but missed Arg370;Glu371.

Table V also shows that the top 10 prediction outputs

from SVM (RBF)14 fail to identify any of the three cleav-

age sites; the top 20 prediction outputs of GPS-CCD16

target one true cleavage site of Ser120;Lys121, which is

ranked 16th. For LabCaS, Ser120;Lys121 cleavage site is

ranked 4th and Gly147;Ala148 ranked 15th. These results

demonstrate that LabCaS is more powerful than existing

approaches in this example.

In Figure 10, we show the 3D structural model of the

rat microtubule-associated tau protein generated by the

I-TASSER simulations, one of the best performing pro-

tein structure prediction algorithms in the recent com-

munity-wide CASP experiments.23,39 The model has a

confidence score (C-score) 21.03 which corresponds to a

modest TM-score 0.58 � 0.14, where a TM-score >0.5

indicates a correct fold of the protein molecule.40 Never-

theless, all the true positive cleavage sites (red color resi-

dues) are located on the surface of the 3D structure in

Table V
Prediction Results for Using SVM (RBF), GPS-CCD, and LabCaS on

Rat Microtubule-Associated Protein tau

Rank SVM (RBF) GPS-CCD LabCaS

From 1st to 5th Nil Nil Ser120;Lys121 (4th)
From 6th to 10th Nil Nil Nil
From 11th to 15th No outputs Nil Gly147;Ala148 (15th)
From 16th to 20th No outputs Ser120;Lys121 (16th) Nil

Figure 10
The 3D view of the rat microtubule-associated protein tau with top 15

predicted cleavage sites by LabCaS. The correct predicted cleavage sites

are colored red and the incorrect predicted cleavage sites are colored

green.
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this case, consistent with the insight shown in Figure 2.

Among the 13 false positives out of the top 15 predic-

tions by LabCaS (green), two sites are buried in the core

structure regions. This data demonstrates that we can

further improve the SP of the LabCaS algorithm when

combining with the state-of-the-art protein structure pre-

dictions.

Prediction of calpain substrate cleavage
sites in lysosomal membranes

It has been revealed that during mammary gland invo-

lution, calpain proteases play important roles in media-

ting epithelial-cell death.41,42 It has also been suggested

that calpains are involved in both apoptosis and necrotic

cell death, where they first cleave substrates on the lyso-

somal membrane and then induce the intrinsic mito-

chondrial apoptotic pathway.42 These findings support

the new theory of calpain-mediated cleavage of new sub-

strates from lysosomal membranes being crucial for

mammary gland involution.43 In consideration of this, it

is critical to understand the cleavage mechanisms of cal-

pain substrates in lysosomal membrane. Despite its im-

portance, no experimentally verified cleavage sites have

been reported for calpain substrates in the lysosomal

membrane. To speed up the progress, we apply the Lab-

CaS developed in this paper to predict the cleavage sites

for 10 potential calpain targeted substrates in lysosome

membrane, which were screened in a large-scale analysis

by the 2D-DIGE and mass spectrometry proteomics tech-

niques in lysosomal fraction from lactating mammary

gland.42 The predicted results from LabCaS at the high-

est threshold are tabulated in Table VI, which serve as a

good base for further experimental designs and verifica-

tions. Particularly, the predicted sites of underlined bold

face in Table VI are those overlapped with the 10 outputs

from SVM (RBF).14

Large-scale identification of putative calpain
substrate cleavage sites

One advantage of automatic prediction tools is the fea-

sibility of large-scale cleavage site prediction. CaMPDB

contains a set of potential calpain substrates and their

cleavage sites determined using BLAST homology search

and a predefined set of rules.14 We have collected a total

of 1973 putative substrates along with 2927 cleavage sites

from CaMPDB. It has been noticed that in the 1973 puta-

tive substrate sequences, the average number of cleavage

sites per sequence is 2927/1973 � 1.48, which is lower

than 367/129 � 2.85 in the benchmark dataset of this

study. This indicates that the cleavage sites of these 1973

substrates could be under-predicted in the current version

of CaMPDB. For example, the calpain substrate of Src

substrate cortactin protein (CaMPDB recoded ID

XSB0288) is predicted to have one cleavage site of

Lys336;Thr337 in CaMPDB by using the BLAST homology

search and a defined set of rules, but four cleavage sites of

Lys336;Thr337, Lys346;Thr347, Arg351;Ala352, and

Ala358;Lys359 were reported by experiments.44 These

observations suggest that more information should be

provided on these 1973 substrates. We thus apply LabCaS

to predict the potential cleavage sites for the 1973 putative

substrates, and the predicted results are available at http://

www.csbio.sjtu.edu.cn/bioinf/LabCaS/Data.htm. Here, we

further compared the top 5 predicted outputs from Lab-

Table VI
The Predicted Cleavage Sites of Potential Calpain Substrates in Lysosomal Membranes Using LabCaS

Number Calpain Substrates in lysosome membranea
Protein

length (aa)
Predicted cleavage site using LabCaS at

the highest thresholdb

1 Long-chain-fatty-acid--CoA ligase 1
(NP_032007.2)

699 694, 111, 607, 200, 403, 256, 44, 619, 448, 676,
471, 432, 612, 281, 578, 262

2 Serotransferrin precursor (NP_598738.1) 697 304, 348, 460, 618, 100, 690, 525, 670, 467, 628,
132, 166, 167, 475, 314, 693, 47, 140, 689, 678,
343, 610, 688, 622, 623, 692, 271, 142, 80, 694, 90

3 Beta-2-glycoprotein 1 precursor (NP_038503.4) 345 154, 338, 49, 275, 38, 340, 336, 342
4 V-type proton ATPase subunit B, brain isoform

(NP_031535.2)
511 311, 12, 11, 355, 393, 504, 18, 154, 4, 403, 502, 501,

464, 34, 192, 314, 508, 100, 507
5 D-3-phosphoglycerate dehydrogenase

(NP_058662.2)
533 406, 322, 96, 494, 364, 389, 285, 530, 125, 74, 60,

379, 469, 165, 454, 344, 95, 126, 526, 250
6 Adipocyte plasma membrane-associated

protein (NP_082253.1)
415 186, 22, 155, 135, 215, 411, 323, 203, 14, 410, 184

7 N(G),N(G)-dimethylarginine
dimethylaminohydrolase 1 (NP_081269.1)

285 19, 201, 236, 113, 42, 50, 18, 5, 11, 99, 213

8 Serine/threonine-protein phosphatase
PP1-gamma catalytic subunit (NP_038664.2)

323 319, 318, 315, 314, 320, 267, 294, 20, 309, 268, 316,
308, 305, 54, 122, 310, 48

9 60S acidic ribosomal protein P0 (NP_031501.1) 317 312, 252, 142, 70, 129, 114, 293, 286, 120, 228, 291,
308, 112, 103, 159, 285, 297, 55

10 Golgi phosphoprotein 3-like isoform 1
(NP_666245.2)

343 338, 334, 148, 319, 35, 55, 80, 209, 78, 38, 89,
337, 185

aScreened with the 2D-DIGE and mass spectrometry proteomics techniques.42

bSites are listed according to their scores from LabCaS; those highlighted with underlined bold faces are consistent with the 10 outputs from SVM (RBF).14

Y.-X. Fan et al.

632 PROTEINS



CaS with those cleavage sites recorded in CaMPDB as

shown in Table VII. As can be seen from Table VII, there

are a total of 1328 sites overlapping with the 1st ranked

predicted site with the original CaMPDB records. Taking

all the top 5 LabCaS’s outputs into consideration, the

overlapping rate is 77.42%. These results demonstrate the

high confidences of the LabCaS predictions. In addition,

they can provide more important complementary infor-

mation for updating and understanding the knowledge of

the 1973 substrates in the current database.

DISCUSSIONS

In order to estimate the false positive rates of the pre-

dictors, we create a control dataset by collecting sequen-

ces according to following steps: (1) Only the proteins in

mitochondrion subcellular location are selected from the

Swiss-Prot database since previous reports have shown

that calpain proteins are mainly located in the cytoplasm

and nucleus localizations.45,46 (2) Proteins with less

than 50 AAs have been removed because they could be

fragments. (3) Proteins annotated with keywords of tran-

scription factors, receptors, and enzymes are removed

because currently identified calpain substrates mainly

belong to these families.3 (4) The sequence redundancy

of in the control dataset and to the training dataset is

removed at the cut-off 30% with the CD-HIT method.36

(5) 100 non-redundant sequences are randomly selected

as the final tested control dataset, which consists of

32,947 noncleavable sites and zero cleavage sites.

The final control dataset is respectively submitted to

the three web-severs, LabCaS, GPS-CCD16 and

SVM(RBF)14 for predictions. Table VIII gives the results.

These results show that at the 3 decision thresholds corre-

sponding to specificities of 95, 90, and 85%, the estimated

false positive rates of LabCaS are 4.78, 8.72, and 12.86%

respectively, and the values of GPS-CCD are 4.34, 8.97,

and 13.88%. Though the listed false positive rate of

SVM(RBF) is the lowest of 3.04%, the reason is that 10

predicted sites will be outputted from SVM(RBF) for ev-

ery submitted query sequence, meaning it is a fixed rate

in this test. Comparing LabCaS with GPS-CDD, we find

that LabCaS predicts a little more false positives than

GPS-CDD at the 95% SP cut-off, but performs better at

the other two thresholds. Two potential ways are expected

to be helpful for lowering the false positive rates in exist-

ing predictors: (1) A two-layer model should be devel-

oped where the proteolyzed proteins by calpains can be

recognized in the first layer before it is fed into the second

layer for cleavable residues prediction. (2) We have shown

an example in the case study that the modeled protein 3D

structure with the I-TASSER software can provide valua-

ble information for screening the false positives. Hence, a

hybrid model by combining the sequences and modeled

3D structures is a promising way to enhance the predic-

tions of whether a protein can be proteolyzed by calpains

and where the cleaving will happen.

CONCLUSION

In this study, we formulated the prediction of calpain

substrate cleavage sites as a sequence labeling problem that

was achieved by the CRFs algorithm and presented a novel

ensemble method called LabCaS. LabCaS is robust to the

extreme imbalance in positive and negative samples in the

training dataset. Improvements of the performances by

fusing multiple features have been observed demonstrating

calpain substrate recognition and proteolysis are not con-

trolled by a single determinant but by multiple ones. As an

implementation of our approach, LabCaS is freely available

for academic use at http://www.csbio.sjtu.edu.cn/bioinf/

LabCaS, which is anticipated to become a powerful tool

for in silico identification of calpain substrate cleavage

sites. One of the important future directions is the investi-

gation of a proper post-processing approach to further

screen the false-positive predictions.
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