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ABSTRACT: Alternative splicing allows a single gene to produce
multiple transcript-level splice isoforms from which the translated
proteins may show differences in their expression and function.
Identifying the major functional or canonical isoform is important for
understanding gene and protein functions. Identification and character-
ization of splice isoforms is a stated goal of the HUPO Human Proteome
Project and of neXtProt. Multiple efforts have catalogued splice isoforms
as “dominant”, “principal”, or “major” isoforms based on expression or
evolutionary traits. In contrast, we recently proposed highest connected
isoforms (HCIs) as a new class of canonical isoforms that have the
strongest interactions in a functional network and revealed their
significantly higher (differential) transcript-level expression compared
to nonhighest connected isoforms (NCIs) regardless of tissues/cell lines
in the mouse. HCIs and their expression behavior in the human remain unexplored. Here we identified HCIs for 6157 multi-
isoform genes using a human isoform network that we constructed by integrating a large compendium of heterogeneous genomic
data. We present examples for pairs of transcript isoforms of ABCC3, RBM34, ERBB2, and ANXA7. We found that functional
networks of isoforms of the same gene can show large differences. Interestingly, differential expression between HCIs and NCIs
was also observed in the human on an independent set of 940 RNA-seq samples across multiple tissues, including heart, kidney,
and liver. Using proteomic data from normal human retina and placenta, we showed that HCIs are a promising indicator of
expressed protein isoforms exemplified by NUDFB6 and M6PR. Furthermore, we found that a significant percentage (20%, p =
0.0003) of human and mouse HCIs are homologues, suggesting their conservation between species. Our identified HCIs expand
the repertoire of canonical isoforms and are expected to facilitate studying main protein products, understanding gene regulation,
and possibly evolution. The network is available through our web server as a rich resource for investigating isoform functional
relationships (http://guanlab.ccmb.med.umich.edu/hisonet). All MS/MS data were available at ProteomeXchange Web site
(http://www.proteomexchange.org) through their identifiers (retina: PXD001242, placenta: PXD000754).
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■ INTRODUCTION

Alternative splicing is a major mechanism that greatly expands
the expressed protein species, especially in higher organisms
such as human and mouse.1−10 Consequently, a gene can
generate multiple transcripts, which, when translated, may show
differences in their expression, functions, and interactions with
other biological molecules.11−24 Functional analysis is a major
field in genomics and proteomics. Specifically, the identification
and characterization of splice isoforms is a goal of the HUPO
Human Proteome Project and of neXtProt.25,26 There have
been interesting studies on the identification of main functional
products at the splice isoform level. For example, the APPRIS
study predicts the principal protein isoform based on
conservation.27 A recent study suggested that a multi-isoform
gene expresses only one dominant isoform at the protein level
in a given tissue, providing evidence for functional differences

between isoforms.28 A brief overview of a variety of methods
for identifying dominant/major/principal isoforms is in our
previous work29,30

In contrast to using expression or conservation data, we
proposed a network approach to identify the highest connected
isoforms (HCIs).29 First, an isoform-level functional network is
constructed using the well-established multiple instance
learning (MIL) algorithm15,29,31−34 and Gene Ontology and
KEGG pathways. A node is an isoform, and an edge represents
the probability that the two interconnected translated proteins
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participate in the same biological process or pathway. An
advantage of this approach is that evidence from different
source data such as coexpression networks and protein
interactions can be integrated into a probabilistic value that
describes to what extent two isoforms are cofunctional.29 Based
on the network, we identified 3427 HCIs in the mouse which
showed statistically significant higher expression than the
nonhighest connected isoforms (NCIs), suggesting a correla-
tion between expression and functions. Being complementary
to major or dominant isoforms, HCIs provide a unique
resource for the mouse genomics community to investigate
major gene products and to facilitate further studies on disease
pathways and target of therapies.
Moving from mouse models to humans for the identification

of HCIs is valuable for understanding major human gene
products, both transcripts and proteins. Our major aim is
cataloguing human HCIs, investigating their expression
signatures across a number of tissues, and comparing them
with mouse HCIs using the network approach.29 First, we built
a genome-wide isoform-level functional network for the human
by integrating a large compendium of genomic features: RNA-
seq (1866 samples), amino acid composition (1 feature),
protein docking (1 feature) and conserved domain (1 feature)
(Figure 1). We also developed a web server to make the

network publicly available (http://guanlab.ccmb.med.umich.
edu/hisonet), providing a rich resource for investigating
functional interactions of human isoforms. From the network,
we identified HCIs and NCIs for 6157 multi-isoform human
genes, with their expression behavior examined using an
independent quality-controlled test set of 940 RNA-seq
samples across many tissues including heart, liver, and kidney.
Proteomic data of two normal human tissuesretina and

placentawere used to investigate protein-level expression of
HCIs. We present instructive examples of pairs of splice
isoforms. Furthermore, we performed homology analysis of
HCIs between the mouse and human.

■ METHODS

Constructing Isoform-Level Functional Network Using
Multiple Instance Learning

Multiple Instance Learning. The algorithmic challenge
faced when constructing isoform networks is that supervised
learning methods such as support vector machines35−37 and
Bayesian networks19,20,38 cannot be directly used due to the
lack of functional annotation at the isoform level.15,29,34 To
solve this problem, we used multiple instance learning (MIL) to
predict isoform-level networks by integrating isoform level
genomic features and gene-level functional annotation data
(Figure 1). Briefly, there are two fundamental concepts for
MIL: bags and instances. In the context of isoform network
prediction, a bag is a gene pair, and an instance represents any
possible isoform pair of the gene pair. Suppose that A and B are
two genes which have two and three isoforms, denoted A1, A2
and B1, B2, B3, respectively. The pair formulated by these two
genes, denoted A-B, is treated as a bag in MIL. There are in
total six possible isoform pairs for this gene pair: A1-B1, A1-B2,
A1-B3, A2-B1, A2-B2, and A2-B3. Each isoform pair is treated as
an instance of the bag (gene pair). MIL predicts isoform-level
functional relationship networks based on the following three
assumptions:29,34 (1) a gene pair is assumed to be functionally
related if they participate in the same biological process or
pathway, defined as coannotated to the same gene ontology
(GO) biological process term39 or a Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway;40 (2) a gene pair (bag)
is assumed to be positive if at least one of its isoform pairs
(instance) is functional; and (3) in contrast, none of the
isoform pairs of a negative gene pair is functionally related.
To build the isoform network for the human, we collected

four types of genomic feature data and a gold standard set of
functionally related gene pairs (Figure 1), which are described
below:

RNA-seq Transcript Expression. We downloaded all
publicly available human RNA-seq data from the short read
archive (SRA) database41 as of June 5, 2014, which included
825 data sets containing 12 707 samples. The Sailfish software
(version 0.6.3)42 was used to estimate splice isoform expression
level in terms of RPKM (Reads Per Kilobase of exon per
Million fragments mapped) based on the RefSeq human
genome build (version 37.2) which contains a total of 32 125
protein-coding RNA. Noncoding RNAs were not considered in
this study. Then, samples with read mapping rate <70% were
removed. In each data set, transcripts with low expression level
(RPKM < 0.1) in more than 10% of samples were removed.29

After doing so, we obtained 314 quality-controlled data sets
covering 2706 samples. Among them, we selected 59 data sets
with sample size ≥10 (comprising 1866 samples in total, see
Table S1), and calculated, for all possible isoform pairs in each
data set, their Fisher’s z-transformed Pearson correlations
which were used as feature data to build the isoform network
for the human formula 1.43 The reason to use z-transformation
is to ensure that the correlation coefficients are normally
distributed and comparable across data sets. All the 940
samples in the remaining 255 data sets were used as an

Figure 1. Workflow for the identification and expression analysis of
the HCIs in the human. We first collected four types of isoform-level
genomic feature data (RNA-seq, pseudoamino acid composition,
protein docking and conserved domain) and a gold standard set of
functionally related gene pairs derived from GO and KEGG database.
These data were integrated using the multiple instance learning (MIL)
method, and an isoform-level functional network was built for the
human. In this network, each node represents a splice isoform, and the
edge describes the probability ranging from 0 to 1 that two isoforms
coparticipate in the same biological process or pathway. Finally, HCIs
were identified using our established method. Independent RNA-seq
and proteomic data were used to examine the expression of HCIs.
Comparison of human and mouse HCIs was performed.
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independent test set to investigate the expression behavior of
HCIs and NCIs.
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Pseudoamino Acid Composition. Amino acid composi-
tion (AAC) is a commonly used feature to characterize protein
sequences. The sequential information on amino acids in a
protein is important for protein structures and functions, but is
not captured by AAC. For this reason, a feature that is able to
take into account sequential information was developed, which
does not really reflect AAC and therefore was called pseudo-
AAC together with the standard amino acid composition.44

Here, we generated pseudo-AAC for each isoform, followed by
calculating Fisher’s z-transformed Pearson correlation between
isoform pairs as the feature data.
Protein Docking Score. We computed a quantitative

physical interaction score for each isoform pair using the
SPRING algorithm.45 Briefly, SPRING is a template-based
algorithm for protein−protein interaction prediction. SPRING
first builds 3-D structures of protein isoforms followed by
predicting their interaction potential. This pairwise docking
score was used as a feature for building the isoform-level
network for the human.
Conserved Domain. We downloaded domain data from

the Conserved Domain Database (CDD),46 which is a protein
annotation resource composed of well-annotated multi-
sequence alignment models for identifying domains. It contains
NCBI-curated domains as well as imported data from, for
example, Pfam47,48 and SMART.49 For each query protein,
CDD outputs four tiers of domains; only the top tier, called
specific hits with high confidence, was used. For each possible
protein pair, we then calculated the number of shared domains
between them and used this number as a pairwise feature to
construct the human isoform network.
Gold Standard of Functionally Related Gene Pairs.

The GO biological process terms and KEGG pathways were
used to derive functionally related gene pairs, according to
previous work.17−19 To avoid too specific or too general
annotations, only the biological processes/pathways containing
at least 5 and fewer than 300 annotated genes were used. We
derived all coannotated gene pairs and identified 772 086
positive gene pairs. Since there is no gold standard of negative
gene pairs available, we randomly generated gene pairs from the
whole genome space as negatives that are 19 times the number
of positives based on our previous study.17,19,20,29

Isoform Networks for Identifying HCIs in the Human

Based on the isoform-level functional relationship network
constructed in the previous step, the HCIs were identified using
our established method.29 For a multi-isoform gene with k
isoforms, we first calculated the average functional relationship
(AFR) score for each isoform as the mean functional
connections between the isoform and its top neighbors,
denoted AFR1, AFR2, AFR3,... AFRk. Thereafter, the isoform
with the maximum AFR score is selected as the HCI for the
gene under investigation. The other isoforms of the same gene
are considered as NCIs. For each gene, we also calculated its
ratio of the maximal to minimal AFR score to quantify the
difference between isoforms:29

=ratio AFR /AFRmax min (2)

A gene with ratio >1.5 was considered to have large differences
in its isoform functional relationship.
Independent Transcript-Level Expression Analysis of HCIs

As described above (see Methods section), 940 RNA-seq
samples (Table S1) not used for building the human isoform
network were then available to be used as an independent test
set to interrogate the expression signal of HCIs and NCIs at the
transcript level. For each sample, the expression data were
divided into two groups: one for HCIs and the other for NCIs.
The mean expression of each group was calculated to compare
their average expression level. The Mann−Whitney U test is
used to examine whether HCIs and NCIs are differentially
expressed or not. This test method does not assume any data
distribution and is robust.
Human Proteomic Data for Validation of HCIs

Data Set. For proteomic validation purposes, we used
publicly available data from two different studies on human
normal tissues. The first data set is a proteomic analysis on
retinal tissue by Zhang et al.50 (http://proteomecentral.
proteomexchange.org/cgi/GetDataset?ID=PXD001242). Ac-
cording to this study, proteins were extracted from five normal
retinal tissues and fractionated using SDS-PAGE. The peptides
were then analyzed using LC-MS/MS on an Orbitrap Elite
mass spectrometer. After mass-spectrometric analyses they
selected peptides with greater than 95% probability by the
PeptideProphet algorithm for further analyses. We downloaded
the supplementary Table 1 with this peptide information
(http://onl inel ibrary .wi ley .com/doi/10.1002/pmic .
201400397/suppinfo) for our analyses.
The second data set was downloaded from PRIDE archive

(http://www.ebi.ac.uk/pride/archive/projects/PXD000754).
We downloaded the mass spectrometric search result files.
Peptides with greater than 95% PeptideProphet probability
were extracted from these files and used for isoform analyses.

Isoform Identification. The downloaded peptides were
blasted using the NCBI sequence alignment BLASTP tool
(http://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=
blastp&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome)
against UniProt protein sequences (UniProt fasta files released
on 06/24/15). The analysis process is as follows:

1. Peptides that were perfectly aligned to proteins with no
mismatches were selected.

2. Proteins with no proteotypic peptides were removed.
3. Only the proteins from genes with more than one known

protein product were retained.

■ RESULTS AND DISCUSSION

Genome-Wide Human Isoform Network and the Web
Server

Using our MIL method, we built the isoform level functional
relationship network at genome scale for the human. As
expected, the integrated network shows higher prediction
accuracy than each single feature (Figure S1). This network
includes 19 540 genes that encode a total of 32 125 protein-
coding splice isoforms. In this network, each node is an
isoform, and the edge indicates the probability that two
connected isoforms would coparticipate in the same biological
process or pathway. To make the functional network
searchable, we developed a web server (http://guanlab.ccmb.
med.umich.edu/hisonet) which allows users to input a gene or
an isoform to investigate their isoform networks. For each
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isoform, we also mapped its top connected isoforms to their
gene names and conducted GO enrichment analysis.
Significantly enriched biological processes are shown along
with the network, providing a way to associate the networks
with their functions.

Identifying the HCIs and NCIs in the Human

We first identified 6157 multi-isoform genes encoding 17 962
protein-coding isoforms. For each multi-isoform gene, we
calculated the AFR score for each of its isoforms, then
designated the one with the highest AFR score as the HCI. The
remaining isoforms were considered as NCIs.
Specific to our Chromosome 17 Human Proteome Project,

an example is the ABCC3 gene (ATP-binding cassette,
subfamily C (CFTR/MRP), member 3) which is located at
chr17:48712205−48769063. Its HCI (NM_003786.3,
ABCC3_1) has an AFR score 5 times larger than that of the
NCI (NM_001144070.1, ABCC3_2) (Figure 2, upper panel).
The NCI contains only one domain, which is the ABC
transporter membrane region; in contrast, the HCI contains
three additional domains, including ATP-binding cassette
domain 1 of multidrug resistance-associated protein. Another
example is RBM34 (RNA binding motif 34, chr1:235,294,498−
235,324,571). The AFR scores of its two isoforms
NM_015014.2 (RBM34_1) and NM_001161533.1
(RBM34_2) (Figure 2, middle panel) are 0.998 and 0.156,
respectively. Therefore, the former is HCI, and the latter is
NCI. According to the annotation in the RefSeq database
(http://www.ncbi.nlm.nih.gov/gene/23029), the HCI contains
three RNA binding motifs, while the NCI has only one general
binding motif, again suggesting that the HCI selected by our
method is accurate.
We observed that the AFR scores of some NCIs can be very

close to that of its HCI. In this situation, distinguishing HCIs
from NCIs may be inaccurate. Therefore, we categorized those
NCIs as HCI candidates if their AFR scores were 80% or 90%
or more that of HCIs, according the criterion in our previous
work.29 In the case of ERBB2 (erb-b2 receptor tyrosine kinase
2, chr17:37844167−37884915),11,14 the AFR score of its HCI
(0.95, NM_004448.2, ERBB2_1) is not much higher than that
of its NCI (0.79,°NM_001005862.1, ERBB2_2) (Figure 2,
lower panel). The HCI encodes a 30 amino acid longer protein
compared to NCI, but both isoforms have the same seven
domains based on NCBI. Another example is the ANXA7 gene
(Annexin A7, chr10:75,135,189-75,173,841) whose HCI
(NM_001156.3) has an AFR score = 0.935. The NCI
(NM_004034.2) with AFR score = 0.900 is treated as an
HCI candidate. All HCIs, NCIs, and HCI candidates are listed
in Table S2.

Differential Tissue Expression Between HCIs and NCIs

Motivated by the interesting finding that HCIs showed
significantly higher expression at the transcript level than
NCIs across a variety of tissues in the mouse,29 we asked
whether this finding holds in the human. Based on the
independent test set of 940 RNA-seq samples (Table S1), we
found that HCIs showed significantly higher expression (p <
0.05) than NCIs in 914 human samples using the Mann−
Whitney U test. Plotting the mean expression of HCIs against
that of NCIs clearly shows their differential expression (Figure
3A, blue dot) regardless of tissues and cell lines, suggesting a
shared gene expression regulation mechanism in different body
compartments. Moreover, this observation is consistent with
what was observed in the mouse.29 The observation that the

most functional isoforms at the transcript level tend to show
higher expression levels implies that a transcript with higher
expression level is expected to be more functional.
For the remaining 26 samples (Figure 3A, red star) where no

significant differences were observed between HCIs and NCIs,
we found that they were all measured using a 3′-end sequencing
technology. This technique is not able to quantify isoform
expression and led to the apparently same expression level
between HCIs and NCIs. As an example, the expression
distribution of HCIs completely overlaps with that of NCIs for
the RNA-seq experiment (SRX283705, hESCs cell at S phase)
because a 3′ library was prepared for RNA-seq sequencing
(Figure S2). The expression distributions of HCIs and NCIs for
all test samples are provided (Figure S2).

Figure 2. Illustrations of the HCI and NCI using the ABCC3 (ATP-
Binding Cassette, Sub-Family C (CFTR/MRP), Member 3,
chr17:48,712,205-48,769,063), RBM34 (RNA binding motif 34,
chr1:235,131,183−235,161,616), and ERBB2 (erb-b2 receptor tyro-
sine kinase 2, chr17:37,844,167−37,884,915) genes. For each gene, the
isoform with higher AFR score is selected as HCI. Black and blue
nodes represent single-isoform and multi-isoform genes, respectively;
green nodes indicate the queried gene/isoform. Gene names followed
by numbers indicate isoforms for easily recognizing the originating-
gene, which are NM_003786.3 (ABCC3_1), NM_001144070.1
(ABCC3_2); NM_015014.2 (RBM34_1), NM_001161533.1
(RBM34_2); NM_004448.2 (ERBB2_1), NM_001005862.1
(ERBB2_2).
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The above observation indicates that, for an individual gene,
its HCI would most likely show higher expression than the
NCI. Again, taking the ABCC3 gene as an example, we
identified 371 samples where both of its two isoforms (HCI:
NM_003786.3, NCI: NM_001144070.1) were expressed. The
comparison reveals that the expression of HCI is much higher
(p < 0.001) than that of NCI (Figure 3B). For RBM34, its HCI
(NM_015014.2) showed much higher (p < 0.001) expression
than NCI (NM_001161533.1) (Figure 3C). Of interest, for
ERBB2 whose HCI and NCI have close AFR scores, its HCI
also showed significantly higher (p < 0.001) expression than its
NCI (Figure 3D).

Proteomic Validation of HCIs

To investigate the expression of HCIs at the protein level, we
profiled protein isoform expression in data sets from two
normal human tissues, retina and placenta. Taking the retina as
an example, we first calculated the number of multi-isoform
genes (with ratio >1.5, calculated using formula 2, see Methods
section) whose splice isoforms were expressed at both
transcript and protein level, which is 74 in this case (Table
1). We found that 58 of these 74 genes have protein expression
evidence for their HCIs, which is significant (p < 0.0001)
compared to the number of HCIs which overlap with expressed
protein isoforms by chance (27 ± 4). Taking the NDUFB6
(NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 6)
gene as an example, its isoform networks are shown in Figure 4.
The isoform NM_002493.4 (NDUFB6_2) with the highest
AFR score = 0.971 was selected as HCI, whereas
NM_182739.2 (NDUFB6_1) with AFR score = 0.168 was
NCI. Based on our proteomic data, we found that the protein

Figure 3. Differential expression behavior between HCIs and NCIs based on 940 RNA-seq samples that were not used in building the human
isoform network. A, the mean expression of HCIs is much higher than that of NCIs within each sample (blue dot). It was observed that HCIs
showed lower or insignificantly higher expression than NCIs in 26 test samples (red star). The reason is that these samples were measured using 3′-
end sequencing that is not able to differentiate expression between isoforms. B, expression level comparison of NM_003786.3 and
NM_001144070.1, which are the HCI and NCI of the gene ABCC3 (ATP-Binding Cassette, Sub-Family C (CFTR/MRP), Member 3), respectively.
Each dot represents one sample. C and D, expression comparison between HCI and NCI for RBM34 (RNA binding motif 34) and ERBB2 (erb-b2
receptor tyrosine kinase 2).

Table 1. Overlap between Our Predicted HCIs and the
Expressed Protein Isoforms in Human Normal Tissues
Based on Multi-Isoform Genes with Their Isoforms
Expressed at Both Transcript and Protein Levela

tissues number of multi-isoform genes Nobserved Nchance P-value

retina 74 58 27 ± 4 <0.0001
placenta 83 68 32 ± 4 <0.0001

aNobserved: The number of genes whose HCI is expressed at protein
level; Nchance: the number of genes whose HCI has protein expression
evidence by chance. Protein isoform identification was based on
proteotypic peptides

Figure 4. Functional networks of HCI (NM_002493.4, NDUFB6_2)
and NCI (NM_182739.2, NDUFB6_1) of NDUFB6 (NADH
dehydrogenase (ubiquinone) 1 beta subcomplex, 6) gene.

Journal of Proteome Research Article

DOI: 10.1021/acs.jproteome.5b00494
J. Proteome Res. 2015, 14, 3484−3491

3488

http://dx.doi.org/10.1021/acs.jproteome.5b00494


isoform is expressed for HCI but not for NCI. An example for
the placenta tissue is M6PR (Mannose-6-Phosphate Receptor).
Its HCI NM_002355.3 (AFR = 0.971) is expressed at the
protein level, whereas its NCI NM_001207024.1 (AFR =
0.179) is not (Figure S3). In both tissues, HCIs were found to
be a promising indicator of protein-level expression (Table 1).
We have provided those genes with protein level evidence for
HCIs in both tissues in Table S3.

Comparison between Human and Mouse HCIs

Because humans and mice have homologue genes, it is of
interest to compare HCIs between homologues. From the
human and mouse multi-isoform genes with ratio >1.5
(calculated using formula 2, see Methods section), we identified
306 homologue genes each of which has an HCI in the mouse
and an HCI in the human, denoted as HCIm and HCIh,
respectively. We hypothesized that the proteins encoded by
HCIm and HCIh are homologous. Using the Homologene
database in NCBI (http://www.ncbi .nlm.nih.gov/
homologene), we identified 61 of the 306 homologue genes
whose mouse and human HCIs are homologues (Table S4),
which is significant (p = 0.0003) compared to the null
distribution calculated as the number of genes whose HCIm and
HCIh are the same by chance using the following procedure.
First, for each homologue gene, we randomly picked one of its
transcripts in the mouse and another one in the human; then
we examined whether the proteins encoded by these two
transcripts are homologous, as listed in Homologene. We found
that the number of homologue genes whose HCIm and HCIh
are also homologues is 41 ± 6 by chance. This result suggests
an evolutionarily conserved characteristic of HCIs between
species.

■ CONCLUDING REMARKS

Alternative splicing enables a single gene to generate multiple
protein isoforms that may show differences in their expression
and/or functions.15,51 Such differences have motivated the
search for canonical isoforms labeled “principal” or “major” or
“dominant” isoforms.27,28,52 Using our isoform-level functional
network approach, we interrogated the HCIs in the human by
integrating a large compendium of genomic feature data; we
identified 6157 HCIs from multi-isoform genes, providing a
new set of functional isoforms that could facilitate further
investigation of main gene products, especially at the protein
level. The differential expression behavior between HCIs and
NCIs previously found in the mouse was replicated in the
human, suggesting the conservation of HCIs. Using proteomic
data of two human tissues, we found that HCIs are a promising
indicator of expressed protein isoforms. Due to the
conservation of genes between similar species in terms of
genome sequence, we tested the hypothesis that HCIs of
homologue genes are also likely to have transcript-level
homology. The result showed that mouse and human HCIs
are significantly (p = 0.0003, see Comparison between Human
and Mouse HCIs section) likely to be homologues, supporting
the conservation of our identified HCIs across species. This
finding also supports our previous comparative results that
HCIs significantly (p < 0.000001, see Table 1 in ref 29) overlap
with the APPRIS principal isoform that were identified through
multispecies sequence conservation.27,29 Summing up, as a new
catalog of splice isoforms, HCIs show interesting characteristics
and are expected to facilitate the study of main human gene
products and possibly disease pathways. These results lay a

foundation for proteome-based studies and for the functional
annotation of splice isoforms in neXtProt and other databases.
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