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Abstract

Motivation: Precise assessment of ligand bioactivities (including IC50, EC50, Ki, Kd, etc.) is essential

for virtual screening and lead compound identification. However, not all ligands have experimen-

tally determined activities. In particular, many G protein-coupled receptors (GPCRs), which are the

largest integral membrane protein family and represent targets of nearly 40% drugs on the market,

lack published experimental data about ligand interactions. Computational methods with the ability

to accurately predict the bioactivity of ligands can help efficiently address this problem.

Results: We proposed a new method, WDL-RF, using weighted deep learning and random forest,

to model the bioactivity of GPCR-associated ligand molecules. The pipeline of our algorithm con-

sists of two consecutive stages: (i) molecular fingerprint generation through a new weighted deep

learning method, and (ii) bioactivity calculations with a random forest model; where one unique-

ness of the approach is that the model allows end-to-end learning of prediction pipelines with input

ligands being of arbitrary size. The method was tested on a set of twenty-six non-redundant GPCRs

that have a high number of active ligands, each with 200–4000 ligand associations. The results

from our benchmark show that WDL-RF can generate bioactivity predictions with an average root-

mean square error 1.33 and correlation coefficient (r2) 0.80 compared to the experimental measure-

ments, which are significantly more accurate than the control predictors with different molecular

fingerprints and descriptors. In particular, data-driven molecular fingerprint features, as extracted

from the weighted deep learning models, can help solve deficiencies stemming from the use of

traditional hand-crafted features and significantly increase the efficiency of short molecular finger-

prints in virtual screening.

Availability and implementation: The WDL-RF web server, as well as source codes and datasets

of WDL-RF, is freely available at https://zhanglab.ccmb.med.umich.edu/WDL-RF/ for academic

purposes.
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1 Introduction

G protein-coupled receptors (GPCRs) are an important superfamily

of transmembrane proteins involved in various signal transduction

pathways. They play critical roles in many physiological processes

by binding with G proteins or arrestins to regulate downstream

activities (Miller and Lefkowitz, 2001). GPCRs are closely tied to

many human diseases, such as cancer and diabetes, and are the tar-

gets of approximately 40% of modern medical drugs (Overington

et al., 2006). Since many GPCRs are unstable or challenging to crys-

tallize (Tautermann, 2014), obtaining their three-dimensional (3D)

structures has remained challenging. At present, only a very small

portion of human GPCRs have 3D structures available in the PDB

(Berman et al., 2000; Zhang et al., 2015) (see also https://zhanglab.

ccmb.med.umich.edu/GPCR-EXP/). As a result, this lack of GPCR

structural information has proven to be a major barrier in a multi-

tude of virtual screening and rational drug design studies, particu-

larly those targeting GPCRs (Becker et al., 2004; Wootten et al.,

2013).

In general, drug discovery campaigns often start with the

screening of thousands to millions of chemical compounds against a

therapeutic target by biological high-throughput assays, where bio-

activities are typically measured by IC50, EC50, Ki and Kd values.

Subsequently, hits are chosen based on their activity and modified

to become stronger binders or more selective for their target

(Unterthiner et al., 2014). However, biological high-throughput

assays for screening compounds are usually time consuming and

labor intensive. Even worse, there is only a very small population of

‘available compounds’, and not all GPCR targets are suitable for dir-

ect high-throughput screening assays to obtain their bioactivities

interacting with compounds (Blum and Reymond, 2009). Thus, the

use of computationally based virtual screening has been imple-

mented as a complement to experimental efforts.

Virtual screening can be divided into structure-based and ligand-

based techniques (Cereto-Massagué et al., 2015). The structure-

based techniques perform compound screening by simulating

physical interaction between known compounds and a biomolecular

target, but they are only applicable if the 3D structure of the target

protein is available (Cereto-Massagué et al., 2015). On the other

hand, ligand-based techniques predict the activity of a compound on

a biomolecular target through known experimental data, where ma-

chine learning-based methods have found significant usefulness and

have been widely used in drug design (Cereto-Massagué et al., 2015;

Shang et al., 2017).

Many of the machine learning-based virtual screening methods

implement the high-throughput screening experiments using

approaches such as Bayesian statistical methods, nearest neighbor

methods, support vector machines and artificial neural network

(Unterthiner et al., 2014). In recent years, deep learning methods

have been particularly successful in several studies employing

ligand-based virtual screening and the generation of molecular fin-

gerprints. In 2012, for instance, Merck organized a Kaggle chal-

lenge, where participants developed machine learning models to

predict the bioactivities of ligands interacting with drug targets,

whereupon approaches using deep learning performed the best. In

2014, researchers from Johannes Kepler University of Austria and

Johnson & Johnson Pharmaceutical Research & Development

developed a deep learning-based virtual screening model and suc-

cessfully applied it to the benchmark containing more than 1200 tar-

gets and 1.3 M compounds (Unterthiner et al., 2014). In 2015,

Adams and coworkers designed a molecular fingerprint generation

method based on a convolutional neural network that operates dir-

ectly on graphs and applied it to the prediction of drug activity, mo-

lecular solubility and other properties (Duvenaud et al., 2015). Most

recently, Shang et al. proposed HybridSim-VS, which combines 2D

fingerprint and 3D shape-based methods for virtual screening, dem-

onstrating advantage of the combined method over the individual

approaches (Cereto-Massagué et al., 2015; Shang et al., 2017);

the web server of HybridSim-VS has access to more than 17 M

compounds.

The common strategy of machine learning-based virtual screen-

ing is to first use off-the-shelf software to compute the hand-crafted

features with fixed length, such as molecular fingerprints and mo-

lecular descriptors, and then to call standard machine learning meth-

ods to construct prediction models. The shortcoming of this strategy

is that the hand-crafted features to describe a compound are invari-

able and independent of its targets. More specifically, hand-crafted

features are data-independent, indicating that the semantic gap be-

tween the features and the bioactivities cannot be solved (Li et al.,

2016). In addition, the extraction of hand-crafted features usually

requires researchers to have an intimate understanding of their gen-

eration, limiting their popularization with the typical end user.

There are several types of molecular fingerprints, depending on

the method by which it is generated (Cereto-Massagué et al., 2015).

The main approaches consist of substructure keys-based finger-

prints, topological or path-based fingerprints and circular finger-

prints (Cereto-Massagué et al., 2015). In ligand-based virtual

screening, molecular fingerprints with good performance are usually

large in length. For example, Unterthiner et al. used an extended-

connectivity circular fingerprints (ECFP) vector of size 43 000, after

having removed rarely occurring features (Unterthiner et al., 2014).

Since the number of compounds to be used in virtual screening is

usually very large, the construction of effective virtual screening

models can be extremely time consuming and therefore difficult to

attain in real-life applications. Therefore, it is of utmost importance

to develop molecular fingerprints that are short and effective for use

in the virtual screening of drugs.

In commercial drug design, virtual screening results are accept-

able only if the prediction accuracy is high. Motivated by the success

of applying deep learning to virtual screening (Duvenaud et al.,

2015; Unterthiner et al., 2014), we proposed to develop a deep

learning algorithm designed to predict the bioactivities of ligands

that potentially interact with GPCRs. One difficulty with this task is

that the input to the model, a ligand, can be of arbitrary size.

Currently, deep learning pipelines can only handle inputs of a fixed

size. Our two-stage algorithm, WDL-RF, which combines a

weighted deep learning (WDL) and a random forest (RF) model,

allows end-to-end learning of prediction pipelines whose inputs are

of arbitrary size. Additionally, the molecular fingerprint generation

stage is comprised of a new weighted deep learning method, while

the bioactivity prediction stage utilizes a random forest model. The

results indicate that our algorithm, WDL-RF, achieves the best per-

formance in the prediction of ligand bioactivities in twenty-six
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human GPCR datasets, suggesting that our algorithm has a potential

application in drug development. Moreover, the data-driven mo-

lecular fingerprint features, which are generated using weighted

deep learning, solves the deficiencies of traditional hand-crafted fea-

tures and makes up for the insufficiencies stemming from the usage

of short molecular fingerprints in drug design.

There has been an unfortunate dearth of open-source code of vir-

tual screening software, as most have been developed into commer-

cial products. In this study, we provided three demo programs and

shared the source codes and data on our webserver for the benefit of

academic community. Since our approach is built on a general

method of ligand-based virtual screening, it is straightforward for

users to develop virtual screening models with these codes, for the

targets of their own interest. All the codes and database of WDL-

RF, together with an on-line server, are freely available at https://

zhanglab.ccmb.med.umich.edu/WDL-RF/.

2 Datasets and methods

2.1 Datasets
We first downloaded the 7tmrlist file, which contains 3052 G

protein-coupled receptors (GPCRs), from UniProt database (http://

www.uniprot.org/docs/7tmrlist) (Consortium, 2008). Then, a total

of 825 human GPCR proteins were acquired after parsing the

7tmrlist file. Next, we downloaded the ‘all interaction data file’

from GLASS database (http://zhanglab.ccmb.med.umich.edu/

GLASS/), which includes 519 051 unique GPCR-ligand interaction

entries (Chan et al., 2015). Subsequently, the 825 human GPCRs

were sorted by the number of interacting ligands they each had.

Twenty-six representative GPCRs, which have at least 200 ligands,

were selected as the experimental targets. These GPCRs cover four

GPCR families (A, B, C and F) and 13 subfamilies (see Table 1).

Many other subfamilies that have none or too few known ligands

are not included because no trustworthy models could be trained

due to the lack of sufficient samples; these include, for example, the

subfamily ‘Sensory receptors’ in Family A, ‘Adhesion receptors’ in

Family B, ‘Sensory receptors’ and ‘Orphan receptors’ in Family C

and others (Chan et al., 2015; Isberg et al., 2014).

All ligands of the GPCRs were reacquired from the CHEMBL

database (Gaulton et al., 2012) with the match term of ‘Assay

type¼B and Standard units¼nM and Confidence score � 5’, where

‘B’ means ‘binding’ assayed by in vitro experiments, except that all

ligands of five GPCRs, i.e. Q8TDU6, Q9HC97, P41180, Q14416

and Q99835 were directly collected from GLASS database (Chan

et al., 2015) with the match term of ‘Standard units¼nM’ due to

the satisfied number of samples. The canonical SMILES strings and

the target-associated bioactivities of these ligands were saved as ex-

perimental datasets. Since the value of the raw bioactivities of lig-

ands varies over a large range, we used the p-bioactivity throughout

this study; this is defined as �log10v, where v is the raw bioactivity

and can be measured using IC50, EC50, Ki, Kd, etc. (Cortes-Ciriano,

2016). In our experimental datasets, the range of p-bioactivity is

from -10 to 4, where the smaller the value is, the lower the activity

of the ligand will be. If a ligand has multiple p-bioactivity values,

the mean is adopted.

For each GPCR dataset, we added some control ligands to obtain

a more robust regression model for predicting the bioactivities of lig-

ands. The control ligands that do not interact with the target GPCR

were randomly chosen from the remaining subfamily-irrelevant

GPCR datasets, which is about 20% of that of the original ligands.

For the control ligands, the p-bioactivity is set to -10, which is

the upper bound of that of acting ligands. Table 1 gives the de-

tailed descriptions of the nineteen GPCR datasets used in the

present study.

2.2 Algorithm
WDL-RF operates by first generating molecular fingerprints from

the canonical smile string as the sole input through a novel weighted

deep learning (WDL), followed by bioactivity prediction using a ran-

dom forest (RF) regression model.

2.2.1 Molecular fingerprint generation by weighted deep learning

Figure 1 shows the feedforward structure of the WDL algorithm,

which is comprised of three parts of molecular fingerprint gener-

ation (I), weighted molecular fingerprint generation (II) and bio-

activity output (III). The molecular fingerprint generation consists of

multiple module units, each of which contains four layers, i.e.

sum pooling, convolution, convolution and sum pooling. The

weighted molecular fingerprint generation involves one layer, which

is weighted by the molecular fingerprints from each module unit.

The bioactivity output is made up of two fully connected layers.

Given the ligand molecular dataset D ¼ x1; y1ð Þ; . . . ; xn; ynð Þf g,
where xi i ¼ 1; . . . ; nð Þ denotes the ith ligand molecule which takes

as input the canonical SMILES string encoding of each molecule,

and yi represents its p-bioactivity. For the ligand molecule xi that

contains Ai atoms, we obtain the attribute vector mj j ¼ 1; . . . ;Aið Þ
of each atom using RDkit. The initial atom attributes concatenate a

one-hot encoding of the atom’s element, its degree, the number of

attached hydrogen atoms, and the implicit valence, and an aromati-

city indicator (Duvenaud et al., 2015).

Assume that the first part (I) of WDL contains L module units.

In the lth module unit, ma denotes the attribute vector of atom a,

and the attribute information of atom a and its neighboring atoms

were taken into consideration by

Ia ¼ ma þ
XNa

k¼1
mk (1)

where Na is the number of neighboring atoms.

The bond information is a concatenation of whether the bond

type was single, double, triple, or aromatic, whether the bond was

conjugated, and whether the bond was part of a ring (Duvenaud

et al., 2015). The bond information of atom a was involved by the

first convolution operation,

ma ¼ r IaBV
l

� �
(2)

where l 2 1;L½ �; V denotes the number of chemical bonds that atom

a links, V 2 1; 5½ �; the weight matrix BV
l is to imply the linked chem-

ical bond information; r �ð Þ denotes the Rectified linear unit (ReLU)

activation function,

r xð Þ ¼
0; if x < 0;

x; otherwise;

(
(3)

Then, we implement the second convolution operation by the weight

matrix Hl,

ca ¼ s maHlð Þ (4)
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Table 1. Descriptions of datasets used in this study

UniProt

ID

Gene

name

Protein name Family Subfamily # of

ligands

# of

controls

Clinical significance

P08908 HTR1A 5-Hydroxytryptamine

receptor 1A

A Aminergic receptors 2294 400 Blood pressure, heart rate, anti-

depressant, anxiolytic, schizo-

phrenia and Parkinson (Ito

et al., 1999)

P50406 HTR6 5-Hydroxytryptamine receptor 6 A Aminergic receptors 1421 300 Motor control, emotionality,

cognition and memory

(Woolley et al., 2004)

P08912 CHRM5 Muscarinic acetylcholine

receptor M5

A Aminergic receptors 369 71 Nervous system activity (Anney

et al., 2007)

P35348 ADRA1A Alpha-1A adrenergic receptor A Aminergic receptors 1027 200 Fight-or-flight response

P21917 DRD4 D(4) dopamine receptor A Aminergic receptors 1679 300 Neurological and psychiatric

conditions (Zhang et al., 2007)

Q9Y5N1 HRH3 Histamine H3 receptor A Aminergic receptors 2092 400 Cognitive disorders (Esbenshade

et al., 2008)

P30968 GNRHR Gonadotropin-releasing hormone

receptor

A Peptide receptors 1124 200 Hypogonadotropic hypogonad-

ism (Layman et al., 1998)

P24530 EDNRB Endothelin receptor type B A Peptide receptors 1019 200 Hirschsprung disease type 2

(Tanaka et al., 1998)

Q99705 MCHR1 Melanin-concentrating hormone

receptors 1

A Peptide receptors 2052 400 Appetite, anxiety and depression

(Rivera et al., 2008)

P35372 OPRM1 Mu-type opioid receptor A Peptide receptors 3828 700 Morphine-induced analgesia and

itching (Liu et al., 2011)

P46663 BDKRB1 B1 bradykinin receptor A Peptide receptors 452 90 Inflammatory responses (Souza

et al., 2004)

P35346 SSTR5 Somatostatin receptor type 5 A Peptide receptors 689 130 Inhibit the release of many hor-

mones and other secretory pro-

teins (Tulipano et al., 2001)

P21452 TACR2 Substance-K receptor A Peptide receptors 696 155 Anxiolytic and antidepressant

(Hanley and Jackson, 1987)

P30542 ADORA1 Adenosine receptor A1 A Nucleotide receptors 3016 600 Tachyarrhythmias, neonatal

medicine (Phillis, 1991)

Q99500 S1PR3 Sphingosine 1-phosphate

receptor 3

A Lipid receptors 317 63 Regulation of angiogenesis and

vascular endothelial cell func-

tion (Barthomeuf et al., 2006)

Q9Y5Y4 PTGDR2 Prostaglandin D2 receptor 2 A Lipid receptors 641 130 Allergy and inflammation

(Nantel et al., 2004)

P34995 PTGER1 Prostaglandin E2 receptor EP1

subtype

A Lipid receptors 236 45 Hyperalgesia (Kawahara et al.,

2001)

P51677 CCR3 C-C chemokine receptor type 3 A Protein receptors 781 160 Binds and responds to a variety

of chemokines (Choe et al.,

1996)

P48039 MTNR1A Melatonin receptor type 1A A Melatonin receptors 684 135 Circadian rhythm(Slaugenhaupt

et al., 1995)

Q8TDU6 GPBAR1 G-protein coupled bile acid

receptor 1

A Steroid receptors 1153 230 Suppression of macrophage func-

tions and regulation of energy

homeostasis by bile

acids(Wang et al., 2011)

Q8TDS4 HCAR2 Hydroxycarboxylic acid

receptor 2

A Alicarboxylic acid

receptors

271 55 Dyslipidemia(Hu et al., 2015)

Q9HC97 GPR35 G-protein coupled receptor 35 A Orphan receptors 1589 320 Brachydactyly mental retardation

syndrome(Shrimpton et al.,

2004)

P47871 GCGR Glucagon receptor B Peptide receptors 1129 220 Diabetes mellitus type 2 (Hager

et al., 1995)

P41180 CASR Extracellular calcium-sensing

receptor

C Ion receptors 940 190 Alzheimer’s disease, asthma(Kim

et al., 2014)

Q14416 GRM2 Metabotropic glutamate

receptor 2

C Amino acid receptors 1810 360 Hallucinogenesis

Q99835 SMO Smoothened homolog F Protein receptors 1523 300 Developmental disorders
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where l 2 1;L½ �; s �ð Þ denotes the softmax normalization which is

used to reduce the influence of extreme values or outliers in the data

without removing them,

s zð Þj ¼
ezjPK

k¼1 ezk

for k ¼ 1; . . . ;K (5)

Then, the molecular fingerprint generated by each module unit is ad-

justed by the sum pooling operation,

f ¼ f þ ca (6)

Szegedy et al. demonstrated that a combination of all layers

with their outputs into a single output vector forming the input

of the next stage has a beneficial effect in their deep convolutional

neural network architecture, GoogLeNet (Szegedy et al., 2015).

In this paper, the weighted molecular fingerprint F is

combined by weighting the molecular fingerprints obtained by

each module unit,

F ¼ r
XL

l¼1

W � fl

 !
(7)

where L is the number of module units and l 2 1;L½ �; W denotes

the weight matrix; and r �ð Þ represents the ReLU activation

function.

After obtaining the weighted molecular fingerprint, F,

the predicted bioactivity value of the ligand molecule xi is

calculated by two fully connected layers. Let pjm be the con-

nection weight between the jth neuron of the weighted mo-

lecular fingerprint layer and the mth neuron of the middle

layer, then

zm ¼ r
X

pjmFj

� �
(8)

Let Oms be the connection weight between the mth neuron of the

middle layer and the neuron(s) of the output layer, then

byi ¼ r
X

omszm

� �
(9)

where r �ð Þmeans the ReLU activation function.

After gaining the predicted p-bioactivity value byi, the optimiza-

tion problem we address is

min
h

1

2n

Xn

i¼1

yi � byið Þ2 þ k
2n

X
h

h2 (10)

where n is the number of ligands in the training dataset; yi and byi re-

spectively denote the real and predicted p-bioactivity of the ligand

xi; h represents all the weight parameters that need to be solved. The

first term is the regularized quadratic cost function, which penalizes

the deviation of estimated entries from the observations. The second

term is the regularization term to control the model complexity and

avoid overfitting, where k is the regularization parameter for balanc-

ing the loss function term and the regularization constraint term.

Given A dimensions for the attribute vector ma at each module

unit, a fingerprint length B, and M neurons in the middle layer, the

weight parameters h consist of BV
l 2 RA�A;Hl 2 RA�B;W 2 RB�B;

P 2 RB�M; and O 2 RM. Thus, the total number of parameters

optimized in all layers of the weighted deep learning is

‘A�A�LþA�B�LþB�BþB�MþM’.

The Adam algorithm is used to update all the weight parameters,

h, which is an algorithm for first-order gradient-based optimization

of stochastic objective functions, based on adaptive estimates of

lower-order moments (Kingma and Ba, 2014). Let f hð Þ be the ob-

jective function, i.e. Eq. (10), and with gt ¼ rhft hð Þ we denote the

gradient, i.e. the vector of partial derivatives of ft with respect to h

evaluated at timestep t. The algorithm updates exponential moving

averages of the gradient (mt) and the squared gradient (vt), where

the hyper-parameters b1 and b2 (2 0;1½ �) control the exponential

decay rates of these moving averages,

mt ¼ b1 �mt�1 þ 1� b1ð Þ � gt (11)

vt ¼ b2 � vt�1 þ 1� b2ð Þ � g2
t (12)

where g2
t indicates the elementwise square gt � gt.

The moving averages themselves are estimates of the 1st moment

(the mean) and the 2nd raw moment (the uncentered variance) of

the gradient. However, these moving averages are initialized as (vec-

tors of) 0s, leading to moment estimates that are biased towards

zero, especially during the initial time steps when the decay rates are

small (i.e. the b1 and b2 are close to 1) (Kingma and Ba, 2014).The

good news is that this initialization bias can be easily counteracted,

resulting in bias-corrected estimates bmt and bvt (Kingma and Ba,

2014),

bmt ¼
mt

1� bt
1

(13)

bvt ¼
vt

1� bt
2

(14)

where bt
1 and bt

2 are b1 and b2 to the power of t, respectively.

Finally, the weight parameters h are updated by

ht ¼ ht�1 �
a bmtffiffiffiffiffiffiffiffiffiffiffiffibvt þ e

p (15)

where a is the step size. In this paper, good default settings of hyper-

parameters are a ¼ 0:001;b1 ¼ 0:9; b2 ¼ 0:999 and e ¼ 10�8.

In the optimization process by the Adam algorithm, we adopt the

evaluation at random subsamples (minibatches) of data points where

100 samples are randomly selected in each round of iteration, and the

maximum number of iterations is set to 250. While training, the

popular regularization technique dropout (Srivastava et al., 2014)

Fig. 1. Feedforward structure of the proposed weighted deep learning algo-

rithm WDL. The algorithm consists of three parts: molecular fingerprint gen-

eration (I), weighted molecular fingerprint generation (II) and bioactivity

output (III). The characters highlighted in red represent the model parameters

that need to be updated
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is implemented by only keeping a neuron active with some probability

or setting it to zero otherwise, to avoid overfitting.

2.2.2 Predicting bioactivities of ligands by random forest

regression models

Random forest, which was first proposed by Breiman (2001), is an

ensemble of M decision trees. The Random forest model produces

M outputs Y1; . . . ;YMf g where YM is the prediction value for a lig-

and by the mth tree. Outputs of all trees are assembled to produce

one final prediction Y. For regression problems, Y is the average

value of the individual tree predictions.

Given data on a set of n ligands for training,

F1;Y1ð Þ; . . . ; Fn;Ynð Þf g where Fi i ¼ 1; . . . ; nð Þ is a vector of finger-

prints and Yi is the p-bioactivity value of ligands, the training pro-

cedure is as follows:

1. From the training data of n ligands, draw a bootstrap sample

dataset to produce n training examples by randomly sampling

with replacement from the training dataset;

2. For each bootstrap sample dataset, generate a tree with the fol-

lowing scheme: at each node, choose the best split among a ran-

domly selected subset of features. The tree is grown to the

maximum size (i.e. till no more splits are possible) and not

pruned back;

3. Repeat the above steps until M such trees are grown.

The prediction performance of the random forest regression

model is assessed by the so-called Out-Of-Bags (OOB) samples. On

average, each tree is grown using about 1� e�1 � 2=3 of the train-

ing ligands, leaving e�1 � 1=3 as OOB, indicating that 2/3 of the

elements are in the training dataset and the remaining 1/3 of them

are used for the test. The training and testing date sets are selected

by random sampling. The random forest regression models are

implemented in Python 2.7. The pseudocode of our proposed algo-

rithm WDL-RF is shown in Table 2.

2.3 Evaluation criterion
Root mean square error (RMSE) is a commonly used metric for eval-

uating regression models,

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

yi � byið Þ2
s

(16)

where yi and byi are the true and the predicted activity values, re-

spectively, and n is the number of ligands. The smaller the RMSE

value is, the better the model performance will be.

Correlation coefficient (r2) was used in evaluating the perform-

ance of the predictions in the Kaggle challenge on drug activity pre-

diction organized by Merck in 2012,

r2 ¼

Xn

i¼1
yi � �yð Þ byi � �by� �h i2

Xn

i¼1
yi � �yð Þ2

Xn

i¼1
byi � �by� �2

(17)

where yi is the known activity, �y is the mean of the known activity,byi is the predicted activity, �by is the mean of the predicted activity,

and n is the number of molecules in the dataset. The larger the r2

value is, the better the model performance will be.

To eliminate the effect of random selection, three sets of control

ligands were created for each GPCR dataset, and the regression

model for predicting bioactivities of ligands was built separately.

The mean of the performance among the three models was calcu-

lated and designated as the final result. Moreover, the Wilcoxon

signed-ranked test was implemented to compare the differences in

the performances of the compared methods and to determine

whether it was statistically significant.

3 Results and discussion

3.1 Comparison with short molecular fingerprints
We benchmarked WDL-RF with ten types of short molecular finger-

prints, which include the neural graph fingerprint, the MACCS fin-

gerprint, four kinds of ECFP fingerprints and four kinds of FCFP

fingerprints. The neural graph fingerprint (NGFP) is a short one

with continuous values, which is based on the molecular graph of

compounds and trained by the convolution neural network algo-

rithm (Duvenaud et al., 2015). The MACCS fingerprint is widely

used, with 166 bits, and covers most of the interesting chemical fea-

tures for drug discovery and virtual screening (Durant et al., 2002).

The Extended-Connectivity Fingerprints (ECFPs) are the most-

widely used molecular fingerprints, based on the Morgan algorithm

(Morgan, 1965), and specifically designed for the use in structure-

activity modeling (Rogers et al., 2010). In this study, we employ

four types of ECFPs including ECFP2, ECFP4, ECFP8 and ECFP10,

where the digits indicate the diameter of the fingerprints. The

Functional-Class Fingerprints (FCFPs) are a variation of ECFP,

which generates molecular fingerprints by determining whether an

atom is a hydrogen bond acceptor, a hydrogen bond donor, a cation,

an anion, an aromatic, or a halogen etc (Cereto-Massagué et al.,

2015). Here, we adopt four types of FCFPs, i.e. FCFP2, FCFP4,

FCFP8 and FCFP10, where the digits indicate the diameter. The

NGFP fingerprint was generated with a custom script, while the re-

maining nine molecular fingerprints were produced with RDKit.

The neural graph fingerprint (NGFP) is the only data-driven fea-

ture in all baseline molecular fingerprints, and its default dimension

Table 2. The pseudocode of WDL-RF

Algorithm WDL-RF

Inputs: the training dataset D ¼ fðx1; y1Þ; . . . ; ðxn; ynÞg
Outputs: model performance P ¼ fRMSE; r2;q2g

Process:

Stage1:

1: Initialization: BV
l ;Hlðl 2 ½1;L�;V 2 ½1; 5�Þ;W;P;O; f  0s; F  0s

2: Repeat:

3: Randomly sample a mini-batch of subset S from D

4: for ðxi; yiÞ 2 S

5: for each atom a in molecular xi

6: ma 2 RdkitðaÞ
7: for l ¼ 1 to L

8: for each atom a in molecular xi

9: Compute Ia by Eq.(1)

10: Compute ma by Eq.(2)

11: Compute ca by Eq.(4)

12: Obtain the molecular fingerprint fof each module unit by Eq.(6)

13: Obtain the weighted molecular fingerprintFby Eq.(7)

14: Predict p-bioactivity of ligands by Eq.(9)

15: Compute the loss function by Eq.(10)

16: UpdateBV
l ;Hl ;W;P;Oby Eq.(15)

17: Until stop criterion reached

18: Return: F ¼ fFign
i¼1

Stage2:

19: Construct random forest regression prediction models:

P ¼ Predictor (F, Y)
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is 50. To reach a fair comparison, the dimension of each type of mo-

lecular fingerprint is set to 50 except for the MACCS fingerprint

(Durant et al., 2002) with the fixed dimension of 166, and the same

random forest regression model is adopted for each type of molecu-

lar fingerprint.

In the experiments, the random forest regression method is used

for each type of molecular fingerprint to construct the models for

predicting the bioactivities of ligands. The parameters of random

forest, n_estimates and max_features, are respectively set to 100 and

sqrt(m), where m is the dimension of the molecular fingerprint.

In WDL-RF, the number of module units (L) is set to 4, and the

regularization parameter (i.e. k in Eq. 10) is set to e�2. As shown

from Table 3, WDL-RF is optimal on almost all GPCR datasets and

evaluation criteria.

Data-driven features have already replaced hand-crafted features

in speech recognition, machine vision and natural-language process-

ing (Duvenaud et al., 2015). In this paper, the proposed molecular

fingerprints (WDL) and the neural graph fingerprint (NGFP)

(Duvenaud et al., 2015) both contain data-driven features, which fill

in the semantic gap between the hand-crafted features of molecular

fingerprints and the bioactivities of ligands interacting with different

drug targets. The data shows that their performance is significantly

better than the nine types of molecular fingerprints which employ

hand-crafted features (Table 3).

It is also observed that, in most datasets, for each kind of ECFP

or FCFP fingerprints, when its diameter becomes larger, its perform-

ance instead decreases significantly. The reason is that, when the

diameter gets bigger, the number of possible substructures will grow

exponentially, but what we care about are short molecular finger-

prints with low and fixed number of dimensions. Thus, when the

diameter becomes larger, the missing substructure information will

increase dramatically, resulting in a significant decrease in the

performance.

3.2 Comparison with various molecular descriptors
Molecular descriptors can also be used as the features to build models

for predicting the bioactivities of ligands. Ten types of molecular de-

scriptors commonly used in virtual screening were compared with our

method. They include Charge descriptors, Connectivity descriptors,

Constitutional descriptors, E-state descriptors, Geary autocorrelation

descriptors, MOE-type descriptors, Moran autocorrelation descrip-

tors, Moreau-Broto autocorrelation descriptors, Topology descriptors

and Basak descriptors (Jie et al., 2015), all of which were generated

through the ChemoPy program (Cao et al., 2013). Their dimensions

are 25, 44, 30, 245, 32, 60, 32, 32, 35 and 21, respectively.

For each type of molecular descriptor, the strategy of building

random forest regression models is the same as that of our WDL-RF

algorithm. The experimental results are indicated in Table 4, which

shows that WDL-RF achieves the best performance on almost all

GPCR datasets and evaluation criterions (Table 4).

We found that the performance of random forest prediction

model based on our data-driven feature, i.e. the weighted deep

learning molecular fingerprint (WDL), is significantly better than

that based on hand-crafted molecular descriptors (Table 4), further

illustrating the contributions of data-driven features. Moreover,

comparable performance is achieved by all nine kinds of

hand-crafted molecular fingerprints (Table 3) and all ten types of

hand-crafted molecular descriptors (Table 4). For the molecular de-

scriptors, it is usually easier to get better performance by the usage

of longer one. For example, the E-state molecular descriptor (245 di-

mensions) or the MOE-type molecular descriptor (60 dimensions)

with the higher feature dimensions achieves the second best predict-

ive performance (Table 4).

3.3 Performance of molecular fingerprints from

different module units
The information extracted from different module units is distinct.

Figure 2 summarizes the comparison results of model performance

based on the molecular fingerprint generated by different module

units, where each model was built by random forest with the same

parameter configuration. The number of module units (L) of our

WDL-RF algorithm is set to 4, in which the 1st to 4th layers denote

respectively the models with the molecular fingerprint generated by

the first to the fourth module unit, while WDL represents the default

molecular fingerprint, i.e. the weighted molecular fingerprint of all

module units. It was observed that, for most targets, the model per-

formance increases as the number of the module units increases; this

is probably due to the fact that the molecular fingerprint from higher

module units can achieve a higher-level of semantic information

which helps to improve the predictive performance of models.

However, when we increase the number of module units beyond 4,

the results show that the performance slightly decreases (see data

listed in Supplementary Table S1), indicating that L¼4 represents

an approximately optimal setting for our modeling.

Overall, the performance of our weighted molecular fingerprint,

WDL, is better than that of each kind of molecular fingerprint from

different module units on almost all GPCR datasets and evaluation

criteria. The reason is probably that molecular fingerprints from dif-

ferent module units contain different information, and the weighted

molecular fingerprint combines the different information and there-

fore improves the predictive performance of models.

3.4 Effect of parameters
There are several parameters in WDL-RF which have been deter-

mined in our training datasets to be of critical importance. Here, we

examine how the performance of predicting ligand bioactivities is af-

fected by these parameters in our testing dataset.

The first key parameter of WDL-RF is the regression model,

where Neural Network (NN), Support Vector Regression (SVR) and

Random Forest (RF) were taken into consideration. The input of

each regression model is the default weighted deep learning (WDL)

molecular fingerprint. The optimal parameters of NN and SVR

models are obtained through a standard grid search method.

Figure 3A presents the dependence of performance of WDL-RF on

different regression models. Here, a lower RMSE or higher r2 value

indicates better model performance. The results show that the ran-

dom forest regression model is slightly better than the other two re-

gression models, i.e. NN and SVR, in most GPCR datasets and

evaluations (Fig. 3A). Thus, the random forest regression model was

adopted into our WDL-RF algorithm mainly due to its exceptional,

robust performance on different parameter values.

The influence of the parameters n_estimates and max_features of

random forest on the performance were examined in Figure 3B

and C, respectively, where n_estimates denotes the size of the deci-

sion trees growth in random forest, and max_features represents the

number of the randomly selected subset of features. The numerical

parameters for n_estimates were generated first, for which four al-

ternative values (50, 80, 100 and 120) are presented in Figure 3B.

Three alternative options are compared for the max_features param-

eter, which include all(m), sqrt(m) and log2(m), where m is the di-

mension of the molecular fingerprint, and all(m) means all

dimensions. Thus, there are in total seven options for the two
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Table 3. Comparison of various short molecular fingerprints

ECa GPCR MFPb

MACCS ECFP2 ECFP4 ECFP8 ECFP10 FCFP2 FCFP4 FCFP8 FCFP10 NGFP WDL

RMSE (#) P08908 1.85* 1.88* 1.97* 2.30* 2.41* 1.77* 1.98* 2.22* 2.25* 1.56 1.50

P50406 1.81* 1.90* 2.10* 2.54* 2.61* 1.83* 2.04* 2.39* 2.55* 1.60* 1.45

P08912 2.17* 2.15 2.33* 2.92* 3.13* 2.11 2.16 2.41* 2.84* 2.30* 2.14

P35348 2.20* 2.25* 2.58* 2.69* 3.01* 2.28* 2.06* 2.94* 2.77* 2.03* 1.72

P21917 2.08* 2.25* 2.41* 2.91* 3.27* 2.21* 2.47* 2.92* 3.02* 1.99* 1.76

Q9Y5N1 2.17* 2.46* 2.66* 3.23* 3.45* 2.17* 2.30* 3.03* 3.08* 1.62* 1.42

P30968 1.33* 1.53* 1.57* 2.10* 2.25* 1.49* 1.59* 1.89* 2.02* 1.23 1.21

P24530 1.32* 1.58* 1.73* 2.01* 2.16* 1.49* 1.67* 1.80* 1.92* 1.11* 1.04

Q99705 1.82* 1.92* 2.10* 2.48* 2.58* 1.80* 1.90* 2.28* 2.44* 1.41* 1.33

P35372 1.74* 1.87* 2.13* 2.47* 2.52* 1.80* 1.93* 2.24* 2.45* 1.53 1.51

P46663 2.19* 2.29* 2.67* 3.42* 3.39* 2.49* 2.46* 2.93* 3.25* 2.33* 1.77

P35346 1.53* 1.70* 2.00* 2.21* 2.21* 1.37* 1.57* 2.28* 2.01* 1.18* 1.13

P21452 2.36* 2.50* 2.42* 2.75* 3.14* 2.46* 2.27* 2.67* 2.85* 2.07* 1.86

P30542 1.14* 1.45* 1.79* 2.07* 2.21* 1.30* 1.49* 1.86* 1.96* 1.00 0.96

Q99500 1.29* 1.78* 1.88* 2.23* 2.44* 1.67* 1.92* 2.02* 2.06* 1.33* 1.02

Q9Y5Y4 1.41* 1.70* 1.74* 2.41* 2.54* 1.48* 1.78* 2.08* 2.35* 1.46* 1.28

P34995 2.00* 2.12* 2.11* 2.76* 3.28* 3.10* 2.45* 2.59* 2.91* 2.06* 1.70

P51677 1.57* 1.64* 2.00* 2.29* 2.52* 1.90* 1.75* 2.11* 2.51* 1.41* 1.15

P48039 1.65 1.72 2.06* 2.38* 2.53* 1.60 1.79 2.25* 2.32* 1.84* 1.69

Q8TDU6 0.99* 1.37* 1.25* 1.81* 2.00* 1.41* 1.13* 1.37* 1.88* 0.87 0.87

Q8TDS4 1.37 1.45 2.61* 3.15* 3.00* 2.03* 2.12* 2.93* 2.94* 1.59 1.52

Q9HC97 1.22* 1.31* 1.36* 1.47* 1.65* 1.41* 1.46* 1.22* 1.40* 1.39* 0.85

P47871 1.17* 1.56* 1.71* 2.47* 2.51* 1.49* 1.54* 2.08* 2.25* 1.06 1.05

P41180 1.08* 1.28* 1.34* 2.07* 2.16* 1.31* 1.10* 1.44* 1.90* 1.16* 0.76

Q14416 1.08* 1.23* 1.42* 1.81* 1.91* 1.12* 1.42* 1.88* 1.70* 1.05* 0.81

Q99835 1.25* 1.48* 1.44* 2.31* 2.12* 1.43* 1.08 1.61* 1.73* 1.11 1.01

r2 (") P08908 0.58* 0.56* 0.53* 0.29* 0.22* 0.61* 0.51* 0.37* 0.33* 0.67 0.70

P50406 0.68* 0.68* 0.60* 0.37* 0.33* 0.70* 0.64* 0.48* 0.38* 0.75 0.79

P08912 0.46 0.49 0.40* 0.18* 0.14* 0.53 0.53 0.38* 0.20* 0.47 0.47

P35348 0.61* 0.54* 0.43* 0.37* 0.29* 0.57* 0.59* 0.29* 0.38* 0.65* 0.70

P21917 0.54* 0.44* 0.40* 0.21* 0.12* 0.51* 0.42* 0.25* 0.18* 0.59* 0.66

Q9Y5N1 0.66* 0.55* 0.47* 0.28* 0.20* 0.64* 0.60* 0.36* 0.35* 0.80 0.83

P30968 0.85 0.82 0.80* 0.60* 0.52* 0.82 0.80* 0.72* 0.64* 0.85 0.86

P24530 0.80* 0.71* 0.62* 0.44* 0.31* 0.73* 0.69* 0.59* 0.48* 0.82 0.85

Q99705 0.69* 0.69* 0.64* 0.40* 0.32* 0.69* 0.71* 0.53* 0.42* 0.80 0.82

P35372 0.67* 0.62* 0.50* 0.29* 0.26* 0.64* 0.59* 0.43* 0.30* 0.73 0.74

P46663 0.71* 0.66* 0.53* 0.27* 0.17* 0.60* 0.62* 0.45* 0.34* 0.66* 0.78

P35346 0.74* 0.69* 0.58* 0.50* 0.48* 0.80* 0.73* 0.45* 0.56* 0.85 0.86

P21452 0.53 0.44* 0.59* 0.31* 0.16* 0.48* 0.55* 0.41* 0.36* 0.66 0.70

P30542 0.83 0.75* 0.58* 0.35* 0.23* 0.75* 0.71* 0.50* 0.43* 0.84 0.86

Q99500 0.80* 0.52* 0.51* 0.45* 0.35* 0.60* 0.48* 0.47* 0.38* 0.82* 0.87

Q9Y5Y4 0.84 0.74* 0.75* 0.52* 0.44* 0.81* 0.73* 0.60* 0.52* 0.82 0.86

P34995 0.56* 0.52* 0.45* 0.26* 0.50* 0.54* 0.35* 0.27* 0.17* 0.54* 0.64

P51677 0.76* 0.72* 0.58* 0.50* 0.43* 0.65* 0.69* 0.56* 0.40* 0.80* 0.86

P48039 0.75 0.75 0.56* 0.53* 0.44* 0.74 0.67 0.52* 0.51* 0.74 0.72

Q8TDU6 0.88 0.77* 0.82* 0.60* 0.51* 0.76* 0.85 0.77* 0.58* 0.91 0.92

Q8TDS4 0.86 0.84 0.44* 0.22* 0.32* 0.65* 0.67 0.25* 0.21* 0.76 0.77

Q9HC97 0.77* 0.72* 0.70* 0.64* 0.56* 0.70* 0.67* 0.75* 0.68* 0.72* 0.89

P47871 0.87 0.78* 0.73* 0.47* 0.43* 0.80* 0.77* 0.58* 0.50* 0.89 0.90

P41180 0.86 0.81* 0.77* 0.51* 0.47* 0.81* 0.86 0.76* 0.59* 0.85* 0.93

Q14416 0.86 0.82* 0.78* 0.62* 0.60* 0.86 0.80* 0.66* 0.69* 0.88 0.92

Q99835 0.85 0.79* 0.80* 0.51* 0.58* 0.81* 0.89 0.76* 0.71* 0.89 0.90

aEvaluation Criterion: " (#) indicates the larger (smaller), the better the model performance; the best results on each evaluation criterion are highlighted

in boldface.
bMolecular Fingerprints: * indicates the performance of the compared short molecular fingerprint is significantly worse than that of WDL based on Wilcoxon

signed-ranked test.
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Table 4. Comparison of various molecular descriptors

ECa GPCR MDb

Charge Connect Constitut E-state Geary MOE Moran MB Topology Basak WDL

RMSE (#) P08908 1.90* 1.97* 2.10* 1.79* 2.20* 1.86* 2.19* 1.99* 2.09* 2.28* 1.50

P50406 1.88* 2.04* 1.93* 1.74* 2.27* 1.78* 2.33* 2.14* 2.09* 2.40* 1.45

P08912 2.15 2.19* 2.00* 1.87* 2.30* 1.85 2.48* 2.11 2.25* 2.32* 2.14

P35348 2.36* 2.36* 2.28* 2.16* 2.49* 2.10* 2.47* 2.31* 2.37* 2.78* 1.72

P21917 2.13* 2.13* 2.16* 1.95* 2.43* 1.92* 2.40* 2.17* 2.09* 2.22* 1.76

Q9Y5N1 1.99* 2.18* 2.02* 1.74* 2.58* 2.04* 2.51* 2.31* 2.13* 2.58* 1.42

P30968 1.67* 1.69* 1.68* 1.37* 1.88* 1.49* 1.86* 1.79* 1.86* 1.92* 1.21

P24530 1.23* 1.54* 1.45* 1.20* 1.70* 1.38* 1.62* 1.52* 1.58* 1.95* 1.04

Q99705 1.95* 2.08* 1.95* 1.55* 2.16* 1.62* 2.36* 2.13* 2.05* 2.58* 1.33

P35372 1.96* 2.05* 1.98* 1.79* 2.28* 1.87* 2.19* 2.18* 2.12* 2.32* 1.51

P46663 2.10* 2.33* 2.24* 1.70 2.44* 1.86* 2.28* 2.54* 2.28* 2.88* 1.77

P35346 1.64* 1.64* 1.59* 1.35* 2.08* 1.44* 1.92* 1.98* 1.77* 1.76* 1.13

P21452 2.02* 2.17* 2.11* 1.96* 2.08* 1.93 2.22* 2.22* 2.28 2.25 1.86

P30542 1.31* 1.66* 1.44* 1.21* 2.01* 1.24* 2.00* 1.85* 1.86* 1.87* 0.96

Q99500 1.46* 1.51* 1.38* 1.37* 1.48* 1.39* 1.54* 1.36* 1.54* 1.55* 1.02

Q9Y5Y4 1.53* 2.02* 1.64* 1.46* 2.02* 1.71* 2.03* 2.18* 1.94* 2.42* 1.28

P34995 1.73 2.18* 1.86* 1.72 1.69* 1.66 1.73 1.90* 2.02* 2.28* 1.70

P51677 1.66* 1.82* 1.74* 1.56* 2.03* 1.54* 2.04* 2.05* 2.04* 2.05* 1.15

P48039 1.67 1.71 1.71 1.56 2.15* 1.63 2.09* 1.79 1.67 2.07* 1.69

Q8TDU6 1.36* 1.36* 1.63* 1.24* 1.59* 1.24* 1.64* 1.57* 1.85* 1.76* 0.87

Q8TDS4 1.27 2.21* 1.76* 1.57 2.29* 1.57 2.05* 2.38* 2.12* 2.64* 1.52

Q9HC97 1.07* 1.29* 1.07* 1.07* 1.36* 1.01* 1.24* 1.21* 1.22* 1.17* 0.85

P47871 1.25* 1.56* 1.37* 1.08 1.52* 1.17* 1.50* 1.96* 1.59 1.94 1.05

P41180 1.31* 1.51* 1.33* 1.50* 2.00* 1.45* 1.97* 1.68* 1.84* 1.86* 0.76

Q14416 1.22* 1.50* 1.40* 1.13* 1.59* 1.11* 1.55* 1.54* 1.34* 1.62* 0.81

Q99835 1.18* 1.28* 1.25* 1.06 1.44* 1.15* 1.59* 1.16* 1.39* 1.56* 1.01

r2 (") P08908 0.53* 0.46* 0.41* 0.60* 0.35* 0.56* 0.34* 0.45* 0.41* 0.29* 0.70

P50406 0.66* 0.58* 0.63* 0.71* 0.50* 0.69* 0.46* 0.55* 0.56* 0.43* 0.79

P08912 0.48 0.45 0.56* 0.65* 0.41* 0.67* 0.31* 0.49 0.43* 0.39* 0.47

P35348 0.45* 0.46* 0.52* 0.59* 0.40* 0.61* 0.42* 0.47* 0.45* 0.24* 0.70

P21917 0.49* 0.50* 0.48* 0.60* 0.35* 0.61* 0.36* 0.47* 0.52* 0.47* 0.66

Q9Y5N1 0.68* 0.65* 0.70* 0.79 0.47* 0.69* 0.50* 0.58* 0.56* 0.55* 0.83

P30968 0.74* 0.72* 0.73* 0.84 0.68* 0.81 0.70* 0.68* 0.66* 0.63* 0.86

P24530 0.81 0.68* 0.73* 0.84 0.63* 0.76* 0.64* 0.70* 0.68* 0.47* 0.85

Q99705 0.61* 0.56* 0.60* 0.78 0.54* 0.75* 0.43* 0.53* 0.55* 0.30* 0.82

P35372 0.56* 0.52* 0.55* 0.65* 0.41* 0.62* 0.46* 0.45* 0.49* 0.38* 0.74

P46663 0.69* 0.62* 0.64* 0.82 0.57* 0.80 0.67* 0.53* 0.63* 0.37* 0.78

P35346 0.71* 0.70* 0.71* 0.83 0.52* 0.79* 0.60* 0.57* 0.64* 0.66* 0.86

P21452 0.59* 0.53* 0.57* 0.63* 0.61* 0.63* 0.54* 0.48* 0.46* 0.47* 0.70

P30542 0.74* 0.58* 0.68* 0.79* 0.37* 0.78* 0.39* 0.47* 0.47* 0.45* 0.86

Q99500 0.66* 0.66* 0.73* 0.73* 0.67* 0.71* 0.62* 0.70* 0.65* 0.61* 0.87

Q9Y5Y4 0.80* 0.62* 0.76* 0.83 0.62* 0.72* 0.62* 0.53* 0.65* 0.42* 0.86

P34995 0.56* 0.35* 0.52* 0.61 0.59* 0.66 0.60* 0.49* 0.44* 0.26* 0.64

P51677 0.72* 0.66* 0.69* 0.78* 0.61* 0.79* 0.60* 0.53* 0.56* 0.47* 0.86

P48039 0.72 0.73 0.73 0.80 0.53* 0.77 0.54* 0.69 0.73 0.54* 0.72

Q8TDU6 0.83 0.84 0.73* 0.86 0.71* 0.87 0.70* 0.78* 0.62* 0.66* 0.92

Q8TDS4 0.86 0.50* 0.71 0.77 0.52* 0.77 0.60* 0.42* 0.54* 0.28* 0.77

Q9HC97 0.84 0.76* 0.84 0.85 0.77* 0.83 0.82 0.79* 0.79* 0.80* 0.89

P47871 0.85* 0.81* 0.84* 0.90 0.79* 0.88 0.79* 0.64* 0.75* 0.64* 0.90

P41180 0.85 0.76* 0.87 0.83* 0.61* 0.84 0.63* 0.73* 0.65* 0.61* 0.93

Q14416 0.85 0.76* 0.80* 0.88 0.80* 0.89 0.80* 0.76* 0.82 0.72* 0.92

Q99835 0.87 0.85 0.86 0.92 0.86 0.89 0.83 0.88 0.83 0.81* 0.90

aEvaluation Criterion: " (#) indicates the larger (smaller), the better the model performance; the best results on each evaluation criterion are highlighted

in boldface.
bMolecular Descriptors: Charge: Charge descriptors; Connect: Connectivity descriptors; Constitut: Constitutional descriptors; Estate: E-state descriptors;

Geary: Geary autocorrelation descriptors; MOE: MOE-type descriptors; Moran: Moran autocorrelation descriptors; MB: Moreau-Broto autocorrelation descrip-

tors; Topology: Topology descriptors; Basak: Basak descriptors. * indicates the performance of the compared molecular descriptor is significantly worse than that

of WDL based on Wilcoxon signed-ranked test.

WDL-RF 2279

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/34/13/2271/4844128 by U
niversity of M

ichigan user on 05 Septem
ber 2018



parameters that were optimized in random forest. The results in

Figure 3 indicate that the parameter n_estimates has little effect on

model performance, the default value of which was set to 100 in

WDL-RF.

A similar situation occurred for the parameter max_features

(Fig. 3C), so the default configuration for max_features was set to

sqrt(m) in WDL-RF.

3.5 Code usage
We have developed three demo programs for different applications

in ligand-based virtual screening, with the source codes and datasets

released through https://zhanglab.ccmb.med.umich.edu/WDL-RF/.

The code for WDL-RF was written in Python 2.7, which can easily

be implemented across multiple platforms, including Windows 10

and Linux. The pipelines have three major functions.

(1) demo_new: This provides a general framework on ligand-

based virtual screening, and it is easy for users to develop their own

virtual screening tools for drug targets of their choice on the basis of

our code. Input: Compounds in the format of canonical SMILES

and their bioactivity values. Output: Model performance (RMSE,

r2). The procedure is as follows: To input compounds in the format

of canonical SMILES and their bioactivity values !To train the

weighted deep learning model !To get the weighted molecular fin-

gerprints!To construct random forest regression models! To ob-

tain the model performance.

(2) demo_activity: This offers the ligand-based virtual screening

models of nineteen important human GPCR drug targets, and users

can predict the bioactivities of new compounds acting with these

targets, which is important in implementations of drug design

against these drug targets, the prediction of side effects of multi-

target drugs, and the risk assessment of drug development. Input:

Compounds in the format of canonical SMILES. Output: Bioactivity

values interacting with these GPCR drug targets. The steps are as

follows: To input compounds in the format of canonical SMILES

!To get the weighted molecular fingerprints by our trained

weighted deep learning models !To obtain the bioactivity values

based on our trained random forest models.

(3) demo_fp: Users can obtain multiple types of short molecular

fingerprints for a compound, which can be used in compound simi-

larity search, pharmacophore search and bioactivity prediction.

Input: Compounds in the format of canonical SMILES. Output:

Molecular fingerprints. The steps are as follows: To input com-

pounds in the format of canonical SMILES !To obtain molecular

fingerprints based on our trained weighted deep learning models.

For all 26 GPCR drug targets, five types of short molecular finger-

prints are produced for a compound. Therefore, a total 130

Fig. 3. Dependence of WDL-RF performance on (A) regression models, (B) the parameter n_estimates and (C) max_features of random forest. The x-axis denotes

the different GPCR datasets, i.e. P1: P08908; P2: P50406; P3: P08912; P4: P35348; P5: P21917; P6: Q9Y5N1; P7: P30968; P8: P24530; P9: Q99705; P10: P35372; P11:

P46663; P12: P35346; P13: P21452; P14: P30542; P15: Q99500; P16: Q9Y5Y4; P17: P34995; P18: P51677; P19: P48039; P20: Q8TDU6; P21: Q8TDS4; P22: Q9HC97;

P23: P47871; P24: P41180; P25: Q14416; P26: Q99835

Fig. 2. Performance of molecular fingerprints from different module units.

The 1st to 4th respectively denote the molecular fingerprint generated by the

first to the fourth module unit of WDL-RF. The WDL is the default molecular

fingerprint used in this study, i.e. the weighted molecular fingerprint of all

module units. The x-axis denotes the different GPCR datasets, i.e. P1: P08908;

P2: P50406; P3: P08912; P4: P35348; P5: P21917; P6: Q9Y5N1; P7: P30968; P8:

P24530; P9: Q99705; P10: P35372; P11: P46663; P12: P35346; P13: P21452; P14:

P30542; P15: Q99500; P16: Q9Y5Y4; P17: P34995; P18: P51677; P19: P48039;

P20: Q8TDU6; P21: Q8TDS4; P22: Q9HC97; P23: P47871; P24: P41180; P25:

Q14416; P26: Q99835
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(¼26�5) kinds of different molecular fingerprints will be generated

for each compound, where ‘26’ means twenty-six GPCR drug tar-

gets used in this paper and ‘5’ is the number of fingerprint types.

It should be mentioned that the training of WDL-RF has taken

the standard SMILES strings as input, which does not distinguish

the structural difference of ‘stereoisomer’ ligands that have the same

molecular formula and bonding sequence but differ in the 3D orien-

tations of their atoms in space. Therefore, the current version of

WDL-RF cannot deal with the stereoisomerism problem. However,

since the pipeline is built on a multi-fold training platform, in which

the bioactivity and structure information of stereoisomers can be

conveniently integrated, it has the potential to include the specificity

of stereoisomers in the model construction. The work on this issue is

currently in progress.

4 Conclusions

Accurate determination of ligand bioactivities is essential for virtual

screening and lead compound identification. Inspired by the success

of deep learning on virtual screening, a novel method, WDL-RF,

was developed to predict the bioactivities of GPCR-associated lig-

and molecules.

The algorithm of WDL-RF is comprised of two steps: (i) molecu-

lar fingerprint generation through a new weighted deep learning

and, (ii) bioactivity prediction by a random forest model; this allows

end-to-end learning of prediction pipelines whose input ligand can

be of arbitrary size. Large-scale benchmark tests show that

WDL-RF can generate high-accuracy bioactivity predictions with an

average root-mean square error (RMSE) of 1.33 and a correlation

coefficient (r2) of 0.80, which are significantly better than that from

several control predictors benchmarked. Moreover, the data-driven

molecular fingerprint features, extracted from our weighted deep

learning, can help solve the deficiency of traditional hand-crafted

features and make up for the insufficiency of short molecular finger-

prints in drug design.

The source codes and databases of WDL-RF have been made

freely available through our dedicated web server, where users can

use the package to predict bioactivities of compounds against a

GPCR target or generate molecular fingerprints for new compounds

acting with these known GPCR drug targets, as well as to develop

their own virtual screening models for their drug targets of choice

on the basis of the developed general learning framework.

Overall, deep learning is slowly coming to fruition in various

quantitative biomedical investigations. This study demonstrated a

novel application of the deep learning approach to ligand bioactivity

prediction, in addition to that of other domains of virtual screening

experiments, including materials design and organic photovoltaic ef-

ficiency (Duvenaud et al., 2015).
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