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Abstract

EvoDesign is a computational algorithm that allows the rapid creation of new protein sequences that are
compatible with specific protein structures. As such, it can be used to optimize protein stability, to resculpt
the protein surface to eliminate undesired protein-protein interactions, and to optimize protein-protein
binding. A major distinguishing feature of EvoDesign in comparison to other protein design programs is
the use of evolutionary information in the design process to guide the sequence search toward native-like
sequences known to adopt structurally similar folds as the target. The observed frequencies of amino acids
in specific positions in the structure in the form of structural profiles collected from proteins with similar
folds and complexes with similar interfaces can implicitly capture many subtle effects that are essential for
correct folding and protein-binding interactions. As a result of the inclusion of evolutionary information,
the sequences designed by EvoDesign have native-like folding and binding properties not seen by other
physics-based design methods. In this chapter, we describe how EvoDesign can be used to redesign proteins
with a focus on the computational and experimental procedures that can be used to validate the designs.

Key words Protein design, Evolutionary profile, Protein structure modeling, Experimental protein
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1 Introduction

Computational protein design has expanded in recent years from
the prediction of the effects of single site mutations to the complete
redesign of entire proteins, including the alteration of protein-
protein binding affinity and specificity [1–4], enzymatic activity
[5, 6], and even the creation of new folds [7] and functions [8]
that are not seen in nature. On the theoretical side, protein design
has been used to find the sequence constraints necessary to gener-
ate specific folds or functions [9–11]. Through the use of these
constraints, fundamental questions in protein evolution have been
addressed by distinguishing what is physically possible from what is
actually observed in evolution [10, 12].

However, full protein redesign beyond the mutation of a few
hot spot residues, called de novo design, is computationally difficult,
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which is reflected in the relatively low successful percentage of
successful designs. Most algorithms for de novo protein design
approach the problem as reverse ab initio protein folding, evaluat-
ing the energy of the sequence according to all-atom physical
potentials. Several problems become apparent in the naı̈ve applica-
tion of this approach: (1) A very large number of sequences must be
considered, which limits the force field to only approximate energy
terms that can be rapidly calculated; (2) there is a mismatch
between the low-resolution models generated in the sequence
search and the all-atom physical potentials used for evaluation. To
make the design simulation computationally tractable, the possible
conformations of the side-chains of the protein are restricted to a
limited set of discrete rotamer conformations. The small steric
clashes that necessarily result from this approximation force the
use of dampened potentials that may miss subtle interactions that
exist in the native protein [13, 14]; (3) the sequence search is
considered only with the protein in isolation, not as the protein
actually exists in the cellular context. This causes subtle problems in
the real-life application of the designed proteins, particularly with
respect to aggregation, as the highly hydrophobic sequences
favored by folding energetics generally adopt highly compact
sequences in silico but tend to aggregate in reality when actually
expressed [15].

One approach to handle these challenges is to increase the
accuracy of the design process by attempting to model physical
reality at a higher resolution. In this spirit, design methodologies
have been created that explicitly consider multiple conformations
of the folded protein using ensemble techniques for multistate
design [16–18] or that explicitly consider the unfolded state during
the design process [18]. Alternatively, other design methodologies
have been created that recognize the inherent inaccuracy of the
force fields and attempt to diminish the effects of known inaccura-
cies. One example is the use of soft-core potentials that lessen
repulsive interactions, preventing strongly unfavorable interactions
that can be alleviated by small backbone motions from overriding
the other terms [19]. Another example of this approach is the
inclusion of additional terms in the force field that consider factors
relevant to real proteins that are missing in the simulation, for
example, the explicit consideration of inappropriate hydrophobic
surfaces to limit aggregation in the designed sequences [18, 20].
The ongoing development of these methods has contributed
greatly to the field and has led to some spectacular successes.
However, complete de novo protein design is still a difficult process
with routine application still in the future.

An alternative approach, based on hard-won knowledge from
protein fold-recognition and structure prediction [21–24], is to
recognize that evolution implicitly encodes information on protein
folds and binding interactions that greatly exceeds our ability to
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describe it through reductionist, physics-based methods. This
evolution-based method approach to protein design differs from
the physics-based methods in that most energy terms are not
dependent on the full-atom representation of each tested sequence,
whose inaccuracy is a significant source of error. Instead, the
sequence space search is constrained by the sequence and structural
profiles collected from structurally analogous families, assisted
by neural network predictions of local structural features,
including secondary structure, backbone torsion angle, and solva-
tion [25, 26].

2 Methods

2.1 EvoDesign:

Evolution-Based

Method to Design

Protein Folds and

Interactions

The principle of EvoDesign follows the critical lessons learned from
threading-based protein structure prediction methods, i.e., to use
the reliable “finger-print” of nature of multiple proteins from the
same family in the form of structural profile information to guide
the simulation to the sequence search. It first collects a set of
proteins with similar folds to the target scaffold structure from
the PDB library by the structural alignment program TM-align
[27], using a TM-score cutoff value to define structural similarity
(Fig. 1) [28]. In the second step, this set of structurally similar folds
is used to create a position specific scoring matrix M(p, a) for
evaluating potential sequences [29, 30].

To create the position specific scoring matrix, first a multiple
sequence alignment (MSA) is generated according to the pair-wise
structural alignments between the structural analogs identified in
the first step and the target structure (Fig. 1). An L � 20 matrix
(where L ¼ length of the protein) is then created according to

M p; að Þ ¼
X20
x¼1

w p; xð Þ � B a; xð Þ ð1Þ

where x represents a particular amino acid, B(a, x) is the BLO-
SUM62 substitution matrix [31] for amino acid x to amino acid a,
and w(p, x) is the frequency of the amino acid x appearing at
position p in the MSA created by TM-align. The matrix M(p, a)
serves as a structural profile to guide the sequences toward native-
like sequences known to adopt structurally similar folds as the
target (Fig. 1).

While the structural profile as given by the position specific
scoringmatrixM(p, a) is efficient in guiding the global fold, optimi-
zation on the profile alone can result in singularities (i.e., disjointed
“islands”) in local sequences. To smoothen these singularities, back
propagation neural network predictors are used to estimate the
secondary structure (SS), solvent accessibility (SA), and torsion
angles (φ/ψ) of the sequence. Unlike other predictors for these
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Fig. 1 Overview of the EvoDesign method showing the construction of the structural profile, the Monte Carlo
search in sequence space, and the final selection of the sequences by sequence clustering
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properties [32–34], these single-sequence-based predictors do not
require a computationally expensive PSI-BLAST search, which con-
siderably speeds up prediction at little cost in accuracy [25].

The evolutionary potential in EvoDesign is defined as the
maximum score of the optimal alignment path between the decoy
and target structure obtained by Needleman-Wunsch dynamic
programming, giving the energy function:

Eevolution ¼
X
max

M p; að Þ þ w1ΔSS pð Þ þ w2ΔSA pð Þ þ w3 Δφ pð Þ þ Δψ pð Þð Þ½ �;

ð2Þ
where ΔSS, ΔSA, Δφ, and Δψ are the difference in secondary
structure, solvent accessibility and torsion angles between the tar-
get assignments, and the predictions from the decoy sequences.
The weighting factors (wi) are decided by the relative accuracy of
the single-sequence-based predictions for each term on a training
set [25].

A physics-based potential can be used to predict potential
favorable and unfavorable interactions among side-chains, such as
steric interactions, which may be missed by the evolutionary-based
terms defined above. While our computational benchmark results
indicate the evolution-based energy function alone is sufficient to
design protein sequences, adding a physics-based energy term from
FoldX [35] improved the atomic packing of the local structures
based on both computational structure prediction and experimen-
tal structure validations [25]. In this case, a full-atom representa-
tion of the sequence is needed which is created by SCWRL [36].

The final force field for single-chain protein design in EvoDe-
sign is given by the weighted Z-scores of the evolution and physics-
based terms:

E ¼ w4
Eevoluation � Eevoluationh i

δEevoluation
þ w5

EfoldX � EfoldXh i
δEfoldX

; ð3Þ

where h. . .i and δ indicate the average and standard deviation of the
energy terms.

To actually generate the designed sequences, Monte Carlo
searches are performed starting from 10 random sequences that
are updated by random residue mutations (Fig. 1). Due to the
imprecision of the force field, the lowest energy states do not always
correspond to the best sequence design. Instead of simply focusing
on the lowest energy sequence, the sequences from all 10 runs are
pooled and the sequence with the maximum number of neighbors
is identified using the SPICKER clustering algorithm [37] where
the pair-wise distance between sequences is measured by the sum of
the BLOSUM62 substitution scores [38].

The above procedure finds sequences compatible with the
target structure. To introduce new or altered functionality into
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the protein, the affinity of existing protein-protein interfaces can be
improved by EvoDesign or new interfaces created though the
optimization of non-native complexes created by docking. To
modify interfaces, EvoDesign uses a multiscale approach incorpor-
ating a variety of features at different levels of structural resolution
(Fig. 2).

Similar to the design of protein folds with EvoDesign, a key
feature of the binding potential is the mixture of physics-based and
evolutionary terms in the energy function [39]. For interface mod-
ification, the evolutionary terms are created from the structural
alignment of similar interfaces from the nonredundant COTH
structural library of dimeric proteins [40] by the IAlign program

Fig. 2Multiscale approach to predicting protein binding affinity using features derived from interface structural
profiles, WT and mutant sequences, and physics-based scoring of the structures of the wild-type and mutant
complexes. (1) Interface profile scores derived by structural alignment of structurally similar interfaces using
an interface similarity cutoff to define the aligned sequences that are used to build the profile. (2) Physics-
based scores are formed at the residue or atomic level formed by modeling the mutant monomeric protein and
complex and evaluating the difference in energy. (3) Sequence features are formed by the difference between
the WT and mutant sequences in the number of hydrophobic (V, I, L, M, F, W, or C), aromatic (Y, F, or W),
charged (R, K, D, or E), hydrogen bond acceptors (D, E, N, H, Q, S, T, or Y), and hydrogen bond donating
residues (R, K, W, N, Q, H, S, T, or Y) along with difference in amino acid volume calculated from the sequence
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[41]. A series of interface similarity cutoffs has been used to define
three separate interface structure profiles along with different
metrics designed to assess the accuracy of the profiles relative to
the other terms [39]. The interface profiles scores are then com-
bined with physics-based all-atom and residue level docking scores.
Finally, sequence-based scores based on phamacophore count dif-
ferences between the native and designed sequences are calculated
to complete the multiscale approach. A random forest method
trained to predict the experimental affinity changes (ΔΔG) asso-
ciated with single and multiple mutations at the interface is used for
the final interface energy score. This energy score has a correlation
to the experimental ΔΔG values equivalent or superior to the best
state-of-the-art mutation prediction programs (Pearson’s correla-
tion coefficient ¼ 0.83 for a 5 fold cross validated set) but is fast
enough to calculate the thousands of potential mutations necessary
for protein design. The interface energy is then added to the regular
EvoDesign scoring potential, using a user-defined weighting func-
tion to balance fold stability and protein-protein affinity.

2.2 Using the

EvoDesign Server

Design Program

The EvoDesign program can be used as a server at http://zhanglab.
ccmb.med.umich.edu/EvoDesign. The only input to the server is a
PDB format file of the target structure, which can be either a full-
atomic or backbone only model. In either case, the backbone of the
protein structure should be complete without breaks in the chain.
Currently, the server is limited to design of one protein chain only.

There are three user-defined parameters to control the design
simulation. The first parameter is the fold-similarity cutoff used for
defining the structural profile (Eq. 1). By default, this is set to the
relatively high value of a TM score of 0.7, which is relaxed if less
than ten structural analogues are found in the PDB. This value can
be adjusted to a higher or lower value; lower values incorporate
more sequence and structural variability in constructing the profile
while higher values incorporate less. The usual result is that higher
cutoffs penalize deviations from the native sequence more strongly,
which may or may not be desirable for the particular application.
The second parameter controls whether the FoldX force field is
used in the simulation or not. Inclusion of FoldX usually results in
only a marginal improvement in the folding when validated by
structure prediction (see the next section) [25], most likely due to
the fact that the side-chains are modeled by a different force field
from the SCWRL force field used for scoring. Including FoldX in
the simulation requires that the full atomic model of each sequence
be constructed, which is the most computationally demanding step
in the simulation. For this reason, the FoldX force field is turned off
by default. The last parameter does not affect the design simulation
but controls whether structure prediction is performed for each of
the designed sequences through the creation of I-TASSER models
(see Subheading 2.3.1).
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By default, the EvoDesign server operates without any residue
restrictions on the design process. In many cases, it desirable to
freeze certain residues in the design process, such as those involved
in disulfide bond formation or in ligand binding. Taken further, in
other cases, it is useful to redesign only the surface of the protein
while keeping the inner core constant. An option is therefore
provided to specify a set of residues (by residue number) which
should be kept the same as in the input structure. It is also some-
times desirable to restrict the use of some residues completely or at
certain positions. A prime example is cysteine residues on the
surface, which can easily be oxidized to form intermolecular disul-
fide bonds that lead to a loss of activity through aggregation.

The output of the server is ten sequences in decreasing order of
cluster size from the clusters generated by the SPICKER algorithm.
For each sequence, the sequence identity to the native sequence is
calculated along with the predicted normalized relative error for
the secondary structure, solvent accessibility, and torsion angles.
Each property is calculated by a high accuracy predictor using PSI-
BLAST profiles along with neural network predictors (PSSPred for
secondary structure prediction [42], ANGLOR for torsion angle
prediction [32], and the method of SOLVE for solvent accessibility
[43], respectively). The normalized relative error (NRE) is
reported for each prediction, which is defined by [25].

NRE ¼ EDS� ETS

ETS
; ð4Þ

where EDS refers to “error of designed sequence,” i.e., the mis-
match between the predicted structure feature from the designed
sequence and the target structure. ETS refers to “error of target
sequence” that is defined similarly to EDS but for the target
sequence. The NRE defined thus accounts for the uncertainty
from the structure feature predictors. Finally, I-TASSER models
of each of the designed sequences are provided if user selects the
third option on I-TASSER modeling. The I-TASSER models rep-
resent a partial validation of the success of the design simulation as
described below.

2.3 Computational

Validation of Protein

Designs

No computational design method is perfect, and validation remains
an essential part of the design processes. Validating experimentally
that the designed protein sequence successfully folds to the desired
structure requires both successfully expressing the protein and
successfully determining the structure. A full structure determina-
tion at the atomic level through either NMR spectroscopy or X-ray
crystallography is a time-consuming and difficult task. Even sim-
pler, less precise experimental methods for determining protein
structure, such as comparing the secondary structure of the native
and designed proteins through circular dichroism CD (see
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Subheading 2.4.7) and recognition of the presence of folded ter-
tiary structure through 1D NMR (see Subheading 2.4.8), still
require that the protein be successfully expressed. Compared to
computational techniques, protein expression is relatively expen-
sive, limited in throughput, and in some cases may be challenging
to achieve. Before expression, it is therefore desirable to know
which designed sequences are most likely to fold to the target
structure. The first step is to visually confirm that the design
sequences are compatible with the structure. Specifically, it is a
good idea to look for buried charges without salt-bridges and
buried side-chains without hydrogen bonding partners before pro-
ceeding. The EvoDesign program uses a fixed backbone approxi-
mation in its calculations. High energies from van der Waals clashes
can usually be relieved by small changes in the backbone [44, 45].
However, buried charges and missing hydrogen bonds are much
harder to compensate for by small structural movements. Since
even one missed hydrogen bond or buried charge is enough to
completely destabilize a structure, any designs possessing these
features should be eliminated from consideration.

It is, however, not possible to tell reliably if a protein will fold
correctly by simple visual analysis. Accurate structure prediction of
designed sequences is therefore central to the EvoDesign method-
ology, as it allows a much larger number and variety of sequences to
be tested for correct folding than can be experimentally checked.
EvoDesign currently employs I-TASSER, which is a hierarchical
approach to protein structure modeling that constructs protein
3D models by reassembling continuous fragments excised from
the multiple threading templates [43, 46–48]. I-TASSER has
been extensively tested in both benchmarking [46, 47, 49] and
blind tests [50–53]. In particular, the community-wide CASP
(Critical Assessment of protein Structure Prediction) experiment
is designed to benchmark the state-of-the-art of protein structure
predictions every two years since 1994 [54–56]. I-TASSER was
tested (as “Zhang-server”) in the 7–11th CASP competitions in
2006–2015. Figure 3 shows the histogram of the Z-score of the
GDT-score, which measures the significance of the model predic-
tions by each group of automated structure predictors compared to
the average performance, in the latest 11th CASP competition. The
data shows the advantage of the I-TASSER in comparison to other
state-of-the-art protein structure prediction methods, provided
that the protein is already known to fold to a specific structure.

2.3.1 Estimating

Structural Fidelity and

Foldability of Designed

Sequences Using I-TASSER

The I-TASSER-based structure prediction of designed sequences in
EvoDesign seeks to answer two related but distinct questions. First,
does the designed sequence fold to any structure at all or is it only
partially or completely unfolded when expressed? Second, given
that the protein folds, does it fold to the correct structure? If a
designed sequence is known to fold, there is considerable evidence
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from the benchmark and blind tests described above that I-
TASSER could, with some confidence, tell if it will fold to its target
structure. However, the ability of template-based protein structure
programs to determine whether or not a given sequence can fold
correctly to any structure at all has been tested much less extensively
(see Note 1).

In an early test, I-TASSER was shown to cleanly distinguish
native sequences from random sequences with similar sequence
identity and secondary structural propensity [38]. For a more
stringent benchmark test, we recently tested 16 successfully
designed sequences that are known to match their target structure
and 29 unsuccessful sequences that were known to either fold to a
different structure or were unable to fold at all in the literature
[25]. As shown in Fig. 4, I-TASSER successfully captured the
deviation of the structures of the designed sequences from the
target structure. Furthermore, the confidence level (C-score) [57]
of the I-TASSER prediction is roughly correlated with the chance
of success of the design: a C-score below �1.5 indicates an almost
certain failure and a C-score above 0 indicates a very strong possi-
bility of success. I-TASSER prediction on designed sequences can
therefore allow a winnowing out of poorly designed sequences
without resorting to the lengthy procedure of expressing and
experimentally determining the structures of designed proteins at
each step.

2.4 Experimental

Validation of Designed

Sequences

True validation of the designed protein requires that protein be
characterized experimentally for structurally fidelity and activity.
The processes listed below have been employed in the EvoDesign

Fig. 3 Histogram of the Z-scores of all automated protein structure predictors in
the CASP11 experiment. The first bin contains groups that have Z-score below 0.
Data are taken from official CASP webpage at URL http://www.predictioncenter.
org/casp11/zscores_final.cgi?model_type¼first&gr_type¼server_only
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studies [25, 58], aiming to ensure that the designed proteins are
thermodynamically stable, soluble, and adopt the desired fold. In
all cases, the same tests should be performed with the wild-type
protein as well for a control.

2.4.1 Expression

and Purification

of Designed Proteins

Before a protein can be characterized experimentally, the pure
protein must be generated in sufficient quantities for the experi-
ments. This is done through a process called recombinant expres-
sion, which involves incorporating the DNA sequence of the
designed protein into the genome of another organism and using
that organism’s protein production process to generate the target
protein. Since there are many variations on the technique and the
specifics of the process can vary with the protein being produced, a
comprehensive description of the technique is not given here.
Instead, key considerations are outlined in a basic manner for
those unfamiliar with process. For further, more depth treatment
readers are encouraged to consult several excellent reviews on this
topic [59].

2.4.2 Choice of Host Cell The first decision that must be made in setting up a recombinant
protein expression system is the choice of the host cell whose
protein synthesis machinery will produce the target protein. This
choice is one of the most critical ones as the choice of the expression
organism defines the scope of the project, the reagents and equip-
ment needed, and the final outcome of the expression process [59].
Each protein expression has advantages and disadvantages. In most
cases, bacterial expression systems are favored as they are low cost,

Fig. 4 Divergence in the confidence score of the I-TASSER models for
successfully and unsuccessfully designed sequences. Approximate cutoff
values are indicated by the arrows. A C-score < �1.5 indicates a high
probability that the design will not be folded correctly and a C-score > 0
indicates a high probability that the design will fold to the target structure
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easy to manipulate genetically, scale easily from small- to large-scale
expression, and can easily incorporate isotopic labels for NMR
studies. The main disadvantage of bacterial expression is that
eukaryotic posttranslational modifications such as glycosylation
and phosphorylation are not performed. In the case that these
posttranslational modifications are essential, a eukaryotic host cell
such as yeast or insect cells must usually be used and the process
becomes considerably more complex.

Disulfide bond formation is also more difficult in bacteria,
although this may be overcome in most cases by selecting a bacterial
strain such as the Orgami cell line that have mutations in the
thioredoxin reductase and glutathione reductase genes, which cre-
ates an oxidative environment that greatly enhances disulfide bond
formation in the cytoplasm [60]. Expression can vary greatly for
different bacterial strains. For this reason, different specialized
strains of bacteria have been created to optimize the expression of
recombinant proteins. Most specialized bacterial strains for
expression start with the BL21 genetic background that is deficient
in the Ion and ompT proteases that can lead to improper cleavage
of the protein product. Other bacterial strains attempt to minimize
the difference in codon usage between the natural codon usage of
the bacteria and the codon usage required to express the protein.

Recombinant expression of proteins can lead to a high demand
for specific tRNAs that are normally produced in only small
amounts by the bacteria. Depletion of these low abundance
tRNAs can cause translation to stall on the ribosome, leading to
premature release from the ribosome and the generation of
truncated versions of the protein [61]. From our studies [25, 58,
62], we recommend for routine use of the Rosetta 2 bacterial cell
line that combines the protease mutations found in the BL21 strain
along with additional modifications that allow the bacteria to gen-
erate low abundance tRNAs more efficiently and mutations that
allow tunable expression through mutations in the Lac permease
gene (see below). However, alternate strains may be considered in
certain situations such as the Rosetta-gami strain, which adds the
disulfide-bond promoting mutations of the Orgami strain to the
Rosetta background.

2.4.3 Selection

of Expression Vector

Once the host cell is selected, the next step is to create the vector
that introduces the foreign DNA into host cell. This is typically a
bacterial plasmid that contains several elements besides the DNA
encoding the target protein. The first element is a gene for antibi-
otic resistance which provides a growth selection mechanism for
discovery; only those bacteria that have incorporated the plasmid
into their genome can grow in the presence of the antibiotic. The
second is the promoter system, which ties the expression of the
target protein to another protein whose expression is essential for
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the cell and whose expression can be readily induced at a specific
time. Triggering expression at a specific time is essential as bacteria
continue to grow during incubation and the time at which the
protein is lysed determines the overall yield and final purity of the
product. If the cell density is too low, the yield of expressed protein
is naturally low. On the other hand, too high of cell density can also
result in decreased yields and purity from loss of the plasmid from
the bacteria [63], metabolism of the antibiotic within the medium,
and death of the bacteria from lack of dissolved oxygen [64].
Typically, this is done through the use of the Lac operon, in
which protein expression can be induced at a specific time period
during growth with the lactose analog isopropyl β-D-1-thiogalacto-
pyranoside (IPTG).

2.4.4 Purification

of Expressed Protein

Once expressed, the expressed protein still needs to be purified
from the other proteins in the bacterial cell. Although this may be
accomplished using the sequence of the designed protein without
modification using multiple steps of column chromatography, it is
easier to fuse the designed sequence to other protein domains to
make purification easier. In many cases, the expressed protein is not
soluble at the very high concentrations generated during expres-
sion. In this situation, the expressed protein accumulates in an
insoluble form in the bacteria as particles known as inclusion bod-
ies. The formation of inclusion bodies can make purification easier
or more difficult. The inclusion bodies generally contain the
expressed protein in highly pure form with only a small amount
of the other proteins of the host cell mixed in, a clear advantage for
the purification process. On the other hand, proteins within inclu-
sion bodies must be first disaggregated and then refolded with urea,
which may prove a difficult process [65]. If the stability of the
protein is unknown, such as the case with designed proteins, it is
often easier to try to purify already folded, soluble proteins.

To enhance the solubility of proteins during purification, a
solubility tag such as the Mocr domain [66] can be fused to the
target protein. This domain is usually fused N-terminal to the
designed sequence. Since it is localized to the N-terminus, the
Mocr domain is therefore synthesized first and folds into its native
form before the translation of the designed sequence, stabilizing
the designed domain’s folding process. Moreover, the high nega-
tive charge on the Mocr domain increases the solubility during the
purification process by preventing self-association by electrostatic
repulsion. Along with the solubility tag, another sequence that
specifically binds a particular column can be incorporated to assist
purification. A common choice is the His tag, six consecutive
histidine residues that strongly bind nickel (Ni) columns. A prote-
ase cleavage site is often placed between the Mocr domain with the
His tag and the sequence of the designed protein so that the two
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domains can be separated. The expressed protein with the Mocr/
His tag will bind the Ni column; most other bacterial proteins will
not. The Mocr/His domain is then cleaved from the target
sequence by the addition of a protease specific to the cleavage site
and passed through the Ni column again. This time, the target
protein does not bind the Ni column but all other nickel-binding
proteins will remain bound to the column. The end result of this
process is a highly pure protein in a soluble form.

2.4.5 Confirmation

of Protein Solubility

In addition to adopting a stable folded conformation, many pro-
teins must be soluble in water to perform their biological function.
This requirement constrains the design process, as sequences that
are optimized only for stability of the folded conformation may not
be optimized for solubility. A key advantage of the EvoDesign
method is that the structural profiles implicitly include all the
constraints involved in determining the sequences that are compat-
ible with a specific fold, not just those concerned with fold stability.
As a result, sequences designed by EvoDesign are significantly more
native-like in composition than those designed by physics only
methods [25], which tend to overemphasize hydrophobic residues
on the surface more than is found in native proteins [20, 38, 67].
Consequently, aggregation by the coalescence of exposed hydro-
phobic patches is a common source of failure in physics-based
design [20].

As aggregation generally makes a protein useless for most
applications, the oligomeric state of the protein should be deter-
mined before proceeding at the highest concentration used for the
other biophysical experiments. Typically, this is around 100 μM for
a 100-residue domain. The limiting factor is usually sensitivity of
the 1D NMR experiment for tertiary structure estimation and
sensitivity of the urea denaturation experiment used for the deter-
mination of protein stability (see Note 2). An approximate concen-
tration range may be established by measuring the signal-to-noise
ratio at different concentrations of the native protein. The signal of
both experiments is actually more sensitive to the total concentra-
tion by weight than the molar concentration. The 100 μM value
may need to be adjusted upward or downward for proteins signifi-
cantly shorter or longer than 100 residues.

The presence of aggregation is most readily determined quan-
titatively by dynamic light scattering, which measures the hydrody-
namic radius of proteins in solution, or from a correctly calibrated
analytical size exclusion column. In the absence of either instru-
ment, aggregation may be measured semiquantitatively by the
absorbance at 400 nm. At this wavelength range, the protein does
not absorb light and increases in absorbance are due to Raleigh
scattering, which is proportional to the sixth power of the particle
radius. A comparison to the corresponding absorbance at 400 nm
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of the native protein provides a qualitative estimate of the amount
of aggregation in the sample (see Note 3).

2.4.6 Confirmation

of Structural Fidelity

X-ray crystallography remains the gold standard for confirming
whether a protein design has the desired structure. However, not
all well-folded proteins crystallize and the expense of X-ray crystal-
lography severely restricts the number of designs that can be stud-
ied. From a functional perspective, absolute structural fidelity is not
necessary in many cases and small changes on the atomic scale are
tolerated if the protein is stable, soluble, and functional. To test a
larger number of sequences, faster low-resolution biophysical tech-
niques can be used to eliminate obviously badly designed sequences
[68, 69].

2.4.7 Confirmation

of Secondary Structure

Secondary structure is the most basic building block of protein
structure. The existence of severely incorrect secondary structure
in the designed protein therefore very strongly implicates a failed
design. Since each secondary structure element (α-helix, β-sheet,
and random coil) has a distinct circular dichroism (CD) spectra, the
relative fractions of each in a protein can be estimated from a CD
spectra by fitting to a reference set of proteins with known CD
spectra and secondary structure [70]. The accuracy of this proce-
dure is typically around �5 %, with α-helical content determined
more precisely than either random coil or beta sheet content. If
available, infrared (IR) spectra can also be used in a similar manner
to characterize the secondary structure, as it has been shown that
IR and CD are largely complementary and a combination of the
two techniques gives a more accurate picture of the secondary
structure than either technique alone [71].

2.4.8 Confirmation

of Existence of Tertiary

Structure

The existence of tertiary structure has traditionally been defined in
a qualitative way from the appearance of the 1D 1HNMR spectra of
the protein. A protein that is poorly folded, without extensive
contacts within the protein core, has a distinctive 1D NMR spectra
characterized by the lack of highly shielded peaks in the region of
the spectra from �1 to 0.5 ppm and poor dispersion of the signal
within the amide region (see Fig. 5) [72, 73]. While this method is
standard in the protein design field [68, 69], it is subjective and
qualitative. A more objective and quantitative method is to use the
autocorrelation of a 1D 1H [74] or unassigned 3D 15N NOESY-
HSQC NMR spectrum [75], which have been shown to accurately
distinguish folded and unfolded proteins. A comparison of the
binding of the dye SYPROOrange, which binds to exposed hydro-
phobic surfaces, to the native sequence can provide an additional
test for a misfolded protein structure [76].

2.4.9 Confirmation

of Fold Stability

The free energy of folding can be measured using chemical dena-
turation with urea, with denaturation measured by the decrease in
secondary structure as determined by CD [25]. As the
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concentration of urea is increased, the protein unfolds, in most
cases by a two-step process without a significant population of
partially unfolded intermediates. The first step of determining the
stability is to measure the CD signal without denaturant (CDfolded),
where it is assumed to be completely folded, and at a high concen-
tration of denaturant, where it is assumed to be completely folded
(CDunfolded). If unfolding is a two-step process, the CD signal as a
function of the urea concentration is [77]:

CD ureað Þ ¼ f unfolded ureað ÞCDunfolded þ f folded ureað ÞCDfolded; ð5Þ
where ffolded(urea) and funfolded(urea) refer to the fractions of
folded and unfolded proteins respectively, at a given urea concen-
tration. Since the equilibrium constant can be calculated directly
from fraction of folded and unfolded proteins, the Gibbs free

Fig. 5 NMR spectra of folded (with asterisk) and unfolded designed proteins. The
folded designs have a wider range of chemical shift values in the amide region of
the spectrum (7–10 ppm) and have chemical shift values below 0.5 ppm
indicating side-chains strongly shielded from solvent, as would be expected in
a well-packed protein core
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energy of unfolding can be calculated for each urea concentration
[77]:

K ureað Þ ¼ f unfolded ureað Þ
1� f unfolded ureað Þ ð6Þ

ΔG ureað Þ ¼ �RT ln K ureað Þ ¼ �RT ln
f unfolded ureað Þ

1� f unfolded ureað Þ
� �

ð7Þ

The relevant free energy is the free energy of unfolding in the
absence of denaturant, which can be obtained by linear extrapola-
tion of the free energy to zero urea concentration.

3 Conclusions

Using an evolution-based approach, we have successfully designed,
expressed, and experimentally characterized a number of single
domain proteins [25, 58]. In the first benchmark test, we used
EvoDesign to redesign 87 globular proteins randomly collected
from the PISCES server. I-TASSER was then used to test the
fidelity of the predicted structure to the target. Although all homol-
ogous templates have been excluded from the I-TASSER template
library, out of the 87 designed sequences, 80 % were predicted to
fold to structure with an RMSD of <2.0 Å to the target scaffold,
and 42.5 % were predicted to fold to an essentially identical struc-
ture with an RMSD < 1.0 Å. This was a clear difference from
designed sequences created using only the FoldX force field, for
which only 54 % of the predicted structures have an RMSD < 2.0 Å
to the target structure, and only 31 % have an RMSD < 1.0 Å.

In a separate test, we redesigned five globular proteins by
EvoDesign and used the experimental validation procedures
described in Subheading 2.4 to confirm the success of the designs.
All five proteins were successfully expressed using the expression
system in Subheading 2.4.3 and were soluble to at least 70 μM.
Further, all five designed proteins have secondary structure consis-
tent with the target protein (<12 % difference). Three out of the
five had a compact tertiary structure confirmed by NMR (Subhead-
ing 2.4.8, Fig. 5), for an overall success rate of 60 %. One of the
three, the Phox homology domain of the cytokine-independent
survival kinase (CISK-PX), could be crystallized and its structure
compared to the native protein [78]. Despite having only 32 %
sequence identity, the structure of the designed protein showed a
very close similarity to the target with a RMSD of 1.54 Å and a TM
score of 0.90 to the target template. The RMSD and TM score
between the I-TASSER model and the X-ray crystal structure of
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CISK-PX are 1.32 Å and 0.91, respectively. Most of the difference
between the two structures was in a loop that is disordered in the
original structure.

Finally, we have shown that EvoDesign can be used to create
functional complexes for the X-linked inhibitor of apoptosis pro-
teins (XIAP) with improved properties by designing a peptide-
protein complex involved in apoptosis inhibition [58]. The XIAP
protein inhibits apotosis by binding caspase-9, an activity that is in
turn regulated by the second mitochondria-derived activator of
caspases (SMAC). The designed XIAP protein by EvoDesign
binds SMAC but does not possess affinity for caspase-9. As such,
the designed protein can serve as a SMAC sink, altering the normal
protein-protein interaction network involved in cell death. The
circular dichroism and isothermal calorimetry data showed that
the designed XIAP domain was more stable than WT-XIAP and
bound the SMAC derived peptide with a Kd of 167 � 67 nM,
which compares favorably with the 80 � 25 nM Kd found for
WT-XIAP. Interestingly, a designed version of XIAP with native
interface residues actually showed worse binding (Kd of 352 � 79
nM) and stability than the fully designed sequence, highlighting
the efficiency of evolution-based full protein design.

4 Notes

1. The distinction between these two questions becomes clear
when the nature of the benchmarks is considered. Due to the
experimental requirements of structure determination, the
benchmark test largely consists of proteins that can be success-
fully expressed, successfully purified, and are stable for a pro-
longed period of time at high concentration. In addition, the
protein also must be crystallized in the case of X-ray structures,
which is a rather severe restriction for proteins with large
unfolded regions as the disordered regions have poor crystal
contacts which interferes with the crystallization process [79].
Even if the protein can be crystallized, the disordered regions
will have poor electron density and will therefore not be resolved
in the structure. Similarly, the structure of unfolded proteins is
difficult to determine by NMR due to the lack of long-range
NOE constraints and poor chemical shift dispersion [80]. These
experimental constraints suggest that though the PDB library is
largely complete with respect to the possible universe of mono-
meric folded domains [81, 82], it is still biased toward compact
folded structures, as proteins that are intrinsically unstable or
unfolded are difficult to observe. The PDB library should there-
fore not be considered as completely representative of the con-
formational ensembles, folded or not, that all protein sequences
can adopt.
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2. The signal-to-noise ratio in an NMR experiment depends on a
number of factors including the field strength of the NMR
spectrometer (higher magnetic fields give higher resolution
spectra and hence higher signal-to-noise ratios), the size of the
protein (larger proteins give rise to broader signals), and other
factors such as conformational exchange (transitions between
conformations under certain timescales give rise broader sig-
nals). The signal-to-noise ratio in a CD spectrum also depends
on a variety of factors, including the transparency of the buffer in
the far UV region of the spectrum (180–260 nm), the path-
length of the cuvette, and the age of the xenon lamp used to
acquire the spectrum. Of these factors, the transparency of the
buffer usually has the most impact. A buffer strongly absorbing
in the UV serves as an inner filter that attenuates the incoming
light reaching the protein. Phosphate buffers are optimal for CD
due to their transparency in the far UV region of the spectrum,
although Tris buffers are nearly as good. Chloride ions absorb in
this region and the proteins in NaCl solutions should be dia-
lyzed against an equivalent of concentration of NaF. Finally,
many additives used to stabilize proteins, such as glycerol, argi-
nine, and Triton-X, absorb strongly in the UV and are incom-
patible with CD spectroscopy for this reason.

3. An alternative wavelength can be used if the protein possesses a
cofactor such as FAD or FMN that absorbs in the visible light
range.
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