
Published online 2 May 2017 Nucleic Acids Research, 2017, Vol. 45, Web Server issue W291–W299
doi: 10.1093/nar/gkx366

COFACTOR: improved protein function prediction by
combining structure, sequence and protein–protein
interaction information
Chengxin Zhang1, Peter L. Freddolino2,1,* and Yang Zhang1,2,*

1Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA and
2Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA

Received February 02, 2017; Revised April 09, 2017; Editorial Decision April 20, 2017; Accepted April 21, 2017

ABSTRACT

The COFACTOR web server is a unified platform
for structure-based multiple-level protein function
predictions. By structurally threading low-resolution
structural models through the BioLiP library, the CO-
FACTOR server infers three categories of protein
functions including gene ontology, enzyme commis-
sion and ligand-binding sites from various analo-
gous and homologous function templates. Here, we
report recent improvements of the COFACTOR server
in the development of new pipelines to infer func-
tional insights from sequence profile alignments and
protein–protein interaction networks. Large-scale
benchmark tests show that the new hybrid COFAC-
TOR approach significantly improves the function
annotation accuracy of the former structure-based
pipeline and other state-of-the-art functional anno-
tation methods, particularly for targets that have no
close homology templates. The updated COFACTOR
server and the template libraries are available at
http://zhanglab.ccmb.med.umich.edu/COFACTOR/.

INTRODUCTION

Due to recent advances in high-throughput sequencing
technology, the gap between the number of known pro-
tein sequences and number of those with experimentally
characterized functions is quickly growing. As of 2017,
for example, there are more than 60 million protein se-
quences deposited in the UniProt database (1), but fewer
than 0.8% of these sequences have the functions manu-
ally annotated in SwissProt (2). Automated and yet accu-
rate in silico protein function prediction thus becomes cru-
cial for making use of the recent explosion of genomic se-
quencing data. Most of the current function prediction ap-
proaches are based on sequence homologous transfer (3),
which may not be able to accomplish the remarkable task

since more than 80% of unannotated protein sequences
lack close functional homologs (i.e. sharing >60% sequence
identity) and 25% of unannotated proteins lack any ho-
mologs sharing a sequence identity above 30% in the cur-
rent databases. Given that the function of a protein is ulti-
mately defined by its structure, COFACTOR (4,5) has been
previously proposed to transfer functional insights to the
unknown proteins from structural homologies, providing
an alternative approach to annotating non-homologous tar-
gets that sequence-homology based methods cannot model
effectively (3).

Function annotation using structural homology alone,
however, suffers several deficiencies. First, global structural
similarity does not always lead to functional similarity. For
example, the TIM barrel fold (6) is adopted by many pro-
teins covering 60 distinct EC classification (7) as well as
many non-enzyme proteins. Even for proteins with simi-
lar functions, global fold based comparisons may fail be-
cause the proteins often share only the local binding or ac-
tive sites with completely different folds (8). Second, the
current structure-function database is far from complete.
For around 88% of proteins with known functions from the
UniProt-GOA (9), for example, there are no experimentally
solved structures in the PDB database (10), seriously lim-
iting the power of structure-based detection of functional
homologies. Finally, although structure is essential to pro-
tein function, the structure of proteins in cells is far from
static and many functions are associated with the cellular
environment of the molecules and the molecular motion of
disordered regions that do not have a structure on their own
(11). Therefore, composite approaches combining multiple
and complementary information from different resources of
sequence homologs and interaction networks should help
increase the accuracy and coverage of structure-based func-
tion annotations.

In this note, we report our recent enhancement of the
COFACTOR web server (4) to make use of hybrid mod-
els combining information from structure and sequence ho-
mologies, as well as protein–protein interaction (PPI) net-
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works, for optimal protein function predictions. In addi-
tion, considerable effort has been made to improve user’s ex-
perience and facility in analyzing and visualizing the mod-
eling results, which include the introduction of new ani-
mation tools to display structural templates and ligand-
protein interactions and directed acyclic graphs (DAG) to
visualize the Gene Ontology (GO) annotation hierarchy.
The new COFACTOR server and the functional libraries
are freely available at http://zhanglab.ccmb.med.umich.edu/
COFACTOR/.

MATERIALS AND METHODS

Gene Ontology (GO) term prediction

The approach of GO prediction in the COFACTOR web
server consists of three pipelines for structure-, sequence-
and PPI-based predictions (Figure 1). While the previ-
ous COFACTOR web server (4) only implemented the
structure-based pipeline, the major new developments in the
current version of the GO prediction algorithm are the in-
troductions of two new sequence- and PPI-based pipelines
and a consensus based approach to combining information
from the complementary pipelines. For completeness of de-
scription, here we briefly describe all three pipelines that
are currently used in the COFACTOR server, including the
pipeline developed previously (4,5).

Structure-based pipeline. The structure-homology based
GO prediction method by COFACTOR was described pre-
viously (4). Briefly, the query structure is compared to a
non-redundant set of known proteins in the BioLiP library
(12) through two sets of local and global structural align-
ments based on the TM-align algorithm (13), for functional
homology detections. Here, BioLiP is a semi-manually cu-
rated structure-function database containing known asso-
ciations of experimentally solved structures and biological
functions of proteins in terms of GO terms, enzyme com-
mission (EC) number and ligand-binding sites. The current
version of BioLiP contains 35 238 entries annotated with
465 838 GO terms, which are used in benchmarking the
methods described in this study. The local structure simi-
larity between query and template is defined by

Lsim = 1
Nt

Nali∑
i=1

⎛
⎜⎝ 1

1 +
(

di
d0

)2 + Mi

⎞
⎟⎠ (1)

where Nt is the number of residues in the active/binding
sites, Nali is the number of aligned residue pairs, di is the
Cα distance between ith aligned residue pair, d0 = 3Å is
the distance cut-off and Mi is the BLOSUM62 substitution
matrix score (14) between ith pair of residues that has been
normalized to the interval [0, 1]. The confidence score of a
template hit is defined by

FCscore = 2
1 + exp (− (0.25 × Lsim × SSbs + TM + 2.5 × ID))

− 1 (2)

where TM is the global structure similarity in terms of TM-
score (15) between query and template, ID is the sequence
identity between query and template in the aligned region
and SSbs is the sequence identity at the binding site. The

overall confidence score for a particular GO term λ is then
calculated by

Cscorestructure (λ) = 1 −
N(λ)∏
i=1

(1 − FCscorei (λ)) (3)

where N(λ) is the number of templates associated with the
GO term λ and FCscorei(λ) is the confidence score of the
ith hit associated with λ as defined in Equation (2). The pre-
dicted GO terms are reconciled using the PIPA algorithm
(16).

Sequence-based pipeline. In the second pipeline, the query
sequence is searched against the UniProt-GOA database
through both sequence and sequence-profile alignments by
BLAST (17) and PSI-BLAST (18), respectively. Only man-
ually reviewed GO terms of sequence templates are consid-
ered, with GO terms annotated with Inferred from Elec-
tronic Annotation (IEA) or No biological Data available
(ND) evidence codes excluded. For BLAST, the query is di-
rectly searched against sequence template library with an
E-value cut-off 0.01. The confidence score for a particular
GO term λ resulting from a BLAST search is defined by

GOfreqblast (λ) =
∑N(λ)

k=1 sk (λ)∑N
k=1 sk

(4)

where N is the number of templates identified, sk is the se-
quence identity between the query and the kth template
and N(λ) and sk(λ) are those associated with a specific GO
term λ. For PSI-BLAST, a sequence profile is obtained by
searching with the query sequence through the Uniref90 se-
quence library (19) by three iterations under an E-value cut-
off 0.01. The sequence profile is used to jump-start a PSI-
BLAST profile-sequence search against the UniProt-GOA
sequences. The confidence score for GO term λ is defined in
the same way as in BLAST (Equation 4).

The final weighted average confidence score of the
sequence-based pipeline is calculated as

Cscoresequence (λ)

= w × GOfreqblast (λ) + (1 − w) × GOfreqpsiblast (λ) (5)

where w equals the maximum sequence identity of the query
to all the template hits. In this way, BLAST hits have a
stronger weight if close homologs are found, while the
weight of the PSI-BLAST hits is increased for the non-
homologous cases for which PSI-BLAST profile alignments
are usually more efficient than the sequence-based align-
ments.

PPI-based pipeline. In this pipeline, the query is first
mapped to the STRING (20) PPI database by BLAST; only
the BLAST hit with the most significant E-values is subse-
quently considered. GO terms of the interaction partners,
as annotated in the STRING database, are then collected
and assigned to the query protein (Inset of Figure 1). The
underlying assumption is that interacting protein partners
tend to participate in the same biological pathway at the
same sub-cellular location and therefore may have similar
GO terms.

Downloaded from https://academic.oup.com/nar/article-abstract/45/W1/W291/3787871
by University of Michigan Law Library user
on 04 February 2018

http://zhanglab.ccmb.med.umich.edu/COFACTOR/


Nucleic Acids Research, 2017, Vol. 45, Web Server issue W293

Figure 1. The workflow of COFACTOR for template-based function predictions. The method consists of three pipelines for functional template iden-
tifications. The GO models are derived from a consensus of the structure-, sequence- and PPI-based pipelines, while the enzyme commission (EC) and
ligand-binding predictions are obtained from structure-based template transfers.

Finally, the confidence score for GO term λ mapped by
PPI is calculated by

CscorePPI (λ) = Sq ×
∑N(λ)

k=1 strk (λ)∑N
k=1 strk

(6)

where N is the number of interacting partners, strk is the
confidence score of interaction between query and the kth
interaction partner as assigned by the STRING database
and Sq is the sequence identity in the first step of BLAST
alignment between the query sequence and the STRING
entry it is mapped to N(λ) and strk(λ) are those associated
to the specific GO term λ.

Consensus GO prediction. The final GO prediction is ob-
tained by combining the GO terms from the structure-
, sequence- and PPI-based pipelines, with the confidence
score calculated by

CscoreGO (λ) = 1 −
∏

m

(1 − Cscorem (λ))wm (7)

where m ∈ {structure, sequence, PPI}. wm is the relative
weight for each of the three methods, with wsequence =
wPPI = 1 and wstructure = 1 − w, where w equals to the max-

imum sequence identity among identified function tem-
plates. Hence, the weight of the structure-based model be-
comes stronger for the cases that have no homologous tem-
plates.

Enzyme Commission (EC) number prediction

The pipeline of EC number prediction is similar to the
structure-homology based method used in GO prediction
(Figure 1), as reported previously (4). Enzymatic homologs
are identified by aligning the target structure, using TM-
align (13), to a library of 8392 enzyme structures from the
BioLiP library (12), with the active site residues mapped
from the Catalytic Site Atlas database (21). The confidence
score for each predicted EC number is estimated based on
the global and local similarity between the target and top
template hit:

CscoreEC

= 2
1 + exp (− (0.25 × Lsim × SSas + TM + 2.5 × ID))

− 1 (8)

where TM is the TM-score between query and template, ID
is the sequence identity, SSas is the sequence identity at the
active sites and Lsim is local structure similarity as defined
in Equation (1).
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Ligand-binding site prediction

Following the previous implementation (4), ligand-binding
prediction in COFACTOR consists of three steps (Figure
1). First, functional homologies are identified by matching
the query structure through a non-redundant set of the Bi-
oLiP library (12), which currently contains 58 416 structure
templates harboring in total 76 679 ligand-binding sites for
interaction between receptor proteins and small molecule
compounds, short peptides and nucleic acids. The initial
binding sites are then mapped to the query from the indi-
vidual templates based on the structural alignments.

Next, the ligands from each individual template are su-
perposed to the predicted binding sites on the query struc-
ture using superposition matrices from a local alignment
of the query and template binding sites. To resolve atomic
clashes, the ligand poses are refined by a short Metropo-
lis Monte Carlo simulation under rigid-body rotation and
translation, guided by an empirical energy function of

Epose = RMSD + Nclash −
∑Nlig

i=1

1

1 + ∣∣dt
i − dq

i

∣∣ (9)

where RMSD is the RMSD of current ligand pose and the
origin ligand pose, Nclash is the number of atomic clashes
between ligand and protein, Nlig is the number of ligand
atoms, dt

i is the distance between ith ligand atom and the
Cα atom of the template residue in contact with the ligand
atom and dq

i is the distance between the same ligand atom
and the closest query Cα atom.

Finally, the consensus binding sites are obtained by clus-
tering of all ligands that are superposed to the query struc-
ture, based on distances of the centers of mass of the ligands
using a cut-off of 8 Å. Different ligands within the same
binding pocket are further grouped by the average linkage
clustering with chemical similarity, using the Tanimoto co-
efficient (22) with a cut-off of 0.7. The model with the high-
est ligand-binding confidence score (CscoreLBS) among all
the clusters is selected, defined by

CscoreLBS

= 2

1 + exp
(
− M

Mtot

(
0.25 × Lsim + TM + 0.25 × ID + 2

1+D

)) − 1 (10)

where M is the number of ligands in the ligand cluster, Mtot
is the total number of ligands collected from all homolo-
gous templates, Lsim is the local similarity at the binding
site defined in Equation (1), TM is TM-score between query
and template, ID is the sequence identity between query and
template in the structurally aligned region and D is the av-
erage distance between ligands within the cluster.

RESULTS

Benchmark results on GO predictions

The COFACTOR GO pipelines have been benchmarked
on a non-redundant set of 1224 Escherichia coli proteins
from UniProt database, with lengths ranging from 38 to 968
residues and pairwise sequence identity <40%. The input
structures for COFACTOR were predicted by I-TASSER
(23) with all homologous structural templates with a se-
quence identity >30% to the query excluded, thus simu-
lating predictions for a target without any close homologs.

Similar to the Critical Assessment of Function Annotation
(CAFA) experiments (3,24), the GO performance is mainly
assessed by the F-measure, which is defined as the harmonic
average between precision and recall:

Fmax = max
t

{
2 × pr (t) × rc (t)

pr (t) + rc (t)

}
(11)

where t is the confidence score threshold (ranging between
0 and 1) and pr(t) and rc(t) are the precision and recall at a
threshold t, respectively.

Supplementary Figure S1 in the Supplementary Data
shows the performance of the COFACTOR server on the
three aspects of GO terms: molecular function (MF), bio-
logical process (BP) and cellular component (CC); results
are shown in comparison with those of the GoFDR pro-
gram (25), one of the top performing methods in CAFA2
(3), and three baselines methods: Naı̈ve Baseline, BLAST
and PSI-BLAST, as implemented in CAFA (3,24). To ex-
amine the effect of the combination of complementary
pipelines, we also show the results from individual CO-
FACTOR components from structure, sequence and PPI
pipelines. To test the dependence of the pipelines on the ho-
mologies from known proteins, four levels of sequence iden-
tity cut-offs at 20, 30, 50 and 90% were used separately to
filter out homologous templates.

Several interesting observations arise from Supplemen-
tary Figure S1. First, whereas the performance of sequence-
based methods (GoFDR, BLAST/PSIBLAST and the se-
quence module of COFACTOR) declines rapidly below
50% sequence identity, the structure module of COFAC-
TOR shows almost no loss of performance even down to
20% sequence identity, and at that point it outperforms
all sequence-based methods. For example, Fmax for MF is
0.538 at the 20% sequence identity cut-off, very close to
0.541 obtained at 50% cut-off (Supplementary Table S1).
Second, the new sequence component of COFACTOR is a
strong performer on its own, with performance exceeding
all other sequence-based methods including GoFDR (ex-
cept for the cases at a very low homology cut-off) and thus
provides a useful complement to the structure-based mod-
ule in the high sequence homology region. Finally, the new
hybrid COFACTOR model not only outperforms the old
structure-only COFACTOR model, but also outperforms
all other methods used in our comparison (including, inter-
estingly enough, the Naı̈ve method for CC term predictions,
which was not beaten by any prediction set in the CAFA2
competition (3)), at all levels of sequence identity cut-offs.

Here, since the structure-based pipeline is inherited from
the former studies (4,5), the difference between ‘COFAC-
TOR’ and ‘COFACTOR structure’ essentially calibrates
the quantitative improvement of the COFACTOR server in
GO prediction since the last release in 2012 (4), which is
based on the same function library. At the sequence iden-
tity cut-off of 30%, for example, the Fmax of GO prediction
on MF, BP and CC has been improved from 0.541, 0.495,
0.513 in ‘COFACTOR structure’ to 0.611, 0.579, 0.582 in
‘COFACTOR’, respectively. The difference becomes even
larger with the sequence identity cut-off increasing, since
the sequence-based pipeline can detect more accurate tem-
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plates when close homologous templates are available (see
Supplementary Table S1).

It is of interest to note that the sequence-based methods
(GoFDR, PSI-BLAST, BLAST and the sequence pipeline
of COFACTOR) do not converge in Supplementary Fig-
ure S1 with the sequence identity cut-off increasing, al-
though the single-template based methods, BLAST and
PSI-BLAST, do converge when sequence identity is >50%.
The main reason is that both GoFDR and sequence-based
COFACTOR combine multiple sequence templates, where
templates of a low sequence identity can still affect their
scoring function even at a very high sequence identity cut-
off. Our benchmark data shows that such an approach us-
ing consensus information of high- and low-sequence iden-
tity templates almost always improves the prediction accu-
racy, due to the fact that the function similarity between
proteins is not always proportional to the sequence identity
and many protein pairs with a lower sequence identity can
have a closer functional relation than those with a higher
sequence identity (26).

To examine the specificity of the COFACTOR predic-
tions, we present in Figure 2A a histogram of precision ver-
sus the confidence score by COFACTOR for the GO predic-
tions, where a strong correlation is found for all aspects of
GO terms, with the Pearson correlation coefficient (PCC)
being 0.96, 0.94 and 0.86 for MF, BP and CC terms, re-
spectively. Consistent with Supplementary Figure S1, at the
same CscoreGO cut-off the precision of MF and BP is gen-
erally higher than that of CC. For example, the precision
for both MF and BP will be >0.3 when CscoreGO > 0.6,
while the precision of CC is only marginally close to 0.3
when CscoreGO > 0.8.

Structure-based approach for EC number prediction

COFACTOR’s ability to predict EC numbers was tested on
a set of 318 non-homologous enzymes, with the benchmark
EC numbers extracted from the PDB entries. The structural
models were again predicted by I-TASSER, which were
used for the EC template detection as in Equation (8). As
with the GO term predictions above, to simulate a challeng-
ing case with no close sequence homologs available, both
structural and function templates homologous to the query
(with a sequence identity >30%) were excluded from the I-
TASSER and COFACTOR template libraries. Supplemen-
tary Figure S2 presents the benchmark results of COFAC-
TOR on EC number prediction compared with the BLAST
and PSIBLAST baseline predictors at the same homol-
ogy cut-off. The data shows a significant advantage of CO-
FACTOR’s use of structural homology transfers over the
sequence-homology approach of BLAST and PSIBLAST.
For example, the F-measure for the first three digits of EC
number for the first template of COFACTOR is 0.702, while
those for the BLAST and PSIBLAST baseline predictors
are just 0.243 and 0.450, respectively (Supplementary Fig-
ure S2).

Figure 2B shows the precision data of the EC models ver-
sus the confidence score (CscoreEC), while a strong corre-
lation with a PCC = 0.95 is obtained between CscoreEC

and the precision for the first enzyme homolog identified
for each target. Generally, the precision of the prediction

goes above 0.5 for any models with a CscoreEC > 0.4 (Fig-
ure 2B).

Ligand-binding site prediction

The performance of COFACTOR in ligand-binding site
prediction was benchmarked on 814 ligand-binding sites
from 500 non-homologous proteins from the PDB. Fol-
lowing the criterion used in the CASP experiment (27), a
residue is defined as a binding site if it has at least one atom
whose distance from the closest ligand atom is within 0.5 Å
plus the sum of the van der Waals radii of the two atoms. As
in the tests above, both structural and functional templates
with a sequence identity >30% have been excluded from the
I-TASSER structure prediction and COFACTOR binding
site template recognitions, to avoid homologous contamina-
tion and simulate the case of a difficult target with no close
annotated homologs.

The overall Matthews correlation coefficient (MCC, as
defined in Supplementary Figure S3) between the actual
and predicted binding sites by COFACTOR is 0.465. This
compares favorably to other state of the art binding site pre-
dictors including Concavity (28) and Findsite (29) which
have overall MCCs of 0.378 and 0.454, respectively, for the
same set of proteins. The average precision and recall of the
COFACTOR prediction are 0.501 and 0.485, respectively.
Despite of the relatively low precision and recall, COFAC-
TOR identifies at least one binding residue correctly in 88%
of the test proteins. One reason for the low precision and
recall on average is due to the alignment error in the query
and template comparisons, which is most significant in com-
paring distantly homologous proteins; this alignment error
can result in imprecise mapping of the binding residues from
templates to query (although many of them are located near
the center of the binding pocket). Nevertheless, consider-
ing that most binding site residues in natural proteins are
spatially proximate to each other and all of them are lo-
cated in the same binding pocket, correctly predicting one
or more binding site residues is sufficient to locate the bind-
ing pocket that can be used to guide small molecule dock-
ing and/or to assist wet-lab experimentalists in designing
mutagenesis experiment (30,31). In Supplementary Figure
S3, we show an illustrative example from the C-chain of
the GDPRan–NTF2 complex (PDB ID: 1a2k), where five
residues were predicted by COFACTOR as ligand-binding
sites and four of them were correct, resulting in an MCC =
0.723 for this case; while the fifth predicted residue is not
correct, it is nevertheless located near the binding pocket.

Figure 2C displays the precision values of COFAC-
TOR binding predictions versus the confidence score
(CscoreLBS), which demonstrates a strong correlation with
PCC = 0.99. This correlation data should help provide users
a quantitative estimation of their LBS predictions based on
CscoreLBS. For example, 62.6% of the binding sites are pre-
dicted correctly for the models with a CscoreLBS ≥0.5; if the
CscoreLBS cut-off is increased to ≥ 0.6, the average preci-
sion will increase to 72.9%. In our benchmark test, 232 out
of the 500 targets have a CscoreLBS ≥0.5 and 100 targets
have a CscoreLBS ≥ 0.6.

To further assess the significance of the ligand-binding
site predictions, we present in Supplementary Figure S4 the
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Figure 2. Calibration curves showing the precision of COFACTOR models versus the confidence score in each category of function annotation. (A) GO,
(B) EC and (C) Ligand-binding sites.

enrichment factor of binding site prediction by COFAC-
TOR at different CscoreLBS over a ‘naı̈ve pocket’ approach
in which ligand-binding sites are simply assigned by the
largest cavities in the protein structure, as identified using
Fpocket (32). The data shows a significantly higher accu-
racy of COFACTOR than the naı̈ve pocket detection ap-
proach. At CscoreLBS = 0.5, for example, the precision of
COFACTOR is 8.45 times higher than the naı̈ve pocketing
approach (Supplementary Figure S4).

WEB SERVER

Server input

The mandatory input for the web server is a single-chain
protein structure file for the query protein in PDB format.
If the input structure contains multiple chains or multiple
models, only the first chain of the first model will be parsed.
In the absence of an experimentally solved structure, the
user can use models generated by the online structure pre-
diction tools, such as I-TASSER (33,34), QUARK (35),
Rosetta (36), HHpred (37) or Phyre2 (38). The sequence of
query will be extracted from ‘SEQRES’ records of the PDB
file or ‘ATOM’ records if ‘SEQRES’ is absent. If the struc-
ture contains missing regions, users are encouraged to up-
load the full-length sequence separately using the ‘Advanced
Options’ section, which may help the sequence- and PPI-

based pipelines to generate more complete function predic-
tions.

Server output

Upon job completion, the user will be notified by email with
a link to the result page on the COFACTOR server web-
site. The result page has been substantially updated since
the original version of the COFACTOR server and consists
of four major panels, including structural analogies, GO
terms, EC numbers and ligand-binding sites; an example is
shown in Figure 3.

The first panel displays an ordered list of the top-ten anal-
ogous structures from the PDB library that are structurally
closest to the query protein. The structural superimposi-
tions are displayed in an interactive JSmol applet that al-
lows users to rotate and annotate the pictures (39). The
analogous template is shown together with the TM-score,
RMSD of aligned region, sequence identity, and query cov-
erage; and two links are given to the URL addresses for
downloading the PDB template structure and the super-
posed query/template models from TM-align, respectively.
By clicking on each of the radio buttons, the user can ex-
plore the JSmol applet of all different templates (Figure
3A).
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Figure 3. An illustration of the COFACTOR web server output consisting of four annotation panels. The example is from the Escherichia coli protein ysgA
(UniProt accession: P56262) with a structural model generated by I-TASSER (23). (A) Top 10 analogous structures that are structurally closest to the query
structure, displaying the structural similarity between ysgA and known hydrolases. (B) GO prediction results in three aspects of molecular function (MF),
biological process (BP) and cellular component (CC), which are consistent with UniProt annotation of ysgA as a putative carboxymethylene butenolidase
and EcoCyc (41) annotation as a predicted hydrolase. (C) EC prediction results from top-five enzyme homologous templates, suggesting carboxymethylene
butenolide hydrolase activity (EC 3.1.1.45) and directly predicting the enzyme’s active site. (D) Ligand-binding site prediction results from the top 10
homologous templates, including residues surrounding putative active sites that are in proximity to the ligand. The images are screen copied from the
COFACTOR example webpage (http://zhanglab.ccmb.med.umich.edu/COFACTOR/example/). Larger size copies of the images with a higher resolution
are listed in Supplementary Figures S5 and S6 in the Supplementary Data.

The second panel shows the consensus GO prediction re-
sults, with models for the MF, BP and CC aspects listed
separately (Figure 3B). The predicted GO terms are listed
alongside the CscoreGO and their common name. For each
of the three GO aspects, the predicted GO terms are plot-
ted together with their parent terms as a DAG, in which the
predicted GO terms are highlighted by a CscoreGO-specific
color code, with blue to red representing the terms with
CscoreGO from [0.4–0.5] to [0.9–1.0]. Since there are usually
multiple terms predicted for each target, only the confident
predictions with CscoreGO ≥0.5 are displayed, although the
full set of predictions is available for download. If none of
the GO terms has a CscoreGO ≥0.5, the GO terms with the
highest CscoreGO will be displayed.

The third panel shows the top-five EC number pre-
dictions, each associated with the template structure and
marked with predicted active sites that can be visualized in
an accompanying JSmol applet (Figure 3C). In addition,
the predicted EC number, the confidence score, TM-score
between query and template, RMSD of aligned region, se-
quence identity, query coverage and predicted active sites
are also listed for each model.

The last panel shows the ligand-binding site prediction
results. For each set of binding sites, the structure templates

are presented in order of descending confidence score, to-
gether with their TM-score, RMSD of aligned region, se-
quence identity, coverage and binding site residues. The po-
sitions of the ligand-binding site residues are highlighted in
the target structure and can be viewed and interpreted using
the JSmol applet (Figure 3D).

For every target protein, all prediction results are packed
in a tarball file named ‘result.tar.bz2′ that can be conve-
niently downloaded from the output page. Again, most of
the animation applets and DAG tree images were newly de-
veloped in this version, which should provide useful facili-
ties to help users better manipulate and interpret the results.

CONCLUSION

We report recent advancements made to the online CO-
FACTOR server for hybrid protein function annotations. In
general, the biological function of a protein can be intricate
and often contains multiple levels of categorizations. The
COFACTOR server focuses on the three most widely-used
and computationally amenable categories of function: GO,
EC number and ligand-binding sites. Compared with the
previous version of COFACTOR, which generated function
annotations purely based on structural homology transfer,
the updated server introduced several new pipelines built
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on sequence profile and PPI network information to en-
hance the accuracy and coverage of the structure-based
function predictions. Accordingly, new sources of function
templates, including sequence homologs and PPI partners,
have been incorporated into the default function library (Bi-
oLiP) of the COFACTOR server. Our large-scale bench-
mark tests have shown that the new composite pipelines can
generate function predictions with accuracy outperforming
the former version of COFACTOR, as well as many state-
of-the-art methods in the literature.

To facilitate the use and interpretation of the prediction
results, a confidence scoring system has been introduced
(as calibrated in Figure 2), which can help users to quan-
titatively estimate the accuracy of the predictions. Mean-
while, new DAG combined with animation software are in-
troduced to facilitate the viewing, analysis and manipula-
tion of the prediction models. These developments and up-
dates significantly enhance the accuracy and usability of
an already widely applied structure function service system
and will make it continue to be a powerful tool, powered by
new state of the art algorithms, both for rapid annotation of
uncharacterized proteins and for providing a starting point
to understand and further characterize targets that may be
identified in high-throughput experimental studies.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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