
Supplementary Methods 
 
1. Threading program PPAS 
PPAS is a sequence profile–profile alignment approach assisted 
with secondary structure matches. The scoring function of PPAS is 
defined by 

ScorePPAS(i, j ) = Fq(i,k )
k=1

20
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where Fq(i, k) represents the frequency of the kth amino acid at the 
ith position of the MSAs obtained by PSI-BLAST1 search through the 
NCBI non-redundant sequence database with 3 iterations and E-
value cutoff =0.001. The Henikoff weights2 are exploited to reduce 
the redundancy of aligned multiple sequences in the frequency pro-
file calculation. Lt(j, k) denotes the log-odd profile of the template for 
the kth amino acid at the jth position which was pre-calculated for 
each template by the PSI-BLAST search. Sq(i) stands for the sec-
ondary structure at the ith position of the target sequence and St(j) 
represents the secondary structure at the jth position of the tem-
plate. δ[Sq (i ),St ( j )]  is the Kronecker delta function with value=1 if 
Sq(i)=St(j), or =0 otherwise. The secondary structure for the query is 
predicted by PSSpred3, while that for the template is assigned by 
STRIDE4, which contains three states: alpha-helix (H), beta-strand 
(E), and coil (C). The shift parameter is introduced to avoid the 
alignment of unrelated residues in the local regions.  

The Needleman-Wunsch dynamic programming algorithm5 is 
used to search for the best possible match between the query and 
template sequences while ending gap penalty is neglected. Parame-
ters of c1 (=0.65), shift (=-0.96), gap opening (go=-7.0) and gap ex-
tension (ge=-0.54) penalties were optimized using a set of 300 non-
redundant training proteins by maximizing the average TM-score of 
the threading models6. 

 
2. Threading program Env-PPAS 
The alignment scoring function of Env-PPAS is similar to PPAS but 
with a new environment potential added: 

ScoreEnv-PPAS(i, j ) = ScorePPAS(i, j )+c2Envior(j,AAq (i))           (2) 
where Envior(j,AAq (i))  denotes the fitness score of the ith residue of 
the query, AAq(i), in the structural environment of the jth residue of 
the template structure. This potential describes the residue-specific 
propensity to specific backbone torsion angle, solvent accessibility, 
secondary structure, and side-chain orientation specific contacts7, 8, 
which were derived from the statistics of 5,606 non-redundant PDB 
structure based on the quasi-chemical approximation9. To increase 
the sensitivity of the algorithm to random alignments, the alignment 
score is renormalized against the reversed sequences: 

ScoreEnv-PPAS −RScoreEnv-PPAS
L

                            (3) 

RScoreEnv-PPAS is the raw alignment score of Env-PPAS on an artifi-
cial sequence that constitutes the reversal of the query sequence, 
and L denotes the length of the query sequence. c2 (=0.45) is decid-
ed based on our training dataset. The Smith-Waterman local dynam-
ic programming algorithm10 is used to identify the best alignment 
between the query and the template. 

 
3. Threading program wPPAS 
wPPAS is an extension of PPAS by introducing a new weighted 
sequence profile that is constructed from a different weighting 
scheme11, 12, i.e. 

ScorewPPAS(i, j ) = ScorePPAS(i, j )+c3(ScorefPPA(i, j )+ fshift )        (4) 

where the scoring function for ScorefPPA(i, j )  is defined by 

ScorefPPA(i, j ) = FPq (i,k )B(k ,m)FPt (j,m)
m=1

20
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∑                     (5) 

In Eq. (5), FPq(i, k) represents the frequency profile of the kth amino 
acid at the ith position of the query sequence; FPt(j, m) is the fre-
quency profile of the mth amino acid at the jth position of the tem-
plate sequence; B(k,m) is the BLOSUM62 scoring matrix for aligning 
the kth amino of the query with the mth amino acid of the template. 
The constant fshift is introduced to balance the new sequence profile 
term, with the values of c3=1.0 and fshift=-0.4 decided in the training 
set of proteins. 

 
4. Threading program dPPAS and dPPAS2 
dPPAS aligns the query sequence to template structure using an 
additional depth-based scoring function of 

ScoredPPAS(i, j ) = Fq (i,k ) Lstr ( j,k )+Lt ( j,k )[ ]
k=1
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                       (6) 

where Fq(i, k), Lt(j,k) and δ[Sq(i), St(j)] are defined in Eq. (1). Lstr(j, k) 
stands for structure profile reflecting the environment and depth of 
the neighboring residue fragments in the template structure6.  

To calculate the structural profile, each template structure is split 
into small fragments with nine residues, which are used as seed 
fragments and compared by gapless threading with nine-residue 
fragments from a set of non-redundant PDB proteins selected by 
PISCES13, where the similarity is measured by RMSD and the frag-
ment depth similarity in the structures. These fragments collected 
from the database are used to calculate the position specific fre-
quency profile Lstr(j, k) for the templates. The Smith-Waterman local 
alignment algorithm10 is used to identify the best match between the 
target and template sequences. The parameters of dPPAS are de-
termined (c4=6.5, dshift=-0.96, go=-7.0 and ge =-0.54) by a grid 
search using our training dataset based on the TM-score of the 
threading models6. dPPAS2 uses the same scoring function and 
alignment algorithm as that of dPPAS but with a stronger weight on 
the sequence and depth profile terms. 

 
5. Threading program wdPPAS  
wdPPAS is an extension of dPPAS and wPPAS with the score func-
tion defined by 

ScorewdPPAS(i, j ) = ScoredPPAS(i, j )+c3(ScorefPPA(i, j )+ fshift )           (7) 
The new weighting profile and parameters are the same as in Eqs. 
(4) and (5), with the alignment searched by the Needleman-Wunsch 
global dynamic programming algorithm. 

 
6. Threading program MUSTER 
MUSTER (multi-source threader) is a threading algorithm combining 
sequence profiles with different resources of structure predictions6: 

ScoreMUSTER(i, j ) = [Pcq (i,k )+Pdq (i,k )]Lt ( j,k )
k=1

20
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+w2 Pst ( j,k )Lq (i,k )
k=1

20

∑ +w 3[1−2SAq (i )−SAt ( j ) ]

+w 4[1−2 φq (i )−φt ( j ) ]+w5[1−2 ϕq (i )−ϕt ( j ) ]
+w6M [AAq (i ),AAt ( j )]+wshift

    (8) 

Here, Pcq(i, k) and Pdq(i, k) represent two profiles collected from 
close (E-value <0.001) and distant (E-value <1.0) homology se-
quences, respectively. The second and third terms in Eq. (8) are for 
secondary structure and structural profile matches, similar to that 
used for dPPAS in Eq. (6). The fourth, fifth and sixth terms count for 
the match of solvent accessibility, backbone torsion angles between 
query and templates. The seventh term is a generic hydrophobic 
scoring matrix. A systematic lattice-based search, which was de-
signed to maximize the average TM-score14 of the 300 non-
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redundant training proteins, resulted in the optimized parameter 
sets: w1=0.65, w2=1.10, w3=4.49, w4=2.01, w5=0.59, w6=0.20, 
wshift=1.00, go=6.99, and ge=0.54. 

 
7. Threading program wMUSTER 
Compared to MUSTER, two new weighted terms are added in the 
wMUSTER scoring function: 

ScorewMUSTER(i, j ) = ScoreMUSTER(i, j )+w7[ScorefPPA(i, j )+ fshift ]
+w8 {δ2[Sq(i ),St7( j ),conf ]+sshift }

      (9) 

Here, PSSpred3 was retrained with discrete scoring matrixes based 
on 1,192 non-redundant PDB proteins that were collected by 
PISCES13. For each query residue, wMUSTER considers three sec-
ondary structure states (i.e. H, E and C) and ten confidence scores 
(i.e. [0, 1, …, 9]) as given by the retrained PSSpred. Each residue in 
the template structure is assigned with one of the seven secondary 
structure states by STRIDE4, i.e. H: alpha helix, G: 3-10 helix, I: PI-
helix, E: extended conformation, B: isolated bridge, T: turn and C: 
coil. There are thus in total 21 probability scores for different pairs of 
PSSpred predictions and STRIDE assignments, each with ten confi-
dence levels. We calculate 3 × 7 substitution matrices, one for each 
level of confidence value by 

δ2[Sq(i ),St7( j ),conf ] = log P[Sq(i ),St7( j ),conf ]
P[Sq(i ),conf ]P[St7( j )]

            (10) 

where P[Sq(i ),conf ]  is the probability of the predicted secondary 
structure type i (i [H, E, C]) occurred at the confidence score conf; 
P[St7( j )]  is the probability of occurrence of the actual secondary 
structure type j (j [H, E, C, G, B, S, T]). We compared the predict-
ed and actual secondary structure for 1,192 proteins, and calculated 
the joint probability P[Sq(i ),St7( j ),conf ]  for the predicted secondary 
structure type i at the confidence score conf and the actual second-
ary structure type j. In this way, we calculated the log-odds scoring 
function (3×7 substitution matrix) for each confidence value. The 
constant sshift in Eq. (9) is introduced to balance the new term 
δ2[Sq(i ),St7( j ),conf ] . The parameters associated with the new terms 
in Eq. (9) are: w7=0.5, fshift=-0.5, w8=0.5 and sshift=-0.8. 

 
8. Threading template combination and target classification by 
LOMETS 
The threading templates and alignments are combined by 
LOMETS15. For each template from program P, a Z-score is calcu-
lated to evaluate the significance of the alignment compared to other 
templates: 

Zi (P ) =
Ei (P )− E

P

E 2

P
− E

P

2
                                 (11) 

where Ei(P) is the score of the alignment by P and 〈…〉P indicates the 
average over all template alignments by the threading program P. A 
Z-score cutoff, Z0(P), is assigned to each program to distinguish if 
the template is good or bad, based on the large-scale benchmark 
test16, i.e. Z0(PPAS)=7.0, Z0(Env-PPAS)=8.0, Z0(wPPAS)=7.0, 
Z0(dPPAS)=9.3, Z0(dPPAS2)=10.5, Z0(wdPPAS)=9.3, Z0(MUSTER) 
=5.8, and Z0(wMUSTER)=5.8.  

If there are more than eight templates with Zi(P) >Z0(P), i.e. the 
average number of good templates is >1 per threading program, the 
target is defined as an Easy target which usually corresponds to a 
homologous protein. If there is no template with Zi(P) >Z0(P), it is 
defined as a Hard target which usually corresponds to a non-
homologous protein. The others are Medium targets. 

An ‘init.dat’ file is generated which collects the top 20 templates 
from each of the threading programs. The templates in ‘init.dat’ are 
listed in the order of good alignments followed by the bad align-
ments, enumerated from high to low confident programs, where the 
confidences of the threading programs are ranked by the average 
TM-score of the alignments in large-scale benchmark tests. This file 
will be used by I-TASSER to generate spatial restraints and for con-

structing initial conformations that the assembly simulations start 
from. 
 
9. Conformational representation of protein structure in I-
TASSER 
Each residue in I-TASSER is represented by its Cα atom and side-
chain center of mass. Following the query-to-template alignments 
from LOMETS, the query sequence is split into threading aligned- 
and unaligned-regions. The conformations in the threading aligned 
regions are excised from the continuous pieces with length >5 resi-
dues of the template structures. The local structures of this portion of 
sequence are kept frozen during the simulation and move on an off-
lattice system; this is designed to enhance the fidelity of the high-
resolution structure available from the template alignment (Figure A). 

The conformational simulations of the threading-unaligned regions 
are conducted on a lattice-based system with a grid-scale of 0.81 Å 
(white color regions in Figure A); this is designed to reduce the con-
formational search entropy. To further speed up the conformational 
search, we defined 312 Cα-Cα on-lattice bond-vectors with the 
length ranging from 3.25 to 4.35 Å7, where all the allowable 2-bond 
combinations are pre-calculated by excluding any 2-bond vectors 
with a bond-angle below 65° or above 165°, which have never been 
seen in the PDB structures. This filter can considerably reduce the 
on-lattice searching space. The on-lattice bond-vectors have an 
average length 3.81 Å that is consistent with the standard Cα-Cα 
bond length seen in the PDB structures; but the individual bond 
length may vary between 3.25 and 4.25 Å for the purpose of increas-
ing the conformational flexibility of the on-lattice movements. 

The topology of the I-TASSER models are decided by the relative 
orientation of the individual threading fragments, where the una-
ligned on-lattice regions are built from scratch which serve as link-
age of the threading fragments. 
 

 
Figure A. The on-and-off lattice system for I-TASSER model representation. 
Each residue is represented by its Cα atom and side-chain center of mass 
(SG, red color). The Cα traces in threading unaligned regions are on lattice 
(white balls); the Cα traces in the aligned regions are excised from template 
structures and moved continuously (yellow balls). 
 
11. I-TASSER movements and Monte Carlo search engine 
The structure reassembly in I-TASSER is conducted by the replica-
exchange Monte Carlo (REMC) simulations17, 18. There are two types 
of the conformational movements in the I-TASSER simulations (Fig-
ure B). 

The first type of on-lattice movements consist of six sets of local 
moves: (A1) 2-bond vector walk; (A2) 3-bond vector walk; (A3) 4-
bond vector walk; (A4) 5-bond vector walk; (A5) 6-bond vector walk; 

∈

∈

Nature Methods: doi:10.1038/nmeth.3213



(A6) N- or C-terminal random walk (Figure B). To speed up the 
simulations, all the 2-bond and 3-bond conformations for any given 
distance vectors spanning the moving windows are pre-calculated, 
so that the A1 and A2 movements can be quickly conducted by 
enumerating the look-up table of movements without calculating the 
specific residue coordinates. The A3-A5 movements can also be 
quickly conducted by the combination of A1 and A2 movements, i.e. 
by enumerating the neighboring 2- or 3-bond vectors sequentially 
along the moving window. 

 
Figure B. Conformational movements in the I-TASSER Monte Carlo simula-
tions. Solid and dashed lines are Cα traces before and after movements. Blue 
lines represent the threading unaligned regions with moves on the lattice 
system and orange ones are from the aligned regions with moves off-lattice. 
Left Panel: (A1) two bond vector random walk; (A2) three bond vector walk; 
(A3) four bond vector walk; (A4) five bond vector walk; (A5) six bond vector 
translation; (A6) N- and C-terminal random walk. Right Panel: (B1) fragment 
translation; (B2) fragment rotation around a random residue; (B3) fragment 
rotation and translation; (B4) small deformation of a fragment. After each 
fragment movement, the neighboring vectors at the two ends are regenerated 
to keep the chain connection. 

The second type of off-lattice movements consist of four sets of 
global moves of a randomly selected continuous fragment: (B1) a 
translation of the fragment; (B2) a rotation of the fragment around a 
randomly selected residue; (B3) a combination of rotation and trans-
lation of the fragment; (B4) a small deformation by independently 
rotating N- and C-terminals of the fragment. After each off-lattice 
movement of the fragment, the neighboring lattice vectors at the two 
ends are regenerated to keep the chain connection (Figure B). 

Following the standard REMC protocol17, there are Nrep replicas of 
the simulations which are implemented in parallel, with the tempera-
ture of the ith replica being 

Ti =Tmin
Tmax
Tmin

!

"
#

$

%
&
(i−1)/(Nrep−1)

                                       (12) 

where Tmin and Tmax are the temperatures of the first and the last 
replicas, respectively. Nrep ranges from 40 to 80, Tmin from 1.6 to 
1.98 kB

-1, and Tmax from 66 to 106 kB
-1, depending on the protein size 

with larger proteins having more replicas and higher temperatures. 
These parameter settings can result in an acceptance rate of ~3% 
for the lowest-temperature replica and ~65% for the highest-
temperature replica for different sizes of proteins. 

After every 200*L conformational movements, a global swap 
movement between each pair of neighboring replicas is attempted 
following the standard Metropolis criterion with a probability of 
~exp(ΔβΔE), where the temperature distribution in Eq. (12) with the 
above temperature and Nrep parameter setting resulted in an approx-
imate 40% of acceptance rate for the swap movements between all 
neighboring replicas. 

 
12. I-TASSER force field construction 
The simulations of both unaligned- and aligned-regions in the I-
TASSER simulations are governed by the same unified knowledge-
based force field, which is built on the reduced model with each 
residue specified by the Cα atom and the side-chain center of mass. 
The I-TASSER force field consists of following three major compo-
nents. 

(1) Generic statistical potentials. The generic statistical poten-
tials are derived from the structural regularities observed in the PDB 
library: 

 
 

Estat = Econtact (Ai ,Aj ,gij ,θij )+Epair (gij ,θij )+Eexcl (Ai ,Aj ,dij ,gij )!" #$
i< j

L

∑ + Ehydro (Ai ,hi )+Eenv (Ai ,nip ,nia,nit )+ Ecorr (Ai ,Ai+ j ,di ,i+ j ,ci ,i+ j )+Esec(di ,i+5,
!
ri ,i+ j ){ }

j=2
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where L is the query length; dij and gij are the Cα and side-chain 
center distances between the ith and the jth residues, respectively, 
with Ai and Aj being the amino acid identity of the residues. θij de-
notes the orientation of side-chain vectors of the two residues in 
contact (i and j) with the values categorized into three groups (paral-
lel, antiparallel and perpendicular). 

Econtact(Ai, Aj, gij, θij) is the generic orientation-specific contact po-
tential derived from 6,500 non-redundant high-resolution PDB struc-
tures. Epair(gij, θij) was derived in the same way as Econtact but the 
counts of contacts are weighted by the sum of the BLOSUM muta-
tion score between the residue pairs of the query and the PDB struc-
tures over a window of ±5 neighboring residues. This potential is 
query-sequence specific but an alignment between the query and 
the PDB structure is not needed since we counted all the contact 
pairs in the PDB structures that have the same amino acid identity 
(Ai, Aj) to the query. Eexcl(Ai, Aj, dij, gij) denotes the soft-core excluded 
volume potential between the Cαs and the side-chain centers based 
on a 1/dij (or 1/gij) dependence. 

Ehydro(Ai, hi) is the hydrophobic interactions based on a combined 
score of the generic Kyte-Doolittle hydrophilic matrix19 and the se-
quence-dependent solvent accessibility prediction by neural-network 
training, with hi being the depth of the ith residue in the structure. 

Eenv(Ai, nip, nia, nit) is the orientation-specific contact profile, where 
nip, nia and nit are the numbers of residues in contact with the ith 
residue, with the side-chain vector being parallel, antiparallel or 
perpendicular to that of the ith residue, respectively. Ecorr(Ai, Aj, di,i+j, 
ci,i+j) is the short-range Cα distance correlation between the ith and 
the (i+j)th residues where ci,i+j denotes the chirality of the local struc-
ture. Esec(di,i+5,

!
ri ,i+ j ) is the secondary structure propensity that is 

specified by di,i+5, i.e. the local structure will be regulated towards 
alpha-helix (or beta-strand) when di,i+5 is below 7.5 Å (or above 11 
Å), where the secondary structure regularity is represented by the 
Cα distance and the relative orientation of the neighboring Cα bond-
vectors ( !ri ,i+ j ) based on the parameters of the standard alpha-helix 
and beta-strand structures. 

Many terms in Eq. (13) have been described in Refs.7, 20, 21 The 
parameters used in the terms are downloadable at 
http://zhanglab.ccmb.med.umich.edu/potential/. 

(2) Hydrogen-bonding networks. The hydrogen-bonds (H-
bonds) in I-TASSER are specified by the backbone geometry follow-
ing the PSSpred secondary structure predictions3. The occurrence of 
H-bonds in the simulations is evaluated by the contact order (CO, 
residue distance along sequence) and the relative orientation and 
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distance of the donor and receptor residues (Figure C). For instance, 
a hydrogen bond in an alpha-helix occurs only when CO=3 and the 
products of the bisector and normal vectors of the donor and recep-
tor residues (bb and cc) are above certain thresholds and the Cα 
distance (r) is below a cutoff; while CO is requested to be >4 or >20 
for hydrogen-bonded residues in anti-parallel or parallel beta-sheets, 
respectively, given that the same H-bond geometry cutoffs are satis-
fied. 

The hydrogen-bonding energy is calculated by 

EHB =

−
wHB (1− |cc −cc0 |)(1− |bb −bb0 )

(1+ |bri −br0 |)(1+ |brj −br0 |)∑ ,  alpha-helix

−
wHB |bb |cc

(1+bri / 2)(1+brj / 2)∑ ,                 beta-sheet

#

$

%
%

&

%
%

    (14) 

which is set to penalize the structural deviation of the candidate H-
bonds from the standard H-bonding geometry. wHB=1 if both donor 
and receptor residues are predicted as alpha-helix or beta-stands; 
otherwise wHB=0.5. The cutoff parameters for standard hydrogen 
bonds (cc0, bb0, br0) were calculated from an average of 500 high-
resolution PDB structures with the secondary structure elements 
assigned by STRIDE4. 

 

 
Figure C. Definition of H-bond geometry between residues i and j. !p  and !q  
are Cα-Cα vectors, !c = ( !p − !q)/ | !p − !q |  is the unit bisector vector and !
b =
!
c ×
!
q / |
!
c ×
!
q |  is the unit normal vector. 

!
r  is a vector pointing from donor 

Cα to receptor Cα atom. Accordingly, we define cc =
!
ci ⋅
!
c j , bb =

!
bi ⋅
!
bj , 

bb =
!
bi ⋅
!
bj , pp =

!
pi ⋅
!
pj , qq =

!
qi ⋅
!
q j , bri =| l

!
bi −
!
r | , brj =| l

!
bj −
!
r | , where l=5 Å 

for alpha-helix and 4.6 Å for beta-sheets. 
 

(3) Threading template-based restraints. The threading based 
spatial restraints contain Cα distance maps and side-chain contacts 
which are collected from the ‘init.dat’ file by taking the consensus of 
the top Ntemp threading templates from LOMETS15, where Ntemp=20 
for the Easy targets, 30 for the Medium targets, and 50 for the Hard 
targets following LOMETS target definition. In the second round of 
iterative simulations, the external restraints also include, in addition 
to the threading restraints, the restraints from the I-TASSER cluster 
centroids and the restraints from the PDB templates detected by the 
structure alignment program TM-align22 that uses the cluster struc-
tures as the probe23. 

Four types of restraints are implemented in I-TASSER by 

Erest =

|dij −dijp |
i< j
∑ ,  short-range Cα  distance with |i-j|≤ 6

−1 |dij −dijp |
i> j
∑ , long-range Cα  distance with |i-j|>6

−w (conf ij )θ(6.5−dij ), Cα  contact restraints
i> j
∑

w (conf ij )θ(gij − g0
AiAj ), side-chain contact restraints

i> j
∑

$
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where dij and gij are the Cα and side-chain center of mass distances 
between the ith and the jth residues; dij

p  is the predicted distance 
between the two Cα atoms; g0

AiAj  is the amino acid specific distance 
cutoff for side-chain contact; θ(x) is a step function which equals to 1 
when x≥0 or 0 when x <0; w(confij)=1+|confij-confcut|4 when the confi-
dence score of the restraint (confij) is higher than the threshold 
(confcut), and otherwise w(confij)=1-|confij-confcut|2. 

The I-TASSER energy terms are combined by a linear regression, 
where the weighting parameters of different terms are optimized on 
a set of 100×60,000 decoys by maximizing the correlation between 
the total energy and the TM-score of decoys to the native states7. 

 
13. Structural model selection and atomic-level refinement 
The most frequently occurring conformations in the I-TASSER struc-
ture assembly simulations are selected by the SPICKER clustering 
program24. These conformations correspond to the models of the 
lowest free-energy state in the Monte Carlo simulations, since the 
number of decoys at each conformational cluster nc is proportional to 
the partition function Zc, i.e. nc ~ Zc = e−βE dE∫ . Thus, the logarithm 
of normalized cluster size is related to the free energy of the simula-
tion, i.e. F = −kBT logZ ~ log(nc / ntot ) , where ntot is the total number 
of decoys submitted for clustering. 

The centroid model in each SPICKER cluster is generated by av-
eraging the coordinates of all the clustered conformations. Since the 
centroid models often contain steric clashes, a second round of 
assembly simulation is conducted by I-TASSER to remove the local 
clashes and to further refine the global topology. In the second 
round of reassembly simulations, spatial restraints are added from 
structure templates detected by searching the PDB library with TM-
align for structures that are similar to the cluster centroids from the 
first round of simulation.  

The final atomic model is constructed by ModRefiner25 starting 
from the low-energy conformations selected from the second round 
simulation trajectories. In ModRefiner, the backbone structure is first 
built from the Cα-traces. The side-chain atoms are then constructed 
from a rotamer library with the full-atomic conformation refined by 
energy minimizations based on a composite physics- and 
knowledge-based force field25. 

 
14. Global quality estimation of I-TASSER structure predictions 
Not all the structure predictions are accurate. An estimation of the 
modeling accuracy is thus essential to decide how the users should 
utilize the models in their own research. The accuracy of the I-
TASSER structure models is estimated through the calculation of the 
confidence score (or C-score) of the structure assembly simulations: 

C-score = ln M
Mtot

⋅
1

RMSD
⋅
1
8

Z (i )
Z 0(i )i=1

8

∑
#

$
%%

&

'
((                  (16) 

where M is the multiplicity of structures in the SPICKER cluster; Mtot 
is the total number of the I-TASSER structure decoys used in the 
clustering; 〈RMSD〉 is the average RMSD of the decoys to the cluster 
centroid. These terms correspond to the degree of convergence of 
the structure assembly simulations. Z(i) and Z0(i) are the highest Z-
score of the templates by the ith LOMETS threading program and 
the corresponding Z-score cutoff for distinguishing between good 
and bad templates, as defined in Section 8. The normalized Z-
scores measure the significance of threading alignments and corre-
late with the quality of the LOMETS templates. 

The large-scale benchmark tests26 show that there is a strong cor-
relation between C-score and the accuracy of the I-TASSER models. 
The correlation coefficient between C-score and the actual TM-score 
is 0.91 and that between C-score and RMSD is 0.75. These data 
allow a quantitative estimation of the TM-score and RMSD of the 
first predicted model related to the native state: 

TM-score = 0.0006C2 + 0.13C + 0.71
RMSD = 0.09(C - lnL)2 −1.14(C − lnL)] − 3.17

"
#
$

%$
        (17) 

where C is the C-score and L is the length of the target sequence. In 
a large-scale benchmark test on 500 non-redundant proteins, the 
average errors of quality estimation using Eq. (17) are 0.008 and 2.0 
Å for TM-score and RMSD, respectively. 
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15. Residue-level local quality estimation of I-TASSER structure 
predictions 
An algorithm (ResQ) was developed for estimating the residue-level 
local quality of the I-TASSER predictions on the basis of the varia-
tions of modeling simulations and the uncertainty of homologous 
alignments27. To train the method, we first conducted I-TASSER 
based structure predictions for 1,270 non-redundant single-domain 
proteins from the PDB, which are randomly split into two sets of 
training and test proteins. Support vector regressions (SVRs) were 
used to train residue-specific distance error of the I-TASSER mod-
els, in comparison with the native structure, on the following five 
features. 

(1) Structural variation of assembly simulations. The structural 
variation of jth residue in the REMC simulations is defined by the 
average and standard deviations: 

µ j =
1
N

dij
i=1

N

∑

ν j =
1
N

dij −µ j( )
2

i=1

N

∑

#

$

%
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                                     (18) 

where N is the number of decoys in the SPICKER cluster; dij is the 
distance for the jth residue between the ith decoy structure and the 
centroid structure model after the TM-score superposition14. In gen-
eral, residues with a higher variation have the larger errors relative 
to the native, and vise versa. 

(2) Consistency between final model and sequence-based feature 
predictions. The secondary structure (SS) and solvent accessibility 
(SA) of the target sequence are predicted by PSSpred3 and SOLVE 
(Zhang et al, unpublished) programs, which are compared with the 
actual SS and SA of the 3D structural models that are assigned by 
the STRIDE program4. The residues with inconsistent SS and SA 
between model and prediction have usually larger error. 

(3) Threading alignment coverage. The alignment coverage of a 
residue is defined as the number of threading templates that have 
the query residue aligned divided by the total number of templates 
by LOMETS. The residues with a higher threading coverage indicate 
more constraints on them during simulations and presumably have a 
higher modeling accuracy. 

(4) Structural variation of templates from LOMETS threading. 
Considering Nj templates which are aligned to the jth residue on the 
query sequence by LOMETS15, the structural variation of the 
LOMETS threading templates is defined as: 

λ j =
1
Nj

dn ( j )
n=1

Nj

∑                                            (19) 

where dn(j) is the distance between the jth residue on the model and 
the residue on the nth template that is aligned to the jth residue in 
query. The distance is calculated after superposing the template 
structures on the query model by TM-score rotation matrix14. In case 
that Nj is zero, the value of λj is set to be 10 Å. 

(5) Structural variation of templates from TM-align structure 
alignments. The query structure model is threaded against a non-
redundant PDB library by TM-align22 to find templates that share 
similar topology. The structural variation of the TM-align templates is 
defined in the same way as Eq. (19), but with Nj and dn(j) defined by 
the TM-align templates. 

Starting from the I-TASSER model and the simulation decoys, 
ResQ generates distance error estimation for each residue. A 
benchmark test on the 506 non-redundant proteins that have a I-
TASSER C-score >-1.5 showed that the residue-level accuracy can 
be estimated with an average error <1.5 Å in comparison with the X-
ray crystallography data27. 

 
16. B-factor estimation 
B-factor is associated the inherent thermal mobility of local atoms 
and residues, which is essential for proteins to fold and function in 

the physiological environment. The B-factor prediction was trained 
by SVRs on the template-based assignments and the PSI-BLAST 
profiles. 

(1) Template-based assignments. I-TASSER assigns B-factor of 
each query residue on the basis of the experimental B-factor values 
of the top homologous and analogous templates that are extracted 
from the original PDB entries by LOMETS and TM-align, i.e. 

bq ( j ) =
1
nj

bt (i, j )
i=1

nj

∑                                                (20) 

where nj is the number of the templates that have a residue aligned 
on the query residue j, and bt(i, j) is the normalized B-factor value of 
the residue from the ith template that is aligned on j by LOMETS and 
TM-align. 

(2) Sequence profiles. The target sequence is searched by PSI-
BLAST1 through the NCBI non-redundant sequence database to 
retrieve homologous sequences, which are represented in the form 
of a position-specific scoring matrix (PSSM). For each residue, a 
sliding window with the size of 9 residues is used to extract profile 
features from the PSSM after converting its elements x in the range 
of (0, 1) by 1/[1+exp(-x)]. The secondary structure and solvent ac-
cessibility, which are both derived from the PSI-BLAST sequence 
profiles, are also used as features for B-factor prediction. The hy-
pothesis of using the sequence profile is that the more conserved 
residues are often structurally more stable and therefore have a 
lower B-factor, and vice versa. 

The benchmark test on the 635 non-redundant proteins showed 
the estimated B-factor by ResQ has a Pearson’s correlation coeffi-
cient 0.60 with the X-ray crystallography data27. 

 
17. BioLiP: a composite database for structure-based protein 
function annotations 
The PDB library28 is the central source for protein structure and func-
tion analysis studies. But many proteins in the PDB contain redun-
dant entries, mis-ordered residues and mis-annotated functions. 
Moreover, many protein structures were solved using artificial mole-
cules as additives to facilitate structure determination. These errors 
and artificial additives prevent the library from being a reliable re-
source for precise structure-based function analyses, which requires 
the development of cleaned protein libraries with the biological func-
tions carefully validated. We proposed a hierarchical procedure con-
sisting of multiple computer filtering and manual literature validation 
for assessing the biological relevance of co-structured ligands in the 
PDB. A comprehensive function database, BioLiP29, was construct-
ed from known structure/function databases and literature in Pub-
Med, with each entry containing annotations on ligand-binding sites, 
binding affinity, and catalytic sites. BioLiP is updated weekly and 
freely available to the community at http://zhanglab.ccmb.med. 
umich.edu/BioLiP. The current BioLiP release (Oct 31, 2014) con-
tains 298,556 ligand-binding entries from 64,287 unique proteins, 
with 37,223 entries for DNA/RNA-protein, 13,498 for peptide-protein, 
84,248 for metal ion-protein, and 163,587 for small molecule-protein 
interactions. There are in total 23,492 entries with experimental 
binding affinity data collected from public databases30-32 and manual 
literature survey29.  

Most recently, BioLiP was extended to integrate sequence-based 
function annotations from UniProtKB33, Enzyme Commission (EC)34 
and Gene Ontology (GO)35, where the EC and GO information from 
the sequence databases was mapped to the BioLiP structure entries 
through stringent sequence alignments assisted by manual valida-
tion36. It involves 75,462 protein chains with 513 unique first 3-digit 
and 2,413 unique 4-digit enzyme commission (EC) numbers, and 
37,178 chains with known catalytic residues derived from Catalytic 
Site Atlas (CSA)37. It also contains 119,004 chains/domains associ-
ated with 8,315 unique gene ontology (GO) terms. These data pro-
vide a fundamental recourse for structure-based function annotation 
in the I-TASSER Suite. 
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18. COFACTOR for ligand-binding site (LBS) predictions 
COFACTOR predicts LBS by mapping the LBSs obtained from 
known structures of ligand-protein complexes in the BioLiP library29 
that have similar structures to the query structure models. The struc-
tural similarity is detected by combining global structure alignment 
and local geometry refinement38, 39. 

For the global structure alignment, TM-align22 is used to identify 
templates that have a similar fold to the query, i.e., with a TM-
score >0.514, 40. For the local geometry alignment, an iterative 
Needleman-Wunsch dynamic programming is used to align the tem-
plate binding site regions with the query fragments, which are ex-
tracted from the query structure based on MSA conservations. The 
local structural and sequence similarity (Lsim) between query and 
template proteins is evaluated by 

Lsim =
1
Nt

1

1+ di
d0

!

"
#

$

%
&
2

i=1

i=Nali

∑ +
1
Nt

Mii
i=1

i=Nali

∑                                (21) 

where Nt represents the total number of residues within a sphere 
centered at the known binding sites, Nali is the number of query-
template aligned residue pairs within the sphere, di is the Cα dis-
tance between ith aligned residue pair, and d0 is the distance cutoff 
chosen to be 3.0 Å, and Mii is the normalized BLOSUM62 substitu-
tion scores between the ith pair of residues. For each binding pocket 
on the template, this procedure is implemented for all the conserved 
query motifs; and the one with the highest Lsim is recorded. The tem-
plate ligands are superimposed onto the query structure following 
the rotation and translation matrix from the local structure alignment. 
Finally, the predicted ligand conformations from all templates are 
clustered based on the spatial proximity with a distance cutoff 8 Å. If 
a binding pocket binds with multiple ligands (e.g. an ATP binding 
pocket may also bind MG, PO4

3- and ADP), ligands within the same 
pocket are clustered further based on their chemical similarity (Tan-
imoto coefficient cutoff =0.7) using the average linkage clustering 
procedure to rank the predicted binding sites. 

From each cluster, the protein-ligand complex with the highest 
ligand-binding confidence score (CSc) is eventually selected as the 
functional site predictions for the query protein, i.e. 

CSc =
2
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where N is the number of template ligands in the cluster and Ntot is 
the total number of predicted ligands using the templates. IDstr is the 
sequence identity between the query and the template in the struc-
turally aligned region. 〈D〉 is the average distance of the predicted 
ligand to all other predicted ligands in the same cluster. 

 
19. TM-SITE for ligand-binding site predictions 
TM-SITE is another structure-based function annotation algorithm 
extended from COFACTOR for mapping the LBS of known proteins 
by structural similarities41. As opposed to COFACTOR that com-
bines global and local structure alignments, TM-SITE detects func-
tion homologies by considering the structure similarity of a subse-
quence from the first binding residue to the last binding residue 
(called SSFL) on the query and template proteins. 

To identify the functional homology, TM-SITE uses TM-align22 to 
align the query structure with the template SSFLs which are pre-
calculated in the BioLiP29. The match between each pair of query 
and template SSFL structures is evaluated by a composite scoring 
function which counts for the global and local, and structural and 
sequence similarities: 

qstr =
2

1+e− Lc 0.4Lg+0.3Ls+0.2JSD( )+TM"
#

$
%
2 −1                          (23) 

where Lc is the fraction of template binding residues that are aligned 

to the query structure by TM-align. Lg =
1
n

1
1+ (di d0 )

2i=1

n
∑  accounts 

for the local structure similarity between the binding pockets of query 
and template proteins, where n is the number of the aligned residue 
pairs associated with the binding pockets of the template and di is 

the distance of the ith residue pair. Ls =
1
n

B(Ri
q ,Ri

t )
i=1

n
∑  measures 

the evolutionary relationship between the aligned binding residue 
pairs where B(Ri

q ,Ri
t )  is the normalized BLOSUM62 score for the 

ith aligned residue pair. JSD is an evolutionary conservation index 
defined as the average Jensen–Shannon divergence score over the 
predicted binding residues, which is calculated from multiple se-
quence alignments. TM = 2TMt *TMq (TMt +TMq )  is the harmonic 
average of the two TM-scores returned by TM-align when aligning 
the query and template SSFLs, where TMt and TMq are TM-scores 
normalized by query and template lengths, respectively. 

To select the LBS residues from multiple SSFL templates, all lig-
ands bound with the proteins in the putative template pool are pro-
jected to the query structure based on the corresponding alignments 
from TM-align. These ligands are clustered based on the spatial 
distance between their geometric centers, where an average linkage 
clustering algorithm is conducted with a distance cutoff 4 Å. For 
each cluster, a set of consensus binding residues, which usually 
correspond to one binding pocket, are deduced from all the ligands 
in the cluster based on the maximum voting. The residues receiving 
>25% votes are considered as the final predicted LBS residues in 
the binding pocket. A confidence score of the predicted binding resi-
dues, associated with specific ligand-binding clusters, is defined by 

CSt =
2

1+e
−
m
M
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where m is the number of template ligands in the cluster and M is 
the total number of templates selected. qstr

max  is the maximum of qstr 
score from the templates in the cluster as calculated by Eq. (23). 
JSDTa is the average JSD score for the predicted LBS residues from 
the ligand cluster. In the final TM-SITE predictions, the binding 
pockets are selected and ranked based on the CSt score, with the 
binding residues sorted by the number of votes in each binding 
pocket. 

 
20. S-SITE for ligand-binding site predictions 
S-SITE is the third template-based method in the I-TASSER pack-
age, which detects protein function templates and the ligand binding 
sites using binding-site specific, sequence profile-profile compari-
sons. To obtain the profile of the query protein, PSI-BLAST is used 
to thread the query sequence through the NCBI NR sequence data-
base to construct multiple sequence alignments, similar to the pro-
cedure used in PSSpred and LOMETS. A position-specific frequency 
matrix (PSFM) is then computed from the multiple sequence align-
ments. The template profiles are represented by the position-specific 
scoring matrices (PSSM) and pre-constructed by the PSI-BLAST 
searches for all proteins in the BioLiP library. To detect homologous 
templates from BioLiP, the query profile PSFM is compared with the 
template profile PSSMs in the library using the Needleman-Wunsch 
dynamic programming algorithm5, with the score to align the ith resi-
due in the query to the jth residue in template defined as 

Si ,j = Fq (i,k )Lt ( j,k )
k=1

20

∑ +δ Sq (i ),St (j )"# $%+2bj
tB Ri

q ,Rj
t( )             (25) 

The first two terms in Eq. (25) describe the profile-profile align-
ment and secondary structure matches, similar to Eq. (1). The third 
term describes the evolutionary conservation of binding pocket resi-
dues, where bj

t =1  if the jth residue is at the binding site in the tem-
plate, or bj

t =1  otherwise; B(Ri
q ,Rj

t )  is the normalized BLOSUM62 
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similarity score for residues Ri
q  in query and Rj

t  in template with 
value in [0,1]. The quality of a template match in S-SITE is estimated 
by 

qseq =
2

1+e− 0.5AS+0.5LcLs+0.2JSD( ) −1                        (26) 

where AS =
1
L

Si ,ii=1

Lali∑  is the profile-alignment score normalized by 

the query sequence length L. Lc, Ls and JSD are similar to that de-
fined in Eq. (23) but with the alignments generated from the ligand-
binding specific profile-profile comparisons. All proteins in BioLiP 
with a qseq score above 0.5 are selected as putative templates. If the 
number of putative templates is below 10, the top 10 templates with 
the highest qseq score will be returned for the next step of LBS selec-
tion analysis. The residues on the query, which are aligned with the 
binding residues on the templates following the sequence profile-
profile alignments, are assigned as putative binding residues in the 
S-SITE prediction. Since the binding sites of different templates will 
match with different query residues, a consensus-voting scheme is 
applied to select the most consensus binding residues. The residues 
receiving >25% votes are considered as the final binding residues 
by S-SITE. 

A confidence score CSs is defined for the binding residues in S-
SITE: 

CSs =
2

1+e− qseq
max+0.1ln(1+ N3 )+0.2JSDSa"

#
$
%
−1                      (27) 

where qseqmax  is the maximum value of qseq among all the putative 
templates, N is the number of the selected templates, JSDSa is the 
average Jensen–Shannon divergence score of all the predicted LBS 
residues. Here, the confidence score CSs is in a similar format as 
that of TM-SITE (CSt) but no clustering is conducted in S-SITE since 
the templates detected from the sequence profile comparison are 
converged in most cases. 

 
21. COACH for consensus ligand-binding site prediction 
COACH is a consensus approach to LBS prediction that combines 
the prediction results of algorithms from COFACTOR, TM-SITE and 
S-SITE using a linear Support Vector Machine (SVM) (Figure D). To 
generate a LBS prediction, the query sequence along with the I-
TASSER structure model are provided as input and fed into the 
individual programs. The probability of a residue to be a LBS residue 
is calculated from individual methods, which are used as the input 
feature vectors of the SVM for the residue. The probability for 
COFACTOR is taken from the default confidence score (CSc in Eq. 
22). For TM-SITE and S-SITE, the probabilities are computed as the 
confidence score of the ligand cluster or templates (i.e. CSt and CSs 
in Eqs. 24 and 27) multiplied by the ratio of votes on the residue. 
Finally, all feature vectors are fed into SVM to make the consensus 
prediction, with classifiers trained on 400 non-redundant training 
proteins collected by PISCES13. 
 

 
Figure D. Flowchart of COACH for ligand binding site prediction. The final 
results are combined from the complementary predictions by COFACTOR, 
TM-SITE and S-SITE using support vector machine (SVM). 
 

The linear kernel in SVM-light was used with the optimal value of 
the cost parameter C selected based on an exhaustive grid search. 

To avoid over-training, a 10-fold cross-validation procedure was 
applied in COACH, i.e. the training set was randomly divided into 10 
subsets of equal size, where 9 subsets were used to train the SVM 
and the remaining subset was used as validation to calculate the 
average Matthews’s correlation coefficient (MCC) of the LBS predic-
tions. For each parameter C in the grid space, such random sample 
division was repeated 10 times and an overall MCC was calculated 
as the mean of the 10 MCCs. The parameter C with the highest 
overall MCC was finally selected for SVM training in COACH. 
 
22. Structure-based enzyme function predictions 
Enzymes are proteins that catalyze chemical reactions in physiologi-
cal processes. Based on the reactions they catalyze, enzymes are 
categorized into hierarchical families using a numerical classification 
scheme known as Enzyme Commission (EC) number. To predict the 
EC number from amino acid sequence, our method involves struc-
tural matching of the predicted protein structures to global and local 
3D enzyme templates. The confidence score of the EC predictions, 
the EC-score, is defined as 
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Cs TM + 1
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where Cs is the C-score of I-TASSER prediction as defined in Eq. 
(16). TM, RMSDali, Cov, and IDali are the TM-score, RMSD, align-
ment coverage, and sequence identity returned by TM-align22 when 
comparing the target I-TASSER model with the template structures 
in BioLiP29. Lsim is the local active site match score between the 
query and template binding pockets as calculated in Eq. (21).  

To generate initial binding pockets for query, the known catalyt-
ic/active residues of the template are scanned through the query 
sequence. The residues, whose amino acid type is similar to that of 
the catalytic/active residues on templates, are marked as potential 
active site locations in the query. The binding pocket sphere of the 
template is defined as the sphere centered at the geometric center 
of the template’s active site and containing <30 residues (or with a 
radius <20 Å). The optimized alignment of the binding pockets is 
conducted by a heuristic iteration procedure similar to that used in 
COFACTOR39 and TM-align22. 

 
23. Structure-based gene ontology predictions 
Gene ontology (GO)42 is a widely used vocabulary for describing 
three different taxonomies or “aspects” of gene functions: molecular 
function, biological process, and cellular component. Each GO as-
pect is represented as a structured, directed acyclic graph, where 
the nodes in the graph represent a GO term and describe a compo-
nent of gene product function, while the edges between the nodes 
are equivalent to the relationships (‘is-a’ or ‘part-of’) between the GO 
terms. The GO terms are held in a form of functional hierarchy, 
where more general functions are present on the top while more 
specific functions are further down the graph. 

To identify the GO terms and the function components of a query 
protein, we use a structure-based approach similar to that used for 
the LBS and EC predictions. Since multiple templates can be identi-
fied by TM-align structure comparison, the confidence of the GO 
predictions, the GO-score, is defined as a normalized sum of the 
sequence and structural similarity score (SaS) of all templates that 
have the same GO term: 

GO-score(λ) = 1
N
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∑
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where λ represents a given gene ontology term. Csλ, TMλ, RMSDλ, 
Covλ, IDali,λ are similar to the terms defined in Eq. (28) but with a 
specific GO label λ. Nλ is the number of templates which are associ-
ated with the GO term λ, and N is the total number of templates 
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selected for generating the consensus GO predictions. When multi-
ple homologous templates are available, we only consider the tem-
plates with a SaS score >1. For those query proteins with less than 
10 templates of SaS score >1, the top 10 templates are selected for 
generating the consensus prediction regardless of the SaS score. 
Once a GO term is identified with the GO score higher than the GO 
score cutoff, all its ancestor terms in the directed acyclic graph 
(DAG) are eliminated to avoid redundancy. The recent large-scale 
benchmark tests on 700 non-redundant proteins36, 38 showed that the 
accuracy of the EC and GO predictions based on the I-TASSER 
models is significantly higher than that based on sequence-based 
(PSI-BLAST1) and threading-based (MUSTER6 and HHpred43) ap-
proaches. 
 
24. Installation and implementation of the I-TASSER Suite 
(1) I-TASSER installation. The I-TASSER Suite was developed on 
the Linux operating system, with the core programs written in 
FORTRAN, C/C++, and Java languages. The package can be ob-
tained at http://zhanglab.ccmb.med.umich.edu/I-TASSER/download/. 
Weekly updated structure and function libraries are available at 
http://zhanglab.ccmb.med.umich.edu/library, where a Perl script 
'download_lib.pl' is provided in the package for automated library 
download. The package includes a program ('update_IT_lib.tar.bz2') 
which users can use to create template files on their own from any 
protein structures. Figure E presents a screenshot that illustrates the 
structure of the I-TASSER package after installation. 

(2) I-TASSER implementation. To interpret the implementation 
of I-TASSER Suite, let us assume that the package, the template 
library, the java executable program, and the input files are located 
at $pkgdir, $libdir, $java/bin/java, and $datadir, respectively. These 
directories can be installed at any folders in user’s computer. 

The main script to run I-TASSER is located at ‘$pkgdir/I-
TASSERmod/runI-TASSER.pl’. Running ‘$pkgdir/I-
TASSERmod/runI-TASSER.pl’ without argument can print out a brief 
help information of the various options. One example command for 
running I-TASSER is 

$pkgdir/runI-TASSER.pl -pkgdir $pkgdir -libdir $libdir –
runstyle serial -LBS true -EC true -GO true -seqname ex-
ample -datadir $datadir –outdir $outdir -java_home $java -
light true -hours 6  

In this example, I-TASSER is running in the serial mode as assigned 
by option ‘–runstyle serial’ with the query protein named ‘example’. 
The modeling will be conducted for both 3D structure prediction and 
biological function annotations including ligand binding site (LBS), 
Enzyme Commission number (EC), and Gene Ontology terms (GO). 
The maximum running time for each I-TASSER simulation job is set 
as 6 hours as assigned by the options ‘-light true’ and ‘-hours 6’. 
Users can also run I-TASSER in the parallel mode which is assigned 
by option ‘–runstyle parallel’, where the threading and the I-TASSER 
simulation jobs will be submitted to a cluster of computer nodes by 
the job scheduler using the ‘qsub’ command (assuming the PBS job 
scheduler system is installed). The parallel mode can significantly 
accelerate the I-TASSER modeling. 

(3) Input data preparation. The only input information required to 
run the I-TASSER Suite is the amino acid sequence of the target 
protein, which must be saved in a file named ‘seq.fasta’ in the folder 
$datadir. Figure F shows an example of the input. In addition to the 
sequence information, users can assign additional restraints and 
templates to guide I-TASSER modeling, using one of the four op-
tions: -restraint1, -restraint2, -restraint3, -restraint4. Users must first 
create all the restraint files in $datadir and specify the file names 
according to the options (see http://zhanglab.ccmb.med. 
umich.edu/I-TASSER/download/README.txt). 

(4) Interpreting structure prediction results. The output results 
of the I-TASSER structure modeling are located in the folder $outdir 
that was specified by the option ‘–outdir’. If no output directory is 
specified, the default folder $outdir=$datadir. The structural model-

ing outputs include threading templates, simulation trajectory files, 
up to five structure models and the confidence score estimations.  

Figure G shows a screenshot of the output results from the I-
TASSER based structural modeling, where Supplementary Table 1 
summarizes the annotations of the output files of I-TASSER struc-
ture predictions. 
 

 
Figure E. A screenshot illustrating the file structure of the I-TASSER Suite 
installation. 
 

 
Figure F. A screenshot illustrating input files for running the I-TASSER Suite. 
 

 
Figure G. A screenshot illustrating output results by I-TASSER structure 
prediction pipeline. 
 

 
Figure H. A screenshot illustrating the I-TASSER function prediction results 
from COACH. 
 

(5) Interpreting function prediction results. The results of the 
structure-based function predictions by COACH are located at $out-
dir/model1/coach, where the file items are explained in Figure H and 
Supplementary Table 2. In addition to the consensus COACH re-
sults, the function annotations by individual predictors of TM-SITE, 
S-SITE and COFACTOR are listed in $outdir/model1/tmsite, $out-
dir/ssite and $outdir/model1/cofactor/, respectively. 
 

Nature Methods: doi:10.1038/nmeth.3213



Supplementary Table 1. Summary of structure modeling results by the I-TASSER Suite. 

File Name Interpretation Note 
model1-5.pdb All-atomic 3D structure models predicted by I-

TASSER 
There may be < 5 models, if the number of SPICKER clusters is < 5. The models 
usually have a good quality in such case.  

combo1-5.pdb Cluster centroid models The cluster centroids often have clashes 
closc1-5.pdb Decoy structure closest to the cluster centroid Cα trace models 
cscore Confidence score of global fold Quality estimation of global fold of the models. 
lscore.txt Confidence score of local structures Estimation of residue-level quality of the models and B-factor of the protein. 
seq.ss Predicted secondary structure Secondary structure predicted by PSSpred 
exp.dat Predicted solvent accessibility  Predicted by the program solve at different cutoffs. 
init.dat Threading templates used by I-TASSER The head of this file indicates the type of the target: easy, medium, or hard. Tem-

plates are ranked according to Z-score and the consensus of templates. 
init.* Templates generated by 8 individual LOMETS 

threading programs 
The templates are generated by default using the 8 in-house threading programs. 
Users are encouraged to add external threading programs to increase complemen-
tarity. To add a new threading program, users need to prepare a new mod script 
that can be adapted from MUSTERmod and add the program name to the array 
@TT in ‘runI-TASSER.pl’. 

rst.dat Summary of SPICKER clustering Clustering is done by the program SPICKER 
rep*.bz2 Structural decoys from the low-temperature replicas 

in I-TASSER simulations. 
Users can automatically remove these files by specifying the option –traj false. 

 
 
Supplementary Table 2. Summary of the structure-based function prediction by COACH. 

File Name Interpretation Note 
Bsites.dat Ligand-binding site predictions Columns in the file are: C-score, relative cluster size, product of top templates z-score, 

binding residues 
Bsites.clr Clustering of all predicted binding sites Each cluster leads to one line in ‘Bsites.dat’. Each line in one cluster corresponds to one 

template-based prediction from COFACTOR (COF), TM-SITE (TMS) or S-SITE (SST).  
Bsites.inf Summary of clustering results in ‘Bsites.clr’ For each site (cluster), there are three lines: 

Line1: site #, c-score of coach prediction, cluster size 
Line2: algorithm, PDB ID, ligand ID, center of binding site, c-score of the algorithm’s 
prediction, binding residues from single template 
Line 3: Statistics of ligands in the cluster 

CH_complex*.pdb Predicted protein-ligand complex struc-
tures 

For each cluster, all putative bound ligands are put in the same file and separated by 
“TER” and/or “END”. 

CH_*_*_*.pdb Representative single complex structure 
for each site/cluster 

The file name for a cluster can be obtained by combing ‘CH’ with the first three columns 
of line 2 in ‘Bsites.inf’. 

EC.dat Predicted EC number and active residues The columns are: PDB_ID, TM-score, RMSD, Sequence identity, Coverage, Confidence 
score, EC number, and Active site residues 

GO_MF.dat GO terms in ‘molecular function’ 
The columns are: GO terms, Confidence score, Name of GO terms. GO_BP.dat GO terms in ‘biological process’ 

GO_CC.dat GO terms in ‘cellular component’ 
 
 
Supplementary Table 3. Summary of I-TASSER modeling on the six examples in Figure 1. 
 

Targeta Lb Structure prediction results Structure-based function prediction 
C-score/TMest/RMSDest(Å)c TM/RMSD(Å)d L-RMSD(Å)e Top GO termf EC-scoreg 

R0006 169 -0.75/0.61±0.14/6.6±3.9 0.62/4.6 - 0044238 - 
R0007 161 -0.67/0.63±0.13/6.3±3.8 0.62/4.7 - 0044421 - 
T0652 138 1.00/0.85±0.08/2.7±2.0 0.87/2.2 1.25 0005515 - 
C0081 241 1.75/0.96±0.05/2.3±1.8 0.96/1.7 0.52 0005886 - 
C0050 139 0.55/0.79±0.09/3.5±2.4 0.88/1.5 1.52 0005737 2.3.1.57 (2.3.1.-) 
C0046 132 1.43/0.91±0.06/1.8±1.5 0.94/1.4 0.75 [0.33] 0003676 3.1.31.1 (3.1.31.1) 

 
aTarget ID in CASP10 and CAMEO experiments. R0006, R0007 and T0652 are from CASP10 and the rest are from CAMEO experiment. 
bLength of query sequence 
cC-score of the I-TASSER modeling and the estimated TM-score and RMSD of the first models 
dActual TM-score and RMSD of the first I-TASSER model compared to the experimental structure 
eLigand RMSD of the first I-TASSER model to the native with value in brackets being calcium ion RMSD 
fTop Gene Ontology (GO) term of the I-TASSER prediction 
gPredicted Enzyme Commission (EC) number with values in parentheses being the experimental EC numbers 
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