
Chapter 1
Ab Initio Protein Structure Prediction

Jooyoung Lee, Peter L. Freddolino and Yang Zhang

Abstract Predicting a protein’s structure from its amino acid sequence remains an
unsolved problem after several decades of efforts. If the query protein has a
homolog of known structure, the task is relatively easy and high-resolution models
can often be built by copying and refining the framework of the solved structure.
However, a template-based modeling procedure does not help answer the questions
of how and why a protein adopts its specific structure. In particular, if structural
homologs do not exist, or exist but cannot be identified, models have to be con-
structed from scratch. This procedure, called ab initio modeling, is essential for a
complete solution to the protein structure prediction problem; it can also help us
understand the physicochemical principle of how proteins fold in nature. Currently,
the accuracy of ab initio modeling is low and the success is generally limited to
small proteins (<120 residues). With the help of co-evolution based contact map
predictions, success in folding larger-size proteins was recently witnessed in blind
testing experiments. In this chapter, we give a review on the field of ab initio
structure modeling. Our focus will be on three key components of the modeling
algorithms: energy function design, conformational search, and model selection.
Progress and advances of several representative algorithms will be discussed.
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1.1 Introduction

With the success of an expanding array of genome sequencing projects, the number
of known protein sequences has been increasing exponentially. However, the
sequences on their own cannot tell what each protein does in cell. Although protein
structure information is essential for understanding the function, the speed of
protein structure determination lags far behind the increase of sequences, due to the
technical difficulties and laborious nature of structural biology experiments. By the
end of 2015, about 90 million protein sequences were deposited in the UniProtKB
database (Bairoch et al. 2005) (http://www.uniprot.org/). However, the corre-
sponding number of protein structures in the Protein Data Bank (PDB) (Berman
et al. 2000) (http://www.rcsb.org) is only about 100,000. The gap is rapidly
widening as indicated in Fig. 1.1, where the ratio of sequences over structure
increased from less than 1 magnitude to around 3 magnitudes in the last two
decades. Thus, developing efficient computer-based algorithms that can generate
high-resolution 3D structure predictions becomes probably the only avenue to fill
up the gap.

Depending on whether similar proteins have been experimentally solved, protein
structure prediction methods can be grouped into two categories. First, if proteins of
a similar structure are identified from the PDB library, the target model can be
constructed by copying and refining framework of the solved proteins (templates).
The procedure is called “template-based modeling (TBM)” (Sali and Blundell 1993;
Karplus et al. 1998; Jones 1999; Skolnick et al. 2004; Soding 2005; Wu and Zhang
2008a; b; Yang et al. 2011), and will be discussed in the subsequent chapters.
Although high-resolution models can often be generated by TBM, the procedure
cannot help us understand the physicochemical principle of protein folding.

If protein templates are not available, we have to build the 3D models from
scratch. This procedure has been given different names, e.g. ab initio modeling
(Klepeis et al. 2005; Liwo et al. 2005; Wu et al. 2007; Taylor et al. 2008; Xu and

Fig. 1.1 The numbers of
available protein sequences
and solved protein structures
are shown for the last
20 years. The ratio of
sequences over structures
increases from less than 10 in
1995 to three orders of
magnitude in 2015. Data are
taken from UniProtKB
(Bairoch et al. 2005) and PDB
(Berman et al. 2000)
databases
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Zhang 2012); de novo modeling (Bradley et al. 2005a, b), physics-based modeling
(Oldziej et al. 2005), or free modeling (Jauch et al. 2007; Kinch et al. 2015). In this
chapter, the term ab initio modeling is uniformly used to avoid confusion. Unlike
the template-based modeling, a successful ab initio modeling procedure could help
address the basic questions on how and why a protein adopts the specific structure
out of many possibilities.

Typically, ab initio modeling conducts a conformational search under the
guidance of a designed energy function. This procedure usually generates a number
of possible conformations (also called structure decoys), and final models are
selected from them. Therefore, a successful ab initio modeling depends on three
factors: (1) an accurate energy function with which the native structure of a protein
corresponds to the most thermodynamically stable state, compared to all possible
decoy structures; (2) an efficient search method which can quickly identify the
low-energy states through conformational search; (3) a strategy that can select
near-native models from a pool of decoy structures.

This chapter gives a review on the most recent progress in ab initio protein
structure prediction. This review is neither sufficiently complete to include all
available ab initio methods nor sufficiently in depth to provide all
backgrounds/motivations behind them. For a quantitative comparison of the
state-of-the-art ab initio modeling methods, readers are suggested to read the
assessment articles on template-free modeling in the recent CASP experiments
(Kinch et al. 2011; Tai et al. 2014; Kinch et al. 2015). The rest of the chapter is
organized as follows. First, the three major issues of ab initio modeling, i.e. energy
function design, conformational search engine and model selection scheme, will be
described in detail. New and promising ideas to improve the efficiency and effec-
tiveness of the prediction are then discussed. Finally, current progress and chal-
lenges of ab initio modeling are summarized.

1.2 Energy Functions

In this section, we discuss energy functions used for ab initio modeling. It should be
noted that in many cases energy functions and the search procedures are intricately
coupled to each other, and as soon as they are decoupled, the modeling procedure
often loses its power and/or validity. We classify the energy functions into two
groups: (a) physics-based energy functions and (b) knowledge-based energy
functions, depending on whether they make use of statistics from the existing
protein 3D structures in the PDB. A few promising methods from each group are
selected to discuss according to their uniqueness and modeling accuracy. A list of
ab initio modeling methods is provided in Table 1.1 along with their properties
about energy functions, conformational search algorithms, model selection methods
and typical running times.
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1.2.1 Physics-Based Energy Functions

In a strictly-defined physics-based ab initio method, interactions between atoms
should be based on quantum mechanics and the Coulomb potential with only a few
fundamental parameters such as the electron charge and the Planck constant; all
atoms should be described by their atom types where only the number of electrons
is relevant (Hagler et al. 1974; Weiner et al. 1984). However, there have not been
serious attempts to start from quantum mechanics to predict structures of (even
small) proteins, simply because the computational resources required for such
calculations are far beyond what is available now. Without quantum mechanical
treatments, a practical starting point for ab initio protein modeling is to use a force
field treating atoms as point particles interacting through a defined potential form,
with the parameters governing inter-atomic interactions obtained through the
comparisons of the force field with a combination of experimental and quantum
mechanical data (Hagler et al. 1974; Weiner et al. 1984). Well-known examples of
such all-atom physics-based force fields include AMBER (Weiner et al. 1984;
Cornell et al. 1995; Duan and Kollman 1998), CHARMM (Brooks et al.
1983; Neria et al. 1996; MacKerell et al. 1998), OPLS (Jorgensen and Tirado-Rives
1988; Jorgensen et al. 1996), and GROMOS96 (van Gunsteren et al. 1996). These
potentials contain terms associated with bond lengths, angles, torsion angles, van
der Waals, and electrostatics interactions. The major difference between them lies in
the selection of atom types and the interaction parameters.

Coupling Physics-Based Potentials With Molecular Dynamics Simulations For
the study of protein folding, these classical force fields were often coupled with
molecular dynamics (MD) simulations. The obvious appeal of such an approach is
that the prediction of protein folding via MD simulations provides not only
information on the folded structure, but also the folding process itself, which must
be fully simulated en route. However, the results, from the viewpoint of protein
structure prediction, have until quite recently been disappointing. (See Chap. 12 for
the use of MD in elucidation of protein function from known structures).

The first milestone in MD-based ab initio protein folding was probably the 1997
work of Duan and Kollman, who simulated the villin headpiece subdomain (a 36
amino acid protein) in explicit solvent for 6 months on parallel supercomputers.
Although the authors did not fold the protein with high resolution, the best of their
final models was within 4.5 Å RMS deviation of the native state (Duan and
Kollman 1998). With Folding@Home, a worldwide-distributed computer system,
this small protein was later folded by Pande and coworkers (Zagrovic et al. 2002) to
1.7 Å with a total simulation time of 300 ls or approximately 1000 CPU years. The
years since then have seen an increasing number of successful ab initio folding
simulations using molecular dynamics (Chowdhury et al. 2003; Ensign et al. 2007;
Lei et al. 2007; Freddolino and Schulten 2009), although all have required heroic
amounts of computing time either through supercomputing centers or distributed
community projects. During the same period, ab initio folding simulations also
revealed secondary structure biases in several physics-based force fields that
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hampered their general applicability to different folds (Best et al. 2008; Freddolino
et al. 2008, Best and Hummer 2009; Freddolino and Schulten 2009;
Lindorff-Larsen et al. 2012).

A flurry of force field development efforts spurred by these shortcomings have
resulted in a new generation of parameter sets that are able to reliably fold a wide
variety of protein structures (Lindorff-Larsen et al. 2010; Mittal and Best 2010;
Piana et al. 2011; Lindorff-Larsen et al. 2012), leaving simulation timescales as the
main barrier for MD ab initio folding simulations. Even this barrier has begun to
crumble in the face of recent advances in computing hardware. The special purpose
Anton machine, designed by Shaw and co-workers specifically for extreme-
performance molecular dynamics simulations, has allowed complete, reversible
folding simulations of proteins up to *100 residues long in explicit solvent
(Lindorff-Larsen et al. 2011; Piana et al. 2012, Piana et al. 2013a, b; Piana et al.
2014). Following a separate path, the use of GPU acceleration in most major
molecular dynamics packages has enabled ab initio folding simulations on com-
modity hardware to reach performances of 1 microsecond per GPU-day for small
proteins with implicit solvent (Nguyen et al. 2014), and allowed successful folding
of 16 out of 17 test proteins (10–100 residues). Despite these remarkable efforts, the
all-atom physics-based MD simulation is far from being routinely used for structure
prediction of typical-size proteins (*100–300 residues), and it is instead primarily
used to provide additional information on folding pathways or equilibriums.

Application to Atomic-Level Structure Refinement Another protein structure
niche where physics-based MD simulation can contribute is structure refinement.
Starting from low-resolution protein models, the goal is to draw the structure closer
to the native by refining the local side-chain and peptide-backbone packing. When
the starting models are not very far away from the native, the intended confor-
mational change is relatively small and the simulation time would be much shorter
than that required in ab initio folding. One of the early MD-based protein structure
refinements was for the GCN4 leucine zipper (33-residue dimer) (Nilges and
Brunger 1991; Vieth et al. 1994), where a low-resolution coiled-coil dimer structure
(2–3 Å RMS deviation from native) was first assembled by Monte Carlo
(MC) simulation before the subsequent MD refinement. With the help of helical
dihedral-angle restraints, Skolnick and coworkers (Vieth et al. 1994) were able to
generate a refined structure of GCN4 with below 1 Å backbone RMSD using
CHARMM (Brooks et al. 1983) with the TIP3P water model (Jorgensen et al.
1983).

Later, using AMBER 5.0 (Case et al. 1997) and the TIP3P water model
(Jorgensen et al. 1983; Lee et al. 2001) attempted to refine 360 low-resolution
models generated by ROSETTA (Simons et al. 1997) for 12 small proteins
(<75 residues); but they concluded that no systematic structure improvement was
achieved (Lee et al. 2001). Fan and Mark (Fan and Mark 2004) tried to refine 60
ROSETTA models for 11 small proteins (<85 residues) using GROMACS 3.0
(Lindahl et al. 2001) with explicit water (Berendsen et al. 1981) and they reported
that 11/60 models were improved by 10% in RMSD, but 18/60 got worse in RMSD

8 J. Lee et al.



after refinement. Similarly, Chen and Brooks (Chen and Brooks 2007) used
CHARMM22 (MacKerell et al. 1998) to refine five CASP6 CM targets (70–144
residues). In four cases, refinements with up to 1 Å RMSD reduction were
achieved. In this work, an implicit solvent model based on the generalized Born
(GB) approximation (Im et al. 2003) was used, which significantly speeded up the
computation. In addition, the spatial restraints extracted from the initial models
were used to guide the refinement procedure (Chen and Brooks 2007).

More recently, Zhang et al. (2011) proposed to use analogous fragments from
known structures to bias the physics-based force field and improve structure
refinement. In this work, the initial structure model was split into segments of 2–4
secondary structure elements, which are structurally matched through the PDB
library by TM-align (Zhang and Skolnick 2005a, b) to identify analogous frag-
ments. The distance map from the analogous fragments is then used as restraints to
reshape the MD energy funnel. The protocol was tested on 181 benchmarking and
26 CASP targets. It was found that structure models of correct folds with TM-score
>0.5 can be often pulled closer to native with higher GDT-HA score, but
improvement for the models of incorrect folds (TM-score <0.5) were much less
pronounced. The previous experiments have shown that the physics-based force
field can often recognize the native but lacks middle-range correlation to the RMSD
in the high RMSD region (Bradley et al. 2005a, b; Jagielska et al. 2008), which
leads to a golfcourse like energy landscapes with a deep basin around the native that
cannot help for refining low-resolution models. The data by Zhang et al. seemed to
indicate that template-based fragmental distance maps reshaped the MD energy
landscape from golfcourse-like to funnel-like in the successfully refined targets with
an approximate radius of TM-score *0.5. Similarly, Feig and coworkers used the
Ca maps collected from initial structure models to guide the MD based structure
refinement simulations (Mirjalili and Feig 2013). In the recent CASP experiment
(Feig and Mirjalili 2015), the approach showed a small but consistent improvement
on the structural models, with average RMSD improvement by 0.13 Å for the first
submitted models and 0.52 Å for the best in top five models.

Molecular Mechanics Approaches A noteworthy observation was made by
Summa and Levitt (2007) who exploited various molecular mechanics
(MM) potentials (AMBER99 (Wang et al. 2000; Sorin and Pande 2005), OPLS-AA
(Kaminski et al. 2001), GROMOS96 (van Gunsteren et al. 1996), and ENCAD
(Levitt et al. 1995)) to refine 75 proteins by in vacuo energy minimization. They
found that a knowledge-based atomic contact potential outperformed the MM
potentials by moving almost all test proteins closer to their native states, while the
MM potentials, except for AMBER99, essentially drove decoys further away from
their native structures. The vacuum simulation without solvation may be partly the
reason for the failure of the MM potentials. This observation demonstrates the
possibility of combining knowledge-based potentials with physics-based force
fields for more successful protein structure refinement.

While the physics-based potential driven by MD simulations was not particularly
successful in structure prediction due to the immense computational cost of MD

1 Ab Initio Protein Structure Prediction 9



simulations on the timescales of folding processes, fast search methods (such as
Monte Carlo simulations and genetic algorithms) combined with similar
physics-based potentials have been shown to be promising in both structure pre-
diction and structure refinement. One example is the effort by Scheraga and
coworkers (Liwo et al. 1999; Liwo et al. 2005; Oldziej et al. 2005) who have been
developing a physics-based protein structure prediction method solely based on the
thermodynamic hypothesis. The method combines the coarse grained potential
UNRES with a global optimization algorithm called conformational space
annealing (Oldziej et al. 2005). In UNRES, each residue is described by two
interacting off-lattice united atoms, Ca and the side-chain center. This effectively
reduces the number of atoms by 10, enabling one to handle polypeptide chains of
larger than 100 residues. The resulting prediction time for small proteins can be
then reduced to 2–10 h. The UNRES energy function (Liwo et al. 1993) consists of
pair-wise interactions between all interacting parties and additional terms such as
local energy and correlation energy. The low energy UNRES models are then
converted into all-atom representations based on ECEPP/3 (Nemethy et al. 1992).
Although many of the parameters of the energy function are calculated by
quantum-mechanical methods, some of them are derived from the distributions and
correlation functions calculated from the PDB library. For this reason, one might
question classifying it as a truly physics-based approach. Nevertheless, this method
is one of the most faithful ab initio methods available (in terms of the application of
a thorough global optimization to a physics-based energy function) and has been
systematically applied to many CASP targets since 1998. The most notable pre-
diction success by this approach was for T061 from CASP3, for which a model of
4.2 Å RMSD for a 95-residue a-helical protein was generated with an accuracy gap
between it and the models of others. It was shown in a clear-cut fashion that the
ab initio method can sometime provide better models for the targets where the
template-based methods fail. In CASP6, a structure genomics target of TM0487
(T0230, 102 residues) was folded to 7.3 Å by this approach. However, it seems that
the scarcity and the best-but-still-low accuracy of such models by a pure ab initio
modeling failed to draw much attention from the protein science community, where
accurate protein models are in great demand.

Another example of the physics-based modeling approaches is the multi-stage
hierarchical algorithm ASTRO-FOLD, proposed by Floudas and coworkers
(Klepeis and Floudas 2003; Klepeis et al. 2005). First, secondary structure elements
(a-helices and b-strands) are predicted by calculating a free energy function of
overlapping oligopeptides (typically pentapeptides) and all possible contacts
between 2 hydrophobic residues. The free energy terms used include entropic,
cavity formation, polarization, and ionization contributions for each oligopeptide.
After transforming the calculated secondary structure propensity into the upper and
lower bounds of backbone dihedral angles and the distant restraints between Ca
atoms, the final tertiary structure of the full length protein is modeled by globally
minimizing the energy using the ECEPP/3 all-atom force field. This approach was
successfully applied to an a-helical protein of 102 residues in a double-blind
fashion (but not in an open community-wide way for relative performance

10 J. Lee et al.



comparison to other methods). The RMSD of the predicted model was 4.94 Å away
from the experimental structure. The global optimization method used in this
approach is a combination of a branch and bound (aBB), conformational space
annealing, and MD simulations (Klepeis and Floudas 2003; Klepeis et al. 2005).
The relative performance of this method on larger number of proteins is yet to be
examined.

Taylor and coworkers (Taylor et al. 2008) proposed a novel approach which
constructs protein structural models by enumerating possible topologies in a
coarse-grained form, given the secondary structure assignments and the physical
connection constraints of the secondary structure elements. The top scoring con-
formations, based on the structural compactness and element exposure, are then
selected for further refinement (Jonassen et al. 2006). The authors successfully
folded a set of five ab sandwich proteins with length up to 150 residues with the
first model having 4–6 Å RMS deviation from the known experimental structure.
Again, although appealing in methodology, the performance of the approach in
open blind experiments and on proteins of various fold-types is yet to be seen.

1.2.2 Knowledge-Based Energy Function Combined
with Fragments

The term knowledge-based potential refers to a set of empirical energy terms
derived from the statistics and regularities of the solved structures in deposited
PDB. Such potentials can be divided into two types as described by Skolnick
(Skolnick 2006). The first covers generic and sequence-independent terms such as
the hydrogen bonding and the local backbone stiffness of a polypeptide chain
(Zhang et al. 2003). The second contains amino-acid or protein-sequence dependent
terms, e.g. pair-wise residue contact potential (Skolnick et al. 1997), distance
dependent atomic contact potential (Samudrala and Moult 1998; Lu and Skolnick
2001; Zhou and Zhou 2002; Shen and Sali2006; Zhang and Zhang 2010), and
secondary structure propensities (Zhang et al. 2003, Zhang and Skolnick 2005a, b;
Zhang et al. 2006).

Although most knowledge-based force fields contain secondary structure
propensities, it may be that local protein structures are rather difficult to reproduce
in the reduced modeling. That is, in nature a variety of protein sequences prefer
either helical or extended structures depending on the subtle differences in their
local and global sequence environment, yet we have not yet developed force fields
that can reproduce this subtlety properly. One way to circumvent this problem is to
use secondary structure fragments, obtained from sequence or profile alignments,
directly into 3D model assembly. One additional advantage of the fragment-based
approach is that the use of excised secondary structure fragment can significantly
reduce the entropy of the conformational search.

1 Ab Initio Protein Structure Prediction 11



Here, we introduce several representative methods utilizing knowledge-based
energy functions, which have proven to be the most successful in ab initio protein
structure prediction methods in recent community competitions (Simons et al. 1997;
Zhang and Skolnick 2004a, b; Xu and Zhang 2012).

ROSETTA One of the best-known ideas for ab initio, pioneered by Bowie and
Eisenberg, involves generating protein models by assembling small fragments
(mainly 9-mers) taken from the PDB library (Bowie and Eisenberg 1994). Based on
a similar idea, Baker and coworkers developed ROSETTA (Simons et al. 1997),
which has been very successful for the free modeling (FM) targets in the CASP
experiments, and which has greatly boosted the popularity of the fragment
assembly approach in the field. In recent versions of ROSETTA (Bradley et al.
2005a, b; Das et al. 2007; Ovchinnikov et al. 2015), the authors first generated
models in a reduced form with conformations specified with heavy backbone and
Cb atoms. In the second phase, a set of selected low-resolution models were subject
to all-atom refinement procedure using an all-atom physics-based energy function,
which includes van der Waals interactions, pair-wise solvation free energy, and an
orientation-dependent hydrogen-bonding potential. The flowchart of the two-phase
modeling is shown in Fig. 1.2 and details on the energy functions can be found in
references (Bradley et al. 2005a, b; Das et al. 2007). For the conformational search,
multiple rounds of Monte Carlo minimization (Li and Scheraga 1987) are carried
out. One of the notable examples for this two-step protocol is the blind prediction of
a FM target (T0281 from CASP6, 70 residues), whose Ca RMSD from its crystal
structure is 1.6 Å (Bradley et al. 2005a, b), where a very extensive sampling was
carried out using the distributed computing network of Rosetta@home allowing
about 500,000 CPU hours for each target domain. Despite the significant success,
the computational cost of the procedure is rather expensive for routine use.

Partially because of the notable success of the ROSETTA algorithm, as well as
the limited availability of its energy functions to others, several groups initiated
developments of their own energy functions following the idea of ROSETTA.
Derivatives of ROSETTA include Simfold (Fujitsuka et al. 2006) and Profesy (Lee
et al. 2004); their energy terms include van der Waals interactions, backbone
dihedral angle potentials, hydrophobic interactions, backbone hydrogen-bonding
potential, rotamer potential, pair-wise contact energies, beta-strand pairing, and a
term controlling the protein radius of gyration. However, their predictions seems to
be only partially successful in comparison to ROSETTA (Lee et al. 2004; Fujitsuka
et al. 2006).

TASSER/I-TASSER Another successful free modeling approach, TASSER by
Zhang and Skolnick (Zhang and Skolnick 2004a, b), constructs 3D models based
on a purely knowledge-based approach. The target sequence is first threaded
through a set of representative protein structures to search for possible folds.
Contiguous fragments (>5 residues) are then excised from the threaded aligned
regions and used to reassemble full-length models, while unaligned regions are built
by a lattice-based ab initio modeling (Zhang et al. 2003). The protein conformation
in TASSER is represented by a trace of Ca atoms and side-chain centers of mass,
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and the reassembly process is conducted by parallel-hyperbolic Monte Carlo sim-
ulations (Zhang et al. 2002). The energy terms of TASSER include information
about predicted secondary structure propensities, backbone hydrogen bonds, a
variety of short- and long-range correlations and hydrophobic energy based on the
structural statistics from the PDB library. Weights of knowledge-based energy
terms are optimized using a large-scale structure decoy set (Zhang et al. 2003)
which coordinates the complicated correlations between various interaction terms.

Several derivatives of the TASSER approach have also found independent
success. One is Chunk-TASSER (Zhou and Skolnick 2007), which first splits the
target sequences into subunits (or “chunks”), each containing 3 consecutive regular
secondary structure elements (helix and strand). These chunks are then folded
separately. Finally, the spatial restraints are extracted from the chunk models and
used for the subsequent TASSER simulations.

Fig. 1.2 Flowchart of the
ROSETTA protocol (Simons
et al. 1997). Fragments are
first created from unrelated
protein structures in the PDB,
which are used to assemble
full-length models by
simulated annealing
simulations guided by a
knowledge-based force field.
In the second phase, selected
models are refined at atomic
level using a physics-based
potential
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Another notable development is I-TASSER by Zhang and coworkers (Wu et al.
2007; Roy et al. 2010, Yang et al. 2015a, b), which refines TASSER cluster
centroids by iterative fragment assembly simulations. The spatial restraints are
extracted from the first round TASSER models and the template structures searched
by TM-align (Zhang and Skolnick 2005a, b) from the PDB library, which are
exploited in the second round simulations (Zhang and Skolnick 2013). The purpose
is to remove the steric clashes from the first round models and refine the topology.
Although the procedure uses structural fragments and spatial restraints from
threading templates, it often constructs models of correct topology even when
topologies of constituting templates are incorrect. From CASP7 to the latest
CASP11 experiments, I-TASSER was consecutively ranked as one of the best
methods for automated protein structure prediction (Battey et al. 2007; Cozzetto
et al. 2009; Mariani et al. 2011; Montelione 2012; Kinch et al. 2015). As an
independent test, Helles carried out a comparative study on 18 ab initio prediction
algorithms and concluded that I-TASSER is about the best method in terms of the
modeling accuracy and CPU cost per target (Helles 2008). Figure 1.3a shows an
example of successful ab initio structure modeling by I-TASSER that constructed a
correct model for the FM target T0604, which has a TM-score = 0.701 and
RMSD = 2.66 Å from the X-ray structure.

Recently, many efforts have been made to improve the I-TASSER force field by
the integration of sequence-based contact prediction (Wu and Zhang 2008a, b),
short- and medium-range contact maps derived from segmental threading (Wu and
Zhang 2010) and structure alignments (Zhang et al. 2011); these components have
been proven particularly important for modeling distant-homology proteins in the
CASP experiments (Zhang 2009; Xu et al. 2011; Zhang 2014; Zhang et al. 2015).
The flowchart of current I-TASSER protocol is depicted in Fig. 1.4.

QUARK QUARK is a recently developed ab initio structural prediction method
built on continuous fragment assembly using both knowledge and physics based
energy terms (Xu and Zhang 2012). The flowchart of QUARK is shown in Fig. 1.5,
which starts from position-specific fragment structure generation. At each residue
position, 4000 (=200 " 20) structural fragments are generated, with lengths
ranging from 1 to 20 residues, based on gapless threading of the fragment sequence
through a non-redundant set of 6023 high-resolution PDB structures. The scoring
function of the gapless threading consists of profile-profile, secondary structure,
torsion angle and solvent accessibility matches (Wu et al. 2008a, b). Two types of
information are derived from the fragments to assist next step of structure folding
simulations. First, a torsion angle (u, W) distribution is collected from the 10-mer
fragments at each residue position. Second, a residue-residue contact map is derived
from the distance profiles between fragments. Here, a distance (dij) is recorded for
each pair of fragments at two positions (i and j) if these two fragments come from
the same PDB structure. A histogram is then generated for dij counting distances for
all such fragment pairs. If the histogram of dij has a non-trivial peak below 9 Å, a
contact between residue i and j will be predicted (Xu and Zhang 2013).
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In the next step, replica-exchange Monte Carlo (REMC) simulations are per-
formed to assemble the fragments into full-length models under a composite
physics- and knowledge-based potential, containing hydrogen bonding, van der
Waals, solvation, Coulomb, backbone-torsion, bond-length and bond-angle, atomic
distance, and strand pairing. The conformational changes are driven by 11 local and
global movements shown in the top-right panel of Fig. 1.5. While the first feature,
the torsion-angle distribution as collected from the fragments, is used to constrain
local torsion movement selection, the second feature, the contact map derived from
the fragment distance profiles, is used as a restraint to guide the simulations. The
final models are selected by SPICKER (Zhang and Skolnick 2004a, b), which
clusters all the decoys generated in the REMC simulations and ranks models by the
size of the clusters.

Since its development, QUARK has been consistently ranked as one of the best
methods in CASP for ab initio structure prediction (Kinch et al. 2011; Tai et al. 2014;

Fig. 1.3 Three examples of successful free modeling (FM) in recent CASP experiments.
a T0604_1 is the first domain of the VP0956 protein from Vibrio parahaemolyticus in CASP9 that
has 79 residues. The first model by the I-TASSER server has a TM-score = 0.692 and
Ca-RMSD = 2.66 Å to the native. The success of this target was partially due to the
sequence-based contact map prediction (Xu et al. 2011). b T0806 is the YaaA protein from
E. coli K-12 in CASP11 that has 258 residues. The Rosetta human group (Ovchinnikov et al.
2015) constructed a correct model, using a co-evolution based contact prediction derived from
>1100 homologous sequences, which has a TM-score = 0.775 and Ca-RMSD = 3.58 Å to the
experimental structure. c T0837 is a hypothetical protein (YPO2654) from Yersinia pestis CO92
with 128 residues. The QUARK server generated a correct model with a TM-score = 0.736 and
Ca-RMSD = 2.94 Å to the native, the success of which was attributed to the distance-profile
based contact map prediction (Zhang et al. 2015). According to the assessors (Kinch et al. 2011;
Kinch et al. 2015), there were no proteins in the PDB with a similar fold to any of these three
targets at the time the predictions were made
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Kinch et al. 2015). Figure 1.3c shows an example of the QUARK server modeling
on T0837 in CASP11, where the distance profiles provided correct contacts for
some of the critical medium-range contacts, which resulted in the first predicted
models with a TM-score = 0.736 and RMSD = 2.94 Å to the experimental X-ray
structure.

Coupling of Contact Prediction And Ab Initio Structure Prediction
Sequence-based contact predictions have recently been investigated for improving
ab initio modeling (Wu and Zhang 2008a, b; Wu et al. 2011; Marks et al. 2012;
Kosciolek and Jones 2014). Unlike template-based protein structure prediction
where high accuracy contacts can be derived from homologous structural templates,
the CASP experiments for hard free-modeling (FM) protein targets show that purely
sequence-based contact predictions can be more helpful than those collected from
the best template-based models because the latter often have low quality for FM
(Ezkurdia et al. 2009).

Fig. 1.4 Flowchart of I-TASSER protein structure modeling (Yang et al. 2015a, b). Multiple
threading programs are used to identify templates and super-secondary structure fragments.
Segments excised from the continuously aligned regions are used to reassemble the full-length
models with the threading-unaligned regions built by lattice-based ab initio simulations. In the next
step, templates structurally similar to the first-round models are identified from the PDB by
structure alignments, with spatial restraints extracted from the templates to assist the second-round
refinement simulations. In recent developments, sequence-based contact predictions and segmental
threading were developed for improving results for distant homology modeling
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Some improvement of final models, with an average TM-score increase by 4.6%,
was previously observed by Wu et al. after integrating nine SVM-based contact
predictors (3 distance cutoffs multiplying 3 different contact atoms) into the
I-TASSER force field (Wu et al. 2011). A handful of targets were converted from
“nonfoldable” to “foldable” by several critical contacts when incorporated with the
state-of-the-art structure assembly simulation methods. Similarly, Marks et al.
(2011) showed that by integrating co-evolution based contact predictions with
distance geometry programs, correct folds with RMSD values of 2.7–4.8 Å were
generated for 15 test proteins with lengths between 50 and 260 residues. Later,
Jones and coworker combined PSICOV (Jones et al. 2012), a co-evolution based
contact predictor, with the fragment assembly program (Fragfold) and demonstrated
the ability to fold 80% of cases with a TM-score above 0.5, when tested on a set of
150 proteins up to 266 amino acids in length (Kosciolek and Jones 2014).

One of the issues in applying co-evolution based contact predictions to ab initio
structure prediction is that the accuracy of contact predictions depends on the
number of homologous sequences that can be retrieved from the sequence data-
bases, whereas hard FM targets often have few closely homologous sequences.
Most recently, Baker and coworkers (Ovchinnikov et al. 2015) demonstrated an
exciting achievement in the blind CASP11 experiment, where 4.6 L homologous
sequences (with L being the protein length) were detected for a 256-residue FM
target. The combination of the contact map with Rosetta simulations resulted in a

Fig. 1.5 Flowchart of QUARK protein structure modeling (Xu and Zhang 2012). Multiple
fragments with continuously distributed lengths are identified at each position from unrelated
protein structures. Contact maps are then collected from distance profiles of the structural
fragments, which are used to assist the fragment assembly simulations. Decoys are generated by
replica-exchange Monte Carlo simulations under the guide of a composite physics and
knowledge-based force field, with the final model selected by structure clustering
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first predicted model with the correct fold, with a TM-score = 0.775 and
RMSD = 3.58 Å to the experimental structure (Fig. 1.3b). This probably represents
the largest target that has been successfully folded in the CASP experiments,
demonstrating the power of coupling contact map prediction and knowledge-based
structure modeling.

1.3 Conformational Search Methods

Successful ab initio modeling of protein structures depends on the availability of a
powerful conformation search method which can efficiently find the global mini-
mum energy structure for a given energy function with a complicated energy
landscape. Historically, Monte Carlo and molecular dynamics are two popular
simulation methods to explore the conformational space of macromolecules such as
proteins. For complicated systems like proteins, canonical MD/MC methods usu-
ally require a huge amount of computational resources for a complete exploration of
the conformational space. The record for direct application of MD to obtain the
protein native structure is not so impressive. One explanation for the failure could
be that the simulation time required to fold a small protein takes as long as mil-
liseconds, 1012 times longer than the usual incremental time step of femtoseconds
(10−15 s). The technical difficulty of MC simulations mainly comes from that the
energy landscape of protein conformational space is typically quite rugged con-
taining many energy barriers, which may easily trap the Metropolis-based MC
simulation procedures (Metropolis et al. 1953).

In this section we discuss recent development in conformational search methods
to overcome these problems. We intend to illustrate the key ideas of conformational
search methods used in various ab initio and related protein-modeling procedures.
Unlike various energy functions used in ab initio modeling, the search methods
should be, in principle, transferable between protein modeling methods, as well as
other problems in science and technology. Currently, there exists no single
omni-powerful search method that outperforms the others for all cases, and the
investigation and systematic benchmarking on the performance of various search
methods has yet to be carried out.

1.3.1 Monte Carlo Simulations

Simulated annealing (SA) (Kirkpatrick et al. 1983) is probably the most popular
conformational search method. SA is general in that it is easy and straightforward to
apply to any kind of optimization problem. In SA, one typically applies the
Metropolis MC algorithm to generate a series of conformational states following the
canonical Boltzmann energy distribution for a given temperature. SA initially
executes high temperature MC simulation, followed by a series of simulations
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subject to a temperature-lowering schedule, hence the name simulated annealing.
As much as SA is simple, its conformational search efficiency is not so impressive
compared to other more sophisticated methods discussed below.

When the energy landscape of the system under investigation is rugged (due to
numerous energy barriers), MC simulations are prone to get stuck in meta-stable
states that will distort the distribution of sampled states by breaking the ergodicity
of sampling. To avoid this malfunction, many simulation techniques have been
developed, and one of the successful approaches is based on the generalized
ensemble approach in contrast to the usual canonical ensemble. This kind of
method was initially called by different names including multi-canonical ensemble
(Berg and Neuhaus 1992) and entropic ensemble (Lee 1993). The underlying idea is
to expedite the transition between states separated by energy barriers by modifying
the transition probability so that the final energy distribution of sampling becomes
more or less flat rather than bell-shaped. A popular method similar in this spirit is
the replica exchange MC method (REM) (Swendsen and Wang 1986) where a set
of many canonical MC simulations with temperatures distributed in a selected range
are simultaneously carried out. From time to time one attempts to exchange
structures (or equivalently temperatures) from neighboring simulations to sample
states in a wide range of energy spectrum as the means to overcome energy barriers.
Parallel hyperbolic sampling (PHS) (Zhang et al. 2002) further extends the REM by
dynamically deforming energy using an inverse hyperbolic sine function to lower
the energy barrier.

Monte Carlo with minimization (MCM), proposed by Li and Scheraga (1987),
was successfully applied for the conformational search by several structure pre-
diction programs (Simons et al. 1997). In MCM, one performs MC moves between
local energy minima after local energy minimization of each perturbed protein
structure. For a given local energy minimum structure A, a trial structure B is
generated by random perturbation of A and is subsequently subject to local energy
minimization. The usual Metropolis algorithm is used to determine the acceptance
of B over A by calculating the energy difference between the two.

1.3.2 Molecular Dynamics

MD simulation (discussed in detail in Chap. 12) propagates physically realistic
trajectories by applying Newton’s equations of motion iteratively to allow atom
movement, and is thus the most faithful method depicting atomistically what is
occurring in proteins. The method is therefore often used for the study of protein
folding pathways (Duan and Kollman 1998; Freddolino et al. 2010). The massive
computational cost of long simulations is a major challenge with this method, since
the incremental time scale is usually in the order of femtoseconds (10−15 s) while
the fastest folding time of small proteins are on timescales of several microseconds
(for folding model systems) or in the millisecond range (more typically). From the
standpoint of search efficiency, molecular dynamics simulations are guaranteed to
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propagate some motion after each energy/force evaluation, but the steps that are
taken are very small; in contrast, as described in the preceding section, Monte Carlo
simulations may make larger steps, but not all steps will be accepted after energy
evaluation. The relative sampling efficiency of the methods is thus dependent on the
acceptance rate of Monte Carlo moves; with modern move sets (see, e.g., Fig. 1.5)
Monte Carlo sampling of protein conformational space tends to be much more
efficient. Thus, the application of molecular dynamics simulations using atomistic
models is reserved for cases where the topic of interest is the folding process, rather
than the folded structure per se. One unusual strength of MD sampling compared
with Monte Carlo is that MD can accommodate the presence of explicit water much
more readily, which might prove useful in the rare cases where implicit solvent
models are directly responsible for failed structure predictions (Zhou 2003).

In addition, molecular dynamics simulations have been successfully applied in
protein structure prediction using a variety of coarse-grained models, in which the
computational complexity is substantially reduced and the folding accelerated due
to the simulation of a smaller system with a less rugged energetic landscape, but of
course with reduced resolution (Tozzini 2005; Hills and Brooks 2009). In addition,
when a low-resolution model is available, MD simulations are often carried out for
structure refinement since the conformational changes are assumed to be small
(Zhang et al. 2011; Mirjalili and Feig 2013). Sampling in molecular dynamics
simulations of protein folding may be enhanced using similar methods to those in
Monte Carlo simulations, e.g. through the use of replica exchange simulations
(Sugita and Okamoto 1999), but at the price of complicating the interpretation of
folding kinetics and pathways. One particularly promising enhanced sampling
method for future protein folding simulations and structure prediction is accelerated
molecular dynamics (aMD) (Hamelberg et al. 2004), which applies a bias to lower
the relative height of barriers on the potential energy surface. In a recent applica-
tion, aMD allowed the prediction of the folded structures and folding free energy
landscapes of a set of four commonly used model proteins with 10–100 fold less
computational effort than unbiased simulations (Miao et al. 2015), providing pro-
mise for future applications to study folding pathways and equilibriums.

1.3.3 Genetic Algorithm

A genetic algorithm (GA) is a heuristic approach to the optimization problems
based on a natural selection process mimicking the biological evolution. GA is
designed to repeatedly modify a population of individual solutions. At each step,
the algorithm randomly selects individuals from the current population, which are
used as parents to produce the children for the next generation. Over successive
generations, the population “evolves” toward the optimal solutions (Mitchell 1996).

Conformational space annealing (CSA) (Lee et al. 1998) is one of the most
successful genetic algorithms developed for protein conformational search. By
utilizing a local energy minimizer as in MCM and the concept of annealing in
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conformational space, it searches the whole conformational space of local minima
in its early stages and then narrows the search to smaller regions with low energy as
the distance cutoff is reduced. Here the distance cutoff is defined as the similarity
between two conformations, and it controls the diversity of the conformational
population. The distance cutoff plays the role of temperature in the usual SA, and
initially its value is set to a large number in order to force conformational diversity.
The value is gradually reduced as the search progresses. CSA has been successfully
applied to various global optimization problems including protein structure pre-
diction separately combined with ab initio modeling in UNRES (Oldziej et al.
2005) and ASTRO-FOLD (Klepeis and Floudas 2003; Klepeis et al. 2005), and
with fragment assembly in Profesy (Lee et al. 2004).

1.3.4 Mathematical Optimization

The conformational searching approach by Floudas and coworkers, a branch and
bound (aBB) (Klepeis and Floudas 2003; Klepeis et al. 2005), is unique in the
sense that the method is mathematically rigorous, while all the others discussed here
are stochastic and heuristic methods. The search space is successively cut into two
halves while the lower and upper bounds of the global minimum (LB and UB) for
each branched phase space are estimated. The estimate for the UB is simply the best
currently obtained local minimum energy, and the estimate for the LB comes from
the modified energy function augmented by a quadratic term of the dissecting
variables with the coefficient a (hence the name aBB). With a sufficiently large
value of a, the modified energy contains only one energy minimum, whose value
serves as the lower bound. While performing successive dissection of the phase
space accompanied by estimates of LB and UB for each dissected phase space,
phase spaces with LB higher than the global UB can be eliminated from the search.
The procedure continues until one identifies the global minimum by locating a
dissected phase space where LB becomes identical to the global UB. Once the
solution is found, the result is mathematically rigorous, but large proteins with
many degrees of freedom are yet to be addressed by this method.

1.4 Model Selection

Ab initio modeling methods typically generate many non-native structure confor-
mations (also called decoys) during the simulation. How to select appropriate
models structurally close to the native state is an important issue. The development
of algorithms for selection of protein models has been emerged as a new field called
Model Quality Assessment Programs (MQAP) (Fischer 2006). In general, modeling
selection approaches can be classified into two types, the energy based and the free
energy based. In the energy-based methods, one designs a variety of specific
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potentials and identifies the lowest-energy state as the final prediction. In the
free-energy based approaches, the free energy of a given conformation R can be
written as

FðRÞ ¼ &kBT ln ZðRÞ ¼ &kBT ln
Z

X2R

e
&EðRÞ
kBT dX ð1Þ

where Z(R) is the restricted partition function which is proportional to the number of
occurrences of the structures in the neighborhood of R during the simulation. This
can be estimated by a clustering procedure at a given RMSD cutoff (Zhang and
Skolnick 2004a, b).

For the energy-based model selection methods, we will discuss three
energy/scoring functions: (1) physics-based energy function; (2) knowledge-based
energy function; (3) scoring function describing the compatibility between the
target sequence and model structures. In MQAP, there is another popular method
which takes the consensus conformation from the predictions generated by different
algorithms (Wallner and Elofsson 2007), also known as the meta-server approach
(Ginalski et al. 2003; Wu et al. 2007). The essence of this method is similar to the
clustering approach since both assume the most frequently occurring states to be the
near-native structures. This approach has been mainly used for selecting models
generated by threading-servers (Ginalski et al. 2003; Wu et al. 2007); but it has
recently become popular for full-length model selection in the CASP experiments
(Larsson et al. 2009; Kryshtafovych et al. 2015).

1.4.1 Physics-Based Energy Function

For the development of all-atom physics-based energy functions, Lazaridis and
Karplus (1999a, b) exploited CHARMM19 (Neria et al. 1996) and EEF1 (Lazaridis
and Karplus (1999a, b)) solvation potential to discriminate the native structure from
decoys that are generated by threading on other protein structures. They found the
energy of the native state is lower than those of decoys in most cases. Later, Petrey
and Honig (Petrey and Honig 2000) used CHARMM and a continuum treatment of
the solvent, Brooks and coworkers (Dominy and Brooks 2002; Feig and Brooks
2002) used CHARMM plus GB solvation, Felts et al. (2002) used OPLS plus GB,
Lee and Duan (Lee et al. 2004) used AMBER plus GB, and Hsieh and Luo (2004)
used AMBER plus Poisson-Boltzmann solvation potential on a number of structure
decoy sets (including the Park-Levitt decoy set (Park and Levitt 1996), Baker decoy
set (Tsai et al. 2003), Skolnick decoy set (Kihara et al. 2001; Skolnick et al. 2003),
I-TASSER decoy set (Wu et al. 2007; Zhang and Zhang 2010), and CASP decoys
set (Moult et al. 2001)). All these authors obtained similar results: the native
structures have lower energy than decoys in their potentials. The claimed success of
model discrimination of the physics-based potentials seems contradicted by other
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less successful physics-based structure prediction results. Wroblewska and
Skolnick (Wroblewska and Skolnick 2007) showed that the AMBER plus GB
potential can only discriminate the native structure from roughly minimized
TASSER decoys (Zhang and Skolnick 2004a, b). After a 2-ns MD simulation on
the decoys, none of the native structures were lower in energy than the lowest
energy decoy, and the energy-RMSD correlation was close to zero. This result
partially explains the discrepancy between the widely reported decoy discrimination
ability of physics-based potentials and the less successful folding/refinement results.

Another related issue is that many of the decoy selection approaches are focused
on the discrimination of the native structures from the decoy pools. However, such
ability is of no practical usefulness in real cases of structure prediction because no
structure prediction simulation could generate decoys exactly matching the native
structure. Furthermore, the native structure has usually a nearly perfect local sec-
ondary structure packing, in addition to the fitness of global topology arrangement,
whereas the computer generated decoys often have various flaws in the local
structure packing and steric clashes. This makes it much more challenging to
recognize the near-native structure decoys that are structurally closest to the native,
compared to the task of discriminating the native structure from a set of
computer-generated, flawed structure decoys (Deng et al. 2016).

1.4.2 Knowledge-Based Energy Function

Sippl proposed a pair-wise residue-distance based potential (Sippl 1990) using the
statistics of known PDB structures in 1990 (its newest version is PROSA II (Sippl
1993; Wiederstein and Sippl 2007)). Since then, a variety of knowledge-based
potentials have been developed, which include atomic interaction potential, sol-
vation potential, hydrogen bond potential, torsion angle potential, etc. In the
coarse-grained potentials, each residue is represented either by a single atom or by a
few atoms, e.g., Ca-based potentials (Melo et al. 2002), Cb-based potentials
(Hendlich et al. 1990), side-chain-center-based potentials (Bryant and Lawrence
1993; Kocher et al. 1994; Thomas and Dill 1996; Skolnick et al. 1997; Zhang and
Kim 2000; Zhang and Skolnick 2004a, b), side-chain and Ca-based potentials
(Berrera et al. 2003).

One of the most widely-used knowledge-based potentials is a residue-specific,
all-atom, distance-dependent potential, which was first formulated by Samudrala
and Moult (RAPDF) (Samudrala and Moult 1998); it counts the distances between
167 amino acid specific pseudo-atoms. Following this, several atomic potentials
with various reference states have been proposed, including those by Lu and
Skolnick (KBP) (Lu and Skolnick 2001), Zhou and Zhou (DFIRE) (Zhou et al.
2002), Wang et al. (self-RAPDF) (Wang et al. 2004), Tostto (victor/FRST) (Tosatto
2005), Shen and Sali (DOPE) (Shen and Sali 2006), Zhang and Zhang
(RW) (Zhang and Zhang 2010), and Zhou and Skolinck (GOAP) (Zhou and
Skolnick 2011). All these potentials claimed that native structures could be
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distinguished from decoy structures in their tests. Deng et al. (2012) recently
conducted a comparative investigation on all these potentials. To eliminate biases
from the datasets and computing environments, they re-derived the potentials from
a unified PDB structure dataset but based on the same original reference states. It
was found that the performance varies with the tested decoy datasets and no
potential could clearly outperform the others for all decoy sets.

The task of selecting the near-native models out of many decoys remains a
challenge for these potentials (Skolnick 2006). Based on the CAFASP4-MQAP
experiment in 2004 (Fischer 2006), the best-performing energy functions were
Victor/FRST (Tosatto 2005) which incorporates an all-atom pair-wise interaction
potential, solvation potential and hydrogen bond potential, and MODCHECK
(Pettitt et al. 2005) which includes Cb atom interaction potential and solvation
potential. From CASP7-MQAP in 2006, the consensus-based method, Pcons
developed by Elofsson group, showed the best performance (Wallner and Elofsson
2007). In the most recent CASP experiments, the consensus-based model selection
scheme has kept ranking higher than any of the physics or knowledge-based scoring
functions (Kryshtafovych et al. 2011; Kryshtafovych et al. 2014; Kryshtafovych
et al. 2015). Several of the advanced structure modeling approaches in the CASP
experiment have exploited a combined consensus and statistics scoring system to
select models in the recent CASP (Cao et al. 2015; Yang et al. Yang et al. 2015a, b;
Zhang et al. 2015).

1.4.3 Sequence-Structure Compatibility Function

In the third type of MQAPs, selection of the best models is not purely based on
energy functions. Instead, they are selected based on the compatibility of target
sequences to model structures. The earliest and still successful example is that by
Luthy et al. (1992), who used threading scores to evaluate structures. Colovos and
Yeates (1993) later used a quadratic error function to describe the non-covalently
bonded interactions among atom pairs CC, CN, CO, NN, NO and OO, showing that
near-native structures have fewer errors than other decoys. Verify3D (Eisenberg
et al. 1997) improves the method of Luthy et al. (Luthy et al. 1992) by considering
local threading scores in a 21-residue window. Jones developed GenThreader
(Jones 1999) and used neural networks to classify native and non-native structures.
The inputs of GenThreader include pairwise contact energy, solvation energy,
alignment score, alignment length, and sequence and structure lengths. Similarly,
based on neural networks, Wallner and Ellofsson built ProQ (Wallner and Elofsson
2003) for quality prediction of decoy structures. The inputs of ProQ include con-
tacts, solvent accessible area, protein shape, secondary structure, structural align-
ment score between decoys and templates, and the fraction of protein regions to be
modeled from templates. Later, McGuffin developed a consensus MQAP
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(McGuffin 2007) called ModFold that includes ProQ (Wallner and Elofsson 2003),
MODCHECK (Pettitt et al. 2005) and ModSSEA. The author showed that ModFold
outperforms its component MQAP programs.

1.4.4 Clustering of Decoy Structures

For the purpose of identifying the lowest free-energy state, structure clustering
techniques were adopted by many ab initio modeling approaches. In the work by
Shortle et al. (1998), for all 12 cases tested, the cluster-center conformation of the
largest cluster was closer to native structures than the majority of decoys.
Cluster-center structures were ranked as the top 1–5% closest to their native
structures.

Zhang and Skolnick developed an iterative structure clustering method, called
SPICKER (Zhang and Skolnick 2004a, b). Based on 1489 representative bench-
mark proteins each with up to 280,000 structure decoys, the best of the top 5
models was ranked in the top 1.4% of all decoys. For 78% of the 1489 proteins, the
RMSD difference between the best of the top 5 models and the most native-like
decoy structure was less than 1 Å.

In ROSETTA ab initio modeling (Bradley et al. 2005a, b), structure decoys are
clustered to select low-resolution models and these models are further refined by
all-atom simulations to obtain final models. In the case of TASSER/I-TASSER
(Zhang and Skolnick 2004a, b; Yang et al. 2015a, b) and QUARK (Xu and Zhang
2012), thousands of decoy models from MC simulations are clustered by SPICKER
(Zhang and Skolnick 2004a, b) to generate cluster centroids as final models. In the
approach by Scheraga and coworkers (Oldziej et al. 2005), decoys are clustered and
the lowest-energy structures among the clustered structures are selected.

1.5 Remarks and Discussions

Successful ab initio modeling from amino acid sequence alone is considered the
“Holy Grail” of protein structure prediction (Zhang 2008), since this will mark an
eventual and complete solution to the problem. In addition to the generation of 3D
structures, ab initio modeling can also help us understand the underlying principles
of how proteins fold in nature; this could not be done by the template-based
modeling approaches which build 3D models by copying and refining the frame-
work of other solved structures.

An ideal approach to ab initio modeling would be to treat atoms in a protein as
interacting particles according to an accurate physics-based potential, and fold the
protein by solving Newton’s equations of motion in each step of movements.
A number of molecular dynamics simulations were carried out along this line of
approach by using the classic CHARMM and AMBER force fields. Although the
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MD based simulation is very important for the study of protein folding, the success
in the viewpoint of structure prediction is quite limited. One reason is the pro-
hibitive computing demand for a normal size protein. On the other hand,
knowledge-based (or hybrid knowledge- and physics-based) approaches making
use of Monte Carlo sampling schemes appear to be progressing rapidly, producing
many examples of successful low-to-medium accuracy models often with correct
topology for small and medium size proteins. Although very rare, successful higher
resolution models (<2–3 Å in Ca-RMSD) have been witnessed in blind experi-
ments (Bradley et al. 2005a, b; Xu et al. 2011; Zhang et al. 2015).

The current state-of-the-art ab initio protein structure prediction methods often
utilize as much information as possible from known structures, in several different
ways. First, the use of local structure fragments directly excised from the PDB
structures helps reduce the degrees of freedom and the entropy of the conforma-
tional search and yet keep the fidelity of the native protein structures. Second, the
knowledge-based potential derived from the statistics of a large number of solved
structures can appropriately grasp the subtle balance of the complicated correlations
between different sources of energy terms (Summa and Levitt 2007). With the
carefully parameterized knowledge-based potential terms aided by various advan-
ces in the conformational search methods, the accuracy of ab initio modeling for
proteins up to 100–150 residues has been significantly improved in the last decade.
With the help of co-evolution based contact map predictions, an exciting examples
has been recently reported on a free-modeling target (T0806) up to 258 residues in
the most recent CASP experiment (Ovchinnikov et al. 2015). However, such per-
formance is only possible when sufficient number of homologous sequences can be
obtained to ensure the accuracy of contact predictions: this situation is rare for
ab initio modeling target proteins that have no homologues in the PDB.

For further improvement, parallel developments of accurate potential energy
functions and efficient optimization methods are both necessary. That is, separate
examination/development of potential energy functions is important; meanwhile,
systematic benchmarking of various conformational search methods should be
performed, so that the advantages as well as the limitations of available search
methods can be explored separately. Currently, the ab initio modeling methods
solely based on the physicochemical principles of interaction are still far behind, in
terms of their modeling speed and accuracy, compared with the methods utilizing
bioinformatics and knowledge-based information. However, the physics-based
atomic potentials have recently demonstrated their potential in refining the detailed
packing of side-chain atoms and peptide backbones (Zhang et al. 2011; Mirjalili
and Feig 2013). Development of composite methods using both knowledge-based
and physics-based energy terms should represent a promising approach to the
problem of ab initio modeling.

It is important to acknowledge that with the progress in structure genomics and
structural biology, the number of experimental structures in the PDB has been
rapidly increasing, significantly extending the scope of the template-based pro-
tein structure predictions. Nevertheless, the traditional comparative modeling
approaches can only yield model predictions with the accuracy of the templates,
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whereas the efficiency of template structure refinements is highly correlated with
our ability in ab initio protein folding, because structure refinements often involve
reconstruction of part of the side-chain and local backbone structures, and sometime
the global topology for the low-resolution templates. Meanwhile, for most tem-
plates available in the PDB, a considerable portion of the sequence is either dis-
ordered or unaligned in the query-template alignments; the structures of these
portions must be constructed using ab initio modeling. Finally, a very important
bottleneck drawback in template-based modeling is that the alignment accuracy
dramatically decreases with the sequence identity between query and template
becomes low (e.g. <30%). Most recently, it has been demonstrated that the struc-
tural models built by free modeling can be used to help identify analogous tem-
plates that are of low sequence similarity but high structural similarity to the native,
by matching the low-resolution ab initio models to experimentally solved structures
in the PDB and thereby improve the success rate of distant-homologous structure
predictions (Zhang 2014). Thus, the development of efficient ab initio folding
algorithms will remain a major theme in the field and should have important
impacts on all aspects of protein structure prediction.
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