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Underestimation-Assisted Global-Local Cooperative
Differential Evolution and the Application
to Protein Structure Prediction

Xiao-Gen Zhou

Abstract—Various mutation strategies show distinct advan-
tages in differential evolution (DE). The cooperation of multiple
strategies in the evolutionary process may be effective. This
article presents an underestimation-assisted global and local
cooperative DE to simultaneously enhance the effectiveness and
efficiency. In the proposed algorithm, two phases, namely, the
global exploration and the local exploitation, are performed in
each generation. In the global phase, a set of trial vectors is pro-
duced for each target individual by employing multiple strategies
with strong exploration capability. Afterward, an adaptive under-
estimation model with an self-adapted slope control parameter
is proposed to evaluate these trial vectors, the best of which is
selected as the candidate. In the local phase, the better-based
strategies guided by individuals that are better than the tar-
get individual are designed. For each individual accepted in the
global phase, multiple trial vectors are generated by using these
strategies and filtered by the underestimation value. The cooper-
ation between the global and local phases includes two aspects.
First, both of them concentrate on generating better individuals
for the next generation. Second, the global phase aims to locate
promising regions quickly while the local phase serves as a local
search for enhancing convergence. Moreover, a simple mecha-
nism is designed to determine the parameter of DE adaptively in
the searching process. Finally, the proposed approach is applied
to predict the protein 3-D structure. The experimental studies
on classical benchmark functions, CEC test sets, and protein
structure prediction problem show that the proposed approach
is superior to the competitors.
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I. INTRODUCTION

IFFERENTIAL evolution (DE), proposed by Storn and

Price [1], is a powerful and popular evolutionary
algorithm (EA) for global optimization. Over the past two
decades, DE has elicited considerable attention because of its
effectiveness and efficiency. Various DE variants have been
developed to solve a wide range of complex optimization
problems in diverse scientific and engineering fields, such
as flow shop scheduling [2], protein structure prediction
(PSP) [3], power systems [4], and robust design [5]. Many
other applications and improved DE approaches can be found
in [6]-[8].

Similar to other EAs, DE simulates the biological
evolutionary process through mutation, crossover, and selec-
tion operators to evolve the initial population to the global
optimal solution. Amongst these operators, the mutation oper-
ator, which helps to explore the search space by perturb-
ing individuals, substantially influences the performance of
DE [9], [10]. Many different mutation strategies, such as
ranking-based [11], triangular [12], centroid-based [13], and
neighborhood mutations [14], have been proposed to enhance
the search capability of DE. However, each of these muta-
tion strategies seems to be suitable for different tasks. Some
of them (e.g., rand-based mutation strategies) are effective in
exploring search spaces, whereas others (e.g., strategies that
use the best solution found so far) have strong exploitation
capability. The exploration can help the algorithm to find
the promising solution regions with good population diver-
sity, whereas exploitation can enhance the convergence speed
to find the optimal solution by executing the local search
in the promising solution regions [15]. Therefore, coopera-
tion between the mutation strategies with superior exploration
capability and those that have good exploitation capability will
improve the effectiveness and efficiency of DE.

Many approaches have been developed to improve the
performance of DE by the cooperation of different muta-
tion strategies. These algorithms can be roughly classified
into three categories: 1) individual-specific strategy tech-
niques; 2) evolutionary stage-specific strategy techniques; and
3) subpopulation-specific strategy techniques. Methods in the
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first category aim to adaptively select mutation strategies
for each individual from the strategy pool. The self-adaptive
DE (SaDE) [16], DE with individual-dependent mechanism
(IDE) [15], DE with ensemble of mutation strategies and
parameters (EPSDE) [17], DE with strategy adaptation mech-
anism (SaM) [10], and DE with adaptive strategy selec-
tion [18] can be considered to belong to the first category.
For methods in the second category, such as DE with zon-
ing evolution of control parameters and adaptive mutation
strategies (ZEPDE) [19], two-phase DE [20], abstract convex
underestimation-assisted multistage DE (UMDE) [13], SaDE
with discrete mutation control parameters [21], and DE with
multistage strategies [22], divide the entire searching process
into multiple stages and select suitable mutation strategies
for each stage. Methods in the last category enhance the
search capability of DE by utilizing various mutation strate-
gies in different subpopulations. These methods include DE
with self-adaptive multioperator [23], [24], DE with hybrid
strategies and self-adaptive parameters [25], DE with role
assignment [26], DE with multipopulation-based ensemble of
mutation strategies [27], and SaDE with more strategies [28].
The experimental results have verified that the above methods
can enhance the performance of DE.

In this article, an underestimation-assisted global and local
cooperative DE (GLCDE) is proposed to further enhance the
search capability of DE. To obtain an accurate underestima-
tion of the objective function, an adaptive underestimation
model is designed on the basis of the abstract convexity
theory [29], [30], in which the slope control factor of the
supporting vectors [31] is dynamically updated based on the
evaluated trial individual. According to the underestimation,
a global exploration phase and a local exploitation phase
are performed for each generation. In the global exploration
phase, multiple trial vectors are generated by several different
explorative mutation strategies to explore diverse promising
solution regions quickly. Subsequently, the underestimation of
the objective function is calculated to select one candidate
amongst the trial vectors. In the local phase, three new better-
based mutation strategies that use the individuals better than
the target individual are designed to balance the convergence
speed and population diversity. Through these strategies, a set
of trial vectors is produced for each accepted individual in the
global phase and then filtered by their underestimation values.
Additionally, a parameter adaption method is also utilized to
automatically determine the parameters of DE in the evolution-
ary process. The proposed GLCDE is tested on the classical
benchmark functions, CEC 2013, 2014, and 2017 test sets,
and a real-world case. The experimental results indicate that
GLCDE is superior to the compared advanced DE variants for
most of the cases.

II. BACKGROUND INFORMATION

Without loss of generality, in this article, a single objective
optimization problem is defined as follows:

Minimize f(x), x € Q (D

where 2 represents the feasible region of the search space
and x = (x1,xp, ..., xD)T is a D-dimensional decision vector.

Each variable x; is limited in the range [L;, U;], where L; and
U; denote the lower and upper bounds of x;, respectively.

A. Classical DE Algorithm

1) Initialization: Denote the ith individual in the gth gener-
ation as xf = (xfl,xf’z, R x‘;”D), and its initial value at g = 0
can be generated by

2

where rand(0, 1) is a uniform distributed random number
between 0 and 1. By generating NP(NP > 4) individuals
according to (2), we can get the initial population P? =
{x(l), xg, . ,x%P} with NP individuals.

2) Mutation: Each individual x‘ig in the current generation
is regarded as the target vector, and a new individual called

mutant vector can be created by

X =Lj+rand(0,1) - (Uj— L),j=1,2,....D

vf = x§ + Fxf, —x3) 3)
where ry, r, and r3 are mutually different indices randomly
selected from the range {1, ..., NP}, and none of them are

equal to i; F is the scaling factor within the range (O, 1].
Some other widely used mutation strategies are given in the
supplementary material.

3) Crossover: The mutant vector is recombined with the
corresponding target vector to produce a trial vector uf’ .
This process can be implemented by using the exponential
recombination [32] or binomial recombination. The binomial

recombination which is mostly used can be formulated as

¢ _ [ vij if rand(0,1) < CR or j = jrand
W . @)
LJ X j» otherwise
where j = 1,2, ..., D, and CR € [0, 1] is the crossover rate.
Jrand 18 a random integer selected from {1, 2, ..., D}.

4) Selection: The selection operator picks the better one

from xf and uf?' to enter the next generation. It can be

described as
if f@f) <fef)

g+1
X5 :
otherwise.

8
=%
1 xS

i

&)

B. Underestimation Model

Abstract convex analysis indicates that every noncon-
vex function is the upper envelope of its affine mino-
rants [30], [33]. With use of subdifferential-based [34] sup-
porting functions to replace the affine minorants, a lower
bound (underestimation) of the objective function can be
achieved from below based on a set of supporting functions
of the given points.

In DE and other population-based algorithms, each indi-
vidual in the population is regarded as a given point and the
underestimation of the objective problem can be constructed
by the supporting functions of all individuals. The supporting
function of a individual x{ can be defined as follows:

B o) = min(fef) — MG ) ©)

where J = {1,2,....D+1}, x| = 1-Y2 xf is a slack

variable to simplify the supporting function, and M is the slope
control parameter of the supporting function [34].
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Fig. 1. Tllustration of the underestimation, where (a) and (b) are the curves
of the supporting functions and underestimation for the 1-D function, respec-
tively. (c) and (d) are 3-D maps with 2-D view and 3-D view of a 2-D objective
function plus its underestimation, respectively.

As shown in Fig. 1(a), after calculating the supporting func-
tions of all individuals, we can obtain NP estimation values
h‘f x),i = 1,2,...,NP based on the NP supporting func-
tions for each solution x in the feasible region. By considering
the largest estimation value (i.e., the value closest to the real
objective function value) as the underestimation of each point,
an underestimation model of the objection function can be
calculated as follows:

Ux) =

i=1,

ax  hf(x). (7)
NP

Fig. 1 shows two examples of the underestimation for a 1-D
function [Fig. 1(b)] and a 2-D function [Fig. 1(c) and (d)].
As shown in the figure, the underestimation model is consis-
tently below the objective function and covers the entire search
space. In addition, the underestimation becomes more accurate
as the evolution proceeds because the individuals used to com-
pute the supporting functions become increasingly crowded
(see Fig. S1 of the supplementary material). Other properties
of the underestimation model can be found in [34]-[36].

III. LITERATURE REVIEW

Recent years, numerous attempts have been made to
improve the performance of DE, such as employing multiple
mutation strategies, designing new mutation strategies, and
developing novel parameter control schemes. This section
briefly reviews some of these methods.

Some studies mainly focused on utilizing more than one
mutation strategy to breed new solutions. Mallipeddi et al. [17]
developed EPSDE, in which a pool of mutation strategies and
a pool of parameter values are randomly combined to produce
trial individuals. Wang et al. [37] presented CoDE, in which
three mutation strategies along with three sets of parameters
are simultaneously used to generate three trial vectors, and
the one with the best fitness value is selected as the candidate.
Elsayed et al. [38] introduced a DE using a mix of different
mutation operators. In this algorithm, the population is equally
divided into four groups, and each group using their own

mutation strategy. IDE, designed by Tang et al. [15], assigns
four different mutation strategies to the superior and inferior
individuals during the search process. Epitropakis et al. [39]
proposed a hybrid DE that combines explorative and exploitive
mutation strategies to balance their effects. Ali er al. [40]
proposed an adaptive DE with dynamic population reduc-
tion (STDE-dR), in which the population is adaptively divided
into multiple tribes with different size according to their
previous success, and multiple different mutation strategies are
employed for each tribe. Pan et al. [41] proposed DE with self-
adapting strategy and control parameters, in which a winning
strategy list is used to store strategies that can generate bet-
ter trial vectors. The mutation strategy is selected from the
strategy list refilled by selecting strategies from the winning
strategy list.

Numerous new mutation strategies have been proposed and
incorporated into DE. Zhang and Sanderson [42] proposed
JADE, in which a new mutation strategy named DE/current-
to-pbest/1 is presented. In this strategy, two random indi-
viduals, one selected from the top p% and the other from
the archived inferior individuals, are applied to guide the
evolution. Das er al. [43] presented an improved variant of
the DE/target-to-best/1 that combines a global neighborhood
model and a local neighborhood model by a weight factor
based on the neighborhood individuals or the entire population.
Tang et al. [44] proposed a new mutation strategy which adds
three randomly selected vectors into DE/current-to-pbest/1 to
enhance the population diversity. Islam et al. [45] designed a
new strategy called DE/current-to-gr_best/1, which adopts the
best vector amongst the randomly selected individuals from
the current population to replace the globally best vector in the
classical DE/current-to-best/1. Cai and Wang [46] proposed a
direction induced mutation strategy, in which the base and dif-
ference vectors for mutation are selected on the basis of the
neighborhood information of the population. Yu et al. [47]
presented a new strategy named DE/Ibest/1. It divides the pop-
ulation into several groups, and the local best vector of each
group is used to replace the global best vector in DE/best/1.

Various parameter control schemes have been developed
to adaptively tune the scaling factor F, crossover rate CR,
and population size NP during the evolution. Qiu et al. [48]
designed a cross-generation adaptation mechanism to update
F and CR for each individual. Tanabe and Fukunaga [49]
proposed an improved version of JADE named SHADE, in
which a new success-history-based scheme is applied to adjust
F and CR adaptively. Brest et al. [50] proposed a DE with self-
adaptive control parameters (jDE). In jDE, each individual is
assigned to its own F' and CR, and they are adjusted accord-
ing to the probabilities 71 and 7,. Tatsis and Parsopoulos [51]
introduced an approach to tune F and CR according to the
performance of algorithm and another method using gradi-
ent approximation and line search [52]. Sarker et al. [53]
introduced a DE with dynamic parameters, in which the com-
bination of different parameters with better performance have
the higher chance been applied for the subsequent genera-
tions. Tan et al. [54] utilized the online discovered tradeoff
surface and the desired population distribution density to
adjust NP adaptively. Tanabe and Fukunaga [55] proposed
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L-SHADE, which integrates a linear population size reduc-
tion technique into SHADE. In L-SHADE, NP is continuously
reduced according to a linear function calculated by the num-
ber of function evaluations. Awad et al. [56] proposed a
sinusoidal DE with ensemble of parameters and population
reduction, in which F is adapted by using a Cauchy distribu-
tion and two sinusoidal formulas, and NP is gradually reduced
on the basis of a niching-based reduction approach.

IV. PROPOSED GLCDE

Although many mutation strategies have been proposed to
enhance the search capability of DE, it has been shown that
some of them are good at exploring the search space with good
exploration capability, and others are fit for local search with
strong exploitation capability. To integrate the advantages of
explorative and exploitation strategies, we propose GLCDE,
an underestimation-assisted GLCDE. GLCDE is characterized
by the adaptive underestimation model, global, and local coop-
eration scheme, and better-based mutation strategies. In the
new underestimation model, the slope control parameter is
adaptively updated to increase the accuracy of the under-
estimation. For each generation, two important phases are
conducted according to the underestimation, namely, global
exploration and local exploitation phases. The former phase
aims to locate the promising solution area quickly, while the
latter phase is performed as a local search to accelerate the
convergence. In the local phase, the better-based mutation
strategies which employ the individuals that are better than
the target are designed for the second phase to guide the
local search. Moreover, a parameter adaptive method is also
presented to determine the parameters F and CR automatically.

A. Framework of GLCDE

The framework of GLCDE is described as Algorithm 1
in the supplementary material. First, the initial population
P is generated according to (2). For each generation, the
global exploration phase and the local exploitation phase are
performed. In the global exploitation phase, three trial vec-
tors are generated by different explorative mutation strategies
(DE/rand/1, DE/rand/2, and DE/current-to-rand/1) for each
individual. Afterward, the adaptive underestimation model
explained in Section IV-B is constructed to evaluate each
trial vector. On the basis of the underestimation, the best one
with the lowest underestimation value is chosen as the can-
didate u‘f . Then, the underestimation value is also utilized to
guide the selection because the objective function is always
above the underestimation model [30]. If the underestima-
tion value U(uf) is larger than the function value f(x§) of
the target vector, then the candidate u‘f is directly discarded.
Otherwise, the candidate uf is evaluated by the objective func-
tion and updated according to (5). In the local phase, for each
accepted trial individual in the first phase, three trial vectors
are produced by the better-based mutation strategies intro-
duced in Section IV-C. Subsequently, they are also filtered by
the adaptive underestimation model and updated according to
the selection process of the global phase. All trial individuals
in the initial population are evaluated by the objective function.

4 4 4
2tk 2 2y
- !
Zo 0 0
-2 -2 -2
M=6.
-4 65 -4 -4
-15-1-050 05 115-15-1-050 05 115-15-1-05 005115
X X X
— Objective function o Individual - Underestimation
Fig. 2. Underestimation curves with different values of the slope control

parameter M for a 1-D function.

For each trial individual u? in the initial population, a slope
control parameter M? can be computed. The largest of all M?
derived from all trial individuals is considered as the initial
value M°. During the evolutionary process, M is adaptively
updated according to all M}g ,i=1,2,...,N calculated from
the evaluated trial individuals of the current population, where
N is the number of evaluated trial individuals. The methods
for the initialization and updating of M also are introduced
in Section IV-B. Furthermore, the DE parameters F and CR
are automatically adjusted by using a simple adaptive scheme
explained in Section IV-D during the searching process.

B. Adaptive Underestimation Model

In both global phase and local phase of GLCDE, multiple
trial vectors are generated for each target individual by utiliz-
ing different mutation strategies and evaluated by the under-
estimation. Let u‘;?' be one of the trial vectors for the target
individual x‘f. As we discussed in [13], to reduce the compu-
tational complexity, only the supporting functions of the two
individuals near uf (determined by Euclidean distance) are
calculated to obtain the underestimation value in GLCDE. Let
x§ and xi are the two individuals near u‘f , where a # b €
{1, ..., NP}. The underestimation value U (uf) of uf-" can be
calculated by

Uy = max (i (u7). b () ®)

where K (uf) and hf(uf) are the estimation values of uf cal-
culated by the supporting functions of x5 and x;f according to
(6), respectively.

Based on the underestimation value of each trial vector, the
best one with the lowest underestimation value is chosen as the
candidate for each trial individual. However, M used to control
the slope of the supporting functions (6) significantly influ-
ences the accuracy of the underestimation. For example, the
underestimation models with M = 6.5, M = 15, and M = 30
for a 1-D function are depicted in Fig. 2. As shown in the
figure, for M = 6.5, some regions of the underestimation are
above the objective function while we want to get the lower
bound of the objective function. For M = 15 and M = 30,
although the underestimations are always below the objective
function, the underestimation with M = 15 is more accurate
than that of M = 30 because it is closer to the objective func-
tion. Therefore, a suitable M is crucial to achieving an accurate
underestimation with small error.

We investigated M in [13] and concluded that M = 10 000
is preferable for all benchmark functions. However, due to the
different landscapes of different problems, different M may
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be more suitable, and the same problem with various dimen-
sions may require different M. Moreover, the population may
converge to different regions as evolution proceeds; a specific
M may be more effective than a constant one. Therefore, it
is desirable to automatically generate the value of M at dif-
ferent stages of the evolutionary process. Motivated by these
considerations, we propose an adaptive underestimation model
in which M is gradually self-adapted by learning from the
evaluated trial individuals.

Let uf* be a trial individual that has been evaluated by
the objective function. According to (6), its estimation value
obtained from the supporting functions of the ith individual
x‘f in the current population can be described as follows:

) = min(reeh) - M (xf; — )
= fe) — Mmax(if; — o).
jeJ

i i.j
©))
According to (9), M can be calculated by
8y — hS b
= 1D ), a0
max o — )

Suppose that the underestimation value of u‘f* is equal to
the corresponding function value (i.e., U (uig*) =f (uf*)) when
the underestimation model is sufficiently accurate. As shown
in (8), the underestimation value U(ulig*) can be computed
by the supporting functions of either x5 or that of xﬁ. If
hg(uf*) > h‘Z(uf*), that is, U(uf*) = hﬁ(uf*), a slope control
parameter M can be computed according to (10) by replacing
W™y with f(u$™). Otherwise, M§ is calculated. The larger
value between M} and Mf is considered as the slope control
parameter M;g derived from uf*, namely
= e | O =L@

i - R
i=ab\ max|x; — ujj]

Y

Note that the absolute values of the numerator and the
denominator should be taken in (11) to ensure that M > 0.

In the initial population of GLCDE, each trial individual is
evaluated by the objective function. Based on all evaluated trial
individuals, we can obtain NP values M?, i=1,2,...,NPof
the slope control parameter according to (11). Then the initial
value M° of M can be determined as follows:

M® =  max MIQ.
i=1,....NP

(12)

Since the underestimation is also utilized to guide the selec-
tion between the candidate individual and the target individual,
not all trial individuals are evaluated by the objective function
except for the initial population. The trial individual is only
evaluated if its underestimation value is lower than the function
value of the corresponding target individual. Suppose that N
trial individuals are evaluated in the current generation. Then,
N values of M can be calculated by (11), and the value Metl
for the next generation can be updated by the following:

Mt — {Mrgnax’ if Mﬁlax < M¢

M8,  otherwise (13)

where My.x = max,—i .y Ms. It should be note that M$
remains unchanged if N = 0.

C. Better-Based Mutation Strategy

A number of studies has indicated that best-based muta-
tion strategies, such as DE/best/k, DE/current-to-best/k, and
DE/rand-to-best/k have fast convergence because they use the
best solution of the current population to guide the evolution-
ary search [16], [45]. These strategies have strong exploitation
capability to promote the convergence speed. However, the
population is easy to lose the diversity and the global explo-
ration capability to explore new promising solution regions in
many cases, thereby falling into a local optimal point. Hence,
using these greedy strategies in the local phase of GLCDE
may result in the incapability of the individuals to explore
any better solution region of the search space, thus making
them difficult to escape the stagnation.

Inspired by the social learning-based particle swarm
optimization [57], three new better-based mutation strategies
are proposed in this article to preserve the population diversity
and exploitation capability simultaneously in the local phase.
In the new strategies, all individuals that are better than each
target in the current population are, respectively, grouped into
an independent set. For each target, an individual is randomly
selected from the corresponding set to guide the mutation. The
new strategies can be described as follows.

1) DE/better/I:

vzg = xﬁetter +F- (xfl B xfz)’ (14)

2) DE/current-to-better/I:

Vi=XP + F o (e — X)) +F - (x5, —x8), (15)

f =
3) DE/rand-to-better/I:

g __ .8 C(vS _ 8 (8
Vi =X, +F (xbetter xr|)+F (xrz

—x8), (16)

where xﬁetter is an individual randomly selected from all indi-
viduals better than xf. x7, x%,, and x¥; are three mutually
different individuals randomly chosen from the entire popu-
lation, and none of them are equal to x‘l.g or x‘getter. For the
best individual, xﬁener is replaced by a random individual of
the entire population when use these strategies. Compared to
the best-based strategies, the target individuals are not always
attracted toward the same globally best individual in the
proposed better-based strategies, thereby preventing premature
convergence. Therefore, the better-based strategies adopted in
the local phase ensure that the promising regions explored in
the global phase are exploited and better promising regions
are explored.

D. DE Parameter Adaption

In addition to the mutation strategy, the parameters (i.e., F'
and CR) highly influence the performance of DE. Inappropriate
control parameters combine with mutation strategies may
cause stagnation due to over exploration or premature con-
vergence because of over exploitation [15]. Inspired by the
current approaches, a simple adaptive scheme is designed to
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determine F' and CR automatically. Take the update of CR as
example, the method is described as follow.

As suggested in [17], the value of CR should be taken in the
range [0.1, 0.9]. In the proposed method, the range is divided
into K = 8 intervals with a step size of 0.1, and each interval
is allocated a selection probability pF which is initialized as
1/K. For each target individual in the current generation, CR
is randomly generated in the interval selected by a roulette
wheel method according to the selection probability. At each
generation, the number of CR that falls into the kth interval
and the number of trial individuals produced by the CR in the
kth interval that can successfully replace the target individual
are recorded as NT; and NS, respectively. After the initial
learning generation (LG), the selection probability of each
interval is updated according to the success rates of previous
LG generations. For the kth interval, the selection probability
is calculated by

—1 G
pG _ ZgG:g—LG SRk (17)

k= &K 1

>ic Zf;zg—LG SRiG
where

NS¢
SRS = _’5 +e (18)

NT{

is the success rate of the kth interval in the Gth genera-
tion. € = 0.01 is a small constant to prevent some intervals
from being lost in the searching process due to the null
selection probability caused by the poor performance in
the previous stage. According to [16], LG = 20 is suit-
able. Similarly, the parameter F is also generated on the
basis of the approach for CR. However, the value of F
is selected from the range [0.4,0.9] in the light of the
suggestion in [17].

E. Runtime Complexity

For the adaptive underestimation model, the runtime com-
plexity is mainly from the selection of the two individuals near
each trial individual. Since they are measured by Euclidean
distance, the runtime complexity is O(NP? - D). The global
phase costs O(3NP - D) runtime as three trial vectors are cre-
ated for each target individual. For the local phase, if all
individuals conduct the local phase, the runtime complexity
will be O(max(NP - (NP — 1),3NP - D)) because the better
individuals for each target should be determined in the better-
based strategies. For the adaption of parameters F' and CR
adaption, the runtime is O(NP). In summary, the total run-
time complexity of GLCDE is ONP? - D - Gax) over Gmax
generations. According to the study in [13], [23], and [46],
the runtime complexity of GLCDE is relatively small com-
pared with that of expensive function evaluations. Therefore,
the proposed GLCDE is accepted for the practical problems,
especially for expensive-to-evaluate problems. The algorithm
complexity on benchmark functions and experimental analysis
of the efficiency for the real-world problem will be reported
in Sections VI-F and VI-G, respectively.

FE. Remarks

The presented GLCDE is based on our previous work
in [13] and [36], but it significantly differs from them in
five aspects: 1) the determination of slope control param-
eter M; 2) the purpose of underestimation model; 3) the
employed mutation strategies; 4) different new mutation strat-
egy is designed; and 5) the selection method of crossover rate
CR and scaling factor F. Details on these differences are given
in the supplementary material.

V. APPLICATION OF GLCDE 1O PSP

As we know, the living organism contains a large num-
ber of proteins. Each protein performs a crucial role in
the living organisms and is important to carry out the bio-
logical functions. The function of a protein is generally
determined by its spatial (3-D) structure. The misfolding of
the protein 3-D structures will lead to a wide variety of
protein-folding diseases, such as cataract disease, mad cow
disease, and Alzheimer’s disease. Therefore, the information
of high-resolution structure of proteins is essential to under-
stand the function of the molecules and to design new drugs
against these diseases. Currently, the 3-D structures of pro-
teins can be determined by the experimental methods, such
as nuclear magnetic resonance, X-ray crystallography, and
cryo-EM. However, these experimental methods are usually
costly and time-consuming [58]. Hence, the computational
method, i.e., predicting the 3-D structures of proteins using
the computer based on an optimization algorithm, becomes
an important problem in computational biology [59]. On the
basis of the thermodynamic hypothesis [60], the computational
method aims to find the global minimum of an energy func-
tion as the structure with the lower energy is considered closer
to the native. In other words, the PSP problem involves an
optimization of the energy function [61]. The search capability
of the optimization algorithm highly influences the prediction
accuracy. Many approaches have been proposed for the PSP,
among which the Rosetta developed by the Baker Lab [62] and
AlphaFold(https://deepmind.com/blog/alphafold/) designed by
Google are two state-of-the-art approaches and ranked as the
top methods in the worldwide CASP [63] competitions.

In this part, the proposed algorithm is applied to solve the
PSP problem, where the fragment assembly technique [64] is
employed to improve the prediction accuracy and reduce the
computational cost. Since the mutation and crossover operators
are based on the fragment exchange and assembly rather than
the standard operators of DE, we call the proposed approach
global and local cooperative EA (GLCEA) in this applica-
tion. As shown in Fig. 3, for the input target amino acid
sequence, the fragment library with homologous fragments
(sequence identity > 30%) removed is first generated by the
ROBETTA full-chain PSP server (http://robetta.bakerlab.org).
Then the initial population is produced by randomly picking
up the fragment of each residue position from the correspond-
ing fragment library to assemble NP conformations. For each
conformation in the population, the global and local phases are
conducted to generate the trial conformation. In each phase,
each mutation strategy is converted to the corresponding one
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Fig. 3. Pipeline of the proposed GLCEA for PSP problem.

based on fragments exchange between different conformations.
For example, in DE/rand/1, three different conformations x‘fl,
x‘fz, and x‘i are randomly selected from the current popu-
lation, and the mutation conformation vf’ is created by the
replacement of two random residue positions in the third con-
formation x7, with the corresponding fragments from the first
conformation x¥, and the second conformation x¥,, respec-
tively. However, in DE/better/1, a conformation xﬁener which
have lower energy than the target conformation is first picked
up from the conformations. Then, two different conforma-
tions x7, and x¥, which also differ from xj,. and the target
conformation x‘f are randomly chosen from the population.
Two fragments are randomly extracted from x¥, and x5, to
replace the corresponding fragments in x‘getter, respectively.
The conformation is evaluated by the Rosetta score3 energy
function [62].

After the mutation conformations generation, the crossover
is conducted on the mutation conformations to generate trial
conformations. In the crossover, a fragment is randomly
chosen from the target conformation xlg to replace the corre-
sponding position in the mutation conformation vf . Moreover,
to improve the quality and diversity of the conformation, a
random fragment assembly is also performed for the mutation
conformations. As introduced in Section IV, three different
trial conformations are simultaneously generated for each tar-
get conformation in both local and global phases. To select
the best one from the three trial conformations, the under-
estimation value of the energy rather than the real energy is
calculated because the energy evaluation is usually computa-
tional expensive [61]. Based on the coordinates of all C, atoms
of each conformation (i.e., the dimension D = 3L, where L
is the sequence length), the adaptive underestimation model
described in Section IV-A is constructed to measure the qual-
ity of each trial conformation, and the best one with lower
underestimation value is selected as the candidate offspring
conformation. The offspring conformation will be accepted

to the new population if it yield lower energy than the tar-
get conformation. By iterating the global exploration, local
exploitation, and population updating with specific times, the
conformation with the lowest energy in the last generation will
be selected as the predicted final model. In the above process,
the local exploitation is only performed when the offspring
conformation has lower energy than the target conformation.

As described in the above process, the mutation and
crossover operators of DE are replaced by the correspond-
ing one according to the fragment exchange and assembly
between different conformations. Following this strategy, other
EAs [65], [66] also can be utilized to the PSP problem.

VI. EXPERIMENTAL STUDY

In this section, 23 classical benchmark functions selected
from [13] and [47], as well as the entire CEC 2013, 2014,
and 2017 test sets are used to demonstrate the performance of
GLCDE. In the 23 classical benchmark functions, f1—fjo are
unimodal, whereas the others are multimodal. Their mathemat-
ical expressions are given in Table S1 of the supplementary
material. Details of the CEC 2013, 2014, and 2017 test
functions can be found in [67]-[69], respectively.

Two main parameters of GLCDE must be set, namely, the
population size NP and the learning generation LG. In the
following experiments, NP is set to 50, and LG is set as 20
according to the suggestion in [16]. For each approach, 30 and
51 independent runs are conducted for the classical benchmark
functions [16] and CEC test sets [69], respectively. The aver-
age and standard deviation of the function error f(x) — f(x*)
obtained within the maximum function evaluations (MaxFES)
are recorded to evaluate the performance, where x represents
the best solution found within the MaxFES in a single run
and x* is the global optimum solution of the test function.
In addition, the Wilcoxon signed-rank test is conducted at
the 5% significance level to reveal the significant difference
between any two approaches. The symbols “+,” “~,” and “—”
are employed to indicate when the performance of GLCDE
is significantly better than, nearly equal to, and remarkably
worse than the competitor, respectively. The MaxFES is set
to 2000 x D, 3000 x D, and 3000 x D for the 30-D, 50-D,
and 100-D classical benchmark functions [47], respectively.
For all CEC test functions, the MaxFES is set to 10 000 x D
as suggested by Awad et al. [69].

A. Comparison With State-of-the-Art DE Variants

In this section, the proposed GLCDE is compared with five
state-of-the-art DE variants, i.e., EPSDE [17], CoDE [37],
SaDE [16], SHADE [49], and UMDE [13] on the 23 classical
benchmark functions. For a fair comparison, the parameters of
these algorithms are set in the light of their original papers.

Tables S2—-S4 of the supplementary material summarize the
results of the 30-D, 50-D, and 100-D benchmark functions.
The data reveal that GLCDE consistently outperforms the five
competitors in most of the cases. Furthermore, the statistically
significant results between GLCDE and each competitor are
listed in Table I. Specifically, for 30-D problems, GLCDE is
significantly better than EPSDE, CoDE, SaDE, SHADE, and
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TABLE I
SIGNIFICANCE TEST RESULTS BETWEEN GLCDE AND FIVE
STATE-OF-THE-ART DE VARIANTS ON 30-D, 50-D, AND 100-D
CLASSICAL BENCHMARK FUNCTIONS

D =30 D =50 D =100
GLCDE v.s. T ~ _ + ~ _ + ~ .
EPSDE 19 4 0 20 2 1 22 0 1
CoDE 18 2 3 15 5 3 18 1 4
SaDE 17 4 2 14 6 3 17 3 3
SHADE 18 2 3 11 7 5 15 2 6
UMDE 9 10 4 10 8 5 12 5 6

UMDE on 19, 18, 17, 18, and 9 cases, respectively. CoDE,
SaDE, SHADE, and UMDE remarkably outperform GLCDE
only on 3, 2, 3, and 4 functions, respectively. EPSDE is not
significantly superior to GLCDE on any case. The average
convergence curves depicted in Fig. S2 of the supplementary
material clearly indicate that GLCDE shows faster conver-
gence speed than the control methods for all six representative
functions except for fi>.

Generally, problems with higher dimension are more diffi-
cult to locate the global optimum. However, it is impressive
that the performance of GLCDE is not affected by the increase
of problem’s dimension. For the 50-D functions, GLCDE per-
forms dramatically better than EPSDE, CoDE, SaDE, SHADE,
and UMDE on 20, 15, 14, 11, and 10 problems, respectively.
EPSDE, CoDE, SaDE, SHADE, and UMDE exhibits remark-
ably better performance than GLCDE on 1, 3, 3, 5, and 5
functions, respectively. For 100-D problems, GLCDE obtains
obviously better performance on 22, 18, 17, 15, and 12 cases
compared to EPSDE, CoDE, SaDE, SHADE, and UMDE,
respectively. The five competitors significantly outperform
GLCDE on 1, 4, 3, 6, and 6 functions, respectively.

B. Comparison With Up-to-Date DE Variants

In this section, GLCDE is compared with nine up-to-date
DE variants published in recent years. We first compare
GLCDE with ZEPDE [21], SHADE [49], SinDE [70], and
IDE [15] on the CEC 2013 test set. The parameters of these
four approaches are set in the light of their original papers.
Tables S5 and S6 of the supplementary material list the
detailed results of the 30-D and 50-D problems, respectively.
It can be found that GLCDE shows better performance than
the four competitive approaches. In addition, the statistically
significant results calculated by Wilcoxon test are given in
Table II. For the 30-D problems, GLCDE obtains obviously
better results than ZEPDE, SHADE, SinDE, and IDE on 19,
16, 17, and 15 out of 28 cases, respectively. ZEPDE, SHADE,
SinDE, and IDE perform remarkably better than GLCDE on 3,
7, 8, and 6 cases, respectively. For the 50-D functions, GLCDE
achieves significantly better results on 17, 18, 17, and 14
functions compared with ZEPDE, SHADE, SinDE, and IDE,
respectively. ZEPDE, SHADE, SinDE, and IDE dynamically
outperform GLCDE on 6, 7, 7, and 9 cases, respectively.

Furthermore, GLCDE is compared with sTDE-dR [40],
UMDE [13], MVC_E_S_C [71], ETI-SHADE [72], and UMS-
SHADE [31] over the CEC 2014 functions. All parameter
settings of these competitors keep the same as their published
papers. The detailed results for the 30-D and 50-D cases are

TABLE II
SIGNIFICANCE TEST RESULTS BETWEEN GLCDE AND ZEPDE, SHADE,
SINDE, AND IDE ON 30-D, AND 50-D CEC 2013 FUNCTIONS

D =30 D =50
GLCDEvs. | . 2% | . T
ZEPDE 9 6 3 17 3 6
SHADE 16 5 7 18 3 7
SinDE 17 3 8 17 4 7
IDE 15 7 6 145 9
TABLE III

SIGNIFICANCE TEST RESULTS BETWEEN GLCDE AND sTDE-dR,
UMDE, MVC_E_S_C, ETI-SHADE, AND UMS-SHADE oON 30-D, AND
50-D CEC 2014 FUNCTIONS

D =30 D =50
GLCDE v.s T ~ o n ~ -~
STDE-dR 17 10 3 15 6 9
UMDE 13 11 6 13 7 10
MVC_E_S_C 18 6 6 21 4 5
ETI-SHADE 22 6 2 25 3 2
UMS-SHADE 12 11 7 13 6 11

summarized in Tables S7 and S8 of the supplementary mate-
rial, respectively. As seen, GLCDE gets lower mean values
on most of the problems compared to the four competitive
approaches. In addition, the results provided by Wilcoxon
test are given in Table III. Compared to sTDE-dR, UMDE,
MVC_E_S_C, ETI-SHADE, and UMS-SHADE, GLCDE pro-
vides significantly better performance on 17, 13, 18, 22, and
12 out of 30 functions for 30-D problems, respectively. The
results of sSTDE-dR, UMDE, MVC_E_S_C, ETI-SHADE, and
UMS-SHADE are remarkably better than GLCDE on 3, 6,
6, 2, and 7 cases, respectively. For 50-D problems, sTDE-
dR, UMDE, MVC_E_S_C, ETI-SHADE, and UMS-SHADE
performs dynamically better than GLCDE on 9, 10, 5, 2,
11 cases, respectively. However, GLCDE obtains obviously
better results than sTDE-dR, UMDE, MVC_E_S_C, ETI-
SHADE, and UMS-SHADE on 15, 13, 21, 25, and 13 cases,
respectively.

C. Comparison With CEC DE Winners

GLCDE is further compared with the DE winners of CEC
2014-2017 competitions. First, we compare GLCDE with five
DE winners (i.e., LSHADE-EpSin [73], UMOEAII [74], [75],
MC-SHADE [76], LSHADE-ND ([77], L-SHADE [55], and
iLSHADE [78]) in CEC 2014-2016 competitions over the
CEC 2014 benchmark set. The parameters of these competitors
are set on the basis of their published literatures. The results
of 30-D and 50-D problems are displayed in Tables S9 and
S10 of the supplementary material. Clearly, GLCDE attains the
better or similar mean values on most of the cases when com-
pared with the competitors. In addition, Table IV summarizes
the significant results obtained by Wilcoxon test. Compared
to LSHADE-EpSin, UMOEAII, MC-SHADE, LSHADE-ND,
L-SHADE, and iLSHADE, GLCDE performs significantly
better on 10, 12, 23, 19, 16, and 12 cases for 30-D func-
tions, respectively. LSHADE-EpSin, UMOEAII, MC-SHADE,
LSHADE-ND, L-SHADE, and iLSHADE obviously outper-
form GLCDE on 10, 10, 3, 1, 4, and 7 cases, respectively. For
50-D problems, LSHADE-EpSin, UMOEAII, MC-SHADE,
LSHADE-ND, L-SHADE, and iLSHADE obtain remarkably
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TABLE IV
SIGNIFICANCE TEST RESULTS BETWEEN GLCDE AND LSHADE-EPSIN,
UMOEAII, MC-SHADE, LSHADE-ND, L-SHADE, AND ILSHADE ON
30-D, AND 50-D CEC 2014 FUNCTIONS

D =30 D =50
GLCDE v.s. + ~ _ + ~ _
LSHADE-EpSin 10 10 10 13 6 11
UMOEAIL 12 8 10 13 6 11
MC-SHADE 23 4 3 26 2 2
LSHADE-ND 19 10 1 19 4 7
L-SHADE 16 10 4 23 3 4
iLSHADE 12 11 7 16 6 8

TABLE V

SIGNIFICANCE TEST RESULTS BETWEEN GLCDE AND
LSHADE-cNEPSIN, LSHADE_SPACMA, AND IDEBESTNSIZE ON
30-D, AND 50-D CEC 2017 FUNCTIONS

D =30 D =50
GLCDE v.s. i ~ . n ~ -~
LSHADE-cnEpSin 13 6 10 14 5 10
LSHADE_SPACMA 13 6 10 12 7 10
IDEbestNsize 18 5 6 22 0 7

better performance than GLCDE on 11, 11, 2, 7, 4, and 8
cases, respectively. However, they are significantly worse than
GLCDE on 13, 13, 26, 19, 23, and 16 cases, respectively.

In addition, the comparison between GLCDE and
three top DE algorithms (i.e., LSHADE-cnEpSin [79],
LSHADE_SPACMA [80], and IDEbestNsize [81]) in the CEC
2017 competition is conducted on the CEC 2017 test set.
All parameters of these competitors are set in accordance
with their published papers. The results of the 30-D and
50-D problems are given in Tables S11 and S12 of the
supplementary material, respectively. Due to the numerical
instability, the function F; is removed according to the sugges-
tion in [69]. The data shows GLCDE attains better or similar
performance compared with the three compared approaches.
Furthermore, Table V reports the significant results achieved
by Wilcoxon test. For 30-D functions, GLCDE performs obvi-
ously worse than LSHADE-cnEpSin, LSHADE_SPACMA,
and IDEbestNsize on 10, 10, and 6 cases, respectively. But
GLCDE gets markedly better performance than LSHADE-
cnEpSin, LSHADE_SPACMA, and IDEbestNsize on 13, 13,
and 18 cases, respectively. GLCDE keeps this remarkable
advantage for 50-D functions. Specifically, GLCDE is dramat-
ically better than LSHADE-cnEpSin, LSHADE_SPACMA,
and IDEbestNsize on 14, 12, and 22 functions, respec-
tively. However, LSHADE-cnEpSin, LSHADE_SPACMA, and
IDEbestNsize significantly outperform GLCDE on 10, 10, and
7 cases, respectively.

D. Comparison With Surrogate-Based DE Variants

Similar to the underestimation model, the surrogate
model [82] is usually integrate into EAs to reduce the
function evaluations for the expensive-to-evaluate problems
because it is much cheaper compared to the function eval-
vations [83]-[85]. Here, GLCDE is compared with five
surrogate-assisted DE approaches, i.e., CSM-SHADE [86],
GPEME [87], ESMDE [88], LLUDE [36], and UMS-
SHADE [31], over the 30-D CEC 2013 test set. The parame-
ters of these comparison approaches are set on the basis of

TABLE VI
SIGNIFICANCE TEST RESULTS BETWEEN GLCDE AND CSM-SHADE,
GPEME, ESMDE, LLUDE, AND UMS-SHADE oN 30-D CEC 2013

FUNCTIONS
GLCDE v.s. | CSM-SHADE GPEME ESMDE LLUDE UMS-SHADE
+ 16 26 25 18 12
~ 3 0 0 6 7
— 9 2 3 4 9

their original papers. All algorithms are stopped when the
number of function evaluations reaches 300 000.

Table S13 of the supplementary material reports the mean
and standard deviation of the function error for each problem.
The data shows that the proposed GLCDE achieves better
results with lower function errors compared to these five
algorithms. Also, the significant test results between GLCDE
and each comparison algorithm are summarized in Table VI.
As shown in the table, the results provided by GLCDE is
significantly better than CSM-SHADE, GPEME, ESMDE,
LLUDE, and UMS-SHADE on 16, 26, 25, 18, and 12 out of
28 functions, respectively. However, CSM-SHADE, GPEME,
ESMDE, LLUDE, and UMS-SHADE significantly outperform
GLCDE only on 9, 2, 3, 4, and 9 cases, respectively. The com-
parison between GLCDE and these algorithms on the PSP
problem will be discussed in Section VI-G.

E. Effects of GLCDE Components

GLCDE consists of four main components: 1) the adaptive
underestimation model; 2) the underestimation-based global
and local cooperative scheme; 3) the better-based mutation
strategy; and 4) the parameter adaption of DE. In order to
verify the effect of each component, various experiments are
conducted on all classical benchmark functions at D = 30 in
this section.

1) Adaptive Underestimation Model: The adaptive under-
estimation model is characterized by the adaption of the
parameter M. Therefore, we first investigate the effect of
the M adaption, then study the contribution of the whole
underestimation model. GLCDE is first compared with the
GLCDE using three fixed M, i.e., M = 5000, 10 000, and
15000. These three GLCDE methods are, respectively, rep-
resented as GLCDE(M\M = 5000), GLCDEM = 10000), and
GLCDE(M = 15000), and they utilize the same parameter set-
tings with GLCDE for fair comparison. The detailed results
achieved by these four GLCDE methods are listed in Table S14
of the supplementary material. It is observed that GLCDE
using adaptive M is superior to the three GLCDE variants with
the fixed M on most of cases. Additionally, the significant test
results and Friedman rankings [50] given in Table VII also
indicate GLCDE consistently performs better than the other
three GLCDE variants and obtains the first ranking.

In GLCDE, the underestimation model is used to select
the best candidate from multiple trial vectors. To identify the
effect of the underestimation model, GLCDE is compared with
two GLCDE variants, i.e., GLCDE-rand and GLCDE-FES. In
both global and local phases of GLCDE-rand, only one strat-
egy is randomly selected from the three mutation strategies
to produce a trial individual for each target. In GLCDE-FES,
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TABLE VII
SIGNIFICANCE TEST RESULTS AND FRIEDMAN RANKINGS BETWEEN
GLCDE AND GLCDE VARIANTS WITH FIXED M

GLCDE(M=5000) GLCDE(M=10000) GLCDE(M=15000) GLCDE
+ 18 13 16 -
~ 5 9 6 -
— 0 1 1 -
Ranking 3.35 2.24 291 1.50
TABLE VIII

SIGNIFICANCE TEST RESULTS AND FRIEDMAN RANKINGS BETWEEN
GLCDE AND GLCDE-RAND, GLCDE-FES

GLCDE-rand GLCDE-FES GLCDE
+ 13 17 -
~ 8 5
_ 2 1 R
Ranking 2.04 2.59 1.37
TABLE IX

SIGNIFICANCE TEST RESULTS AND FRIEDMAN RANKINGS BETWEEN
GLCDE AND GLCDE VARIANTS WITH GLOBAL OR LOCAL PHASE ONLY

GLCDE-global GLCDE-local GLCDE
+ 15 14 -
~ 6 5
—_ 2 4 -
Ranking 2.59 1.96 1.46

three trial vectors are produced by the three different muta-
tion strategies for each target in both global and local phases.
But the trial vectors are filtered according to their function
values rather than the underestimation values. The parameter
settings of GLCDE-rand and GLCDE-FES are the same as
those of GLCDE. The results of each function provided by
these three methods are listed in Table S15 of the supplemen-
tary material. The data indicates that GLCDE exhibits better
performance than GLCDE-rand and GLCDE-FES. Moreover,
the Wilcoxon and Friedman results given in Table VIII also
show that GLCDE is obviously better than GLCDE-rand and
GLCDE-FES.

2) Global and Local Cooperation Scheme: The contribu-
tion of global and local cooperation scheme can be demon-
strated by the comparison between GLCDE and two GLCDE
variants, i.e., GLCDE-global and GLCDE-local. In GLCDE-
global, only the global phase is performed for each gener-
ation, while only local phase is employed in GLCDE-local.
These three algorithms utilize the same parameter settings.
Table S16 of the supplementary material shows the detailed
results. As seen, GLCDE achieves better results compared to
GLCDE-global and GLCDE-local. Additionally, according to
the significant test results and Friedman rankings displayed in
Table IX, we can find that GLCDE significantly outperforms
GLCDE-global and GLCDE-local on the majority of cases and
obtains the best ranking.

3) Better-Based Mutation Strategy: In order to verify the
contribution of the proposed better-based mutation strat-
egy, GLCDE is compare with three GLCDE variants,
i.e., GLCDE-RND, GLCDE-best, and GLCDE-better3. In
GLCDE-RND, the three rand-based strategies (i.e., DE/rand/1,
DE/rand/2, and DE/current-to-rand) employed in the global
phase are also employed in the local phase, while the
three best-based strategies (i.e., DE/best/1, DE/rand-to-best/1,

TABLE X
SIGNIFICANCE TEST RESULTS AND FRIEDMAN RANKINGS BETWEEN
GLCDE AND GLCDE-RND, GLCDE-BEST, AND GLCDE-BETTER3

GLCDE-RND GLCDE-best GLCDE-better3 GLCDE
+ 20 20 14 -
S 3 2 7
— 0 1 2 -
Ranking 3.41 2.70 2.50 1.39
TABLE XI
FRIEDMAN TEST RESULTS OF DE WITH DIFFERENT STRATEGIES
DE/better/1 DE/current-to-better/l  DE/rand-to-better/1
Ranking 3.89 2.57 443
DE/current-to-pbest/1 DE/centroid/2 DE/lbest/1
Ranking 3.74 2.83 3.54
TABLE XII

SIGNIFICANCE TEST RESULTS AND FRIEDMAN RANKINGS BETWEEN
GLCDE AND GLCDE VARIANTS WITH FIXED F AND CR

GLCDE(C R=0.1) GLCDE(C' R=0.5) GLCDE(C'R=0.9) GLCDE
+ 14 14 21 -
~ 6 4 1 -
- 3 5 1 -
Ranking 2.41 2.33 3.72 1.54

and DFE/current-to-best/1) are utilized in the local phase of
GLCDE-best. In GLCDE-better3, only one mutation strategy
(i.e., DE/rand-to-better/1) is used three times to generate three
trial vectors for each target individual in the local phase. These
four GLCDE algorithms use the same parameter settings. The
detailed results of them are summarized in Table S17 of
the supplementary material. Obviously, GLCDE obtains better
performance than the other GLCDE variants on the majority
of cases. From the statistically significant results and Friedman
test results reported in Table X, GLCDE performs dramatically
better than the three competitors and gets the best ranking.

In addition, the proposed better-based mutation strategies
are compared with the DE algorithms using DE/current-to-
pbest [42], DE/centroid/2 [13], and DE/lbest/1 [47]. For fair
comparison, they employ the same parameter settings: NP =
50, CR = 0.5, and F = 0.5. The detailed results provided by
these DE algorithms are displayed in Table S18 of the supple-
mentary material. It can be found that DE/current-to-better/1
is better than the other mutation strategies on the majority
of cases. Additionally, the results of Friedman test presented
in Table XI indicates DE/current-to-better/1 achieves the best
ranking, followed by DE/centroid/2, DE/Ibest/1, DE/current-
to-pbest/1, DE/better/1, and DE/rand-to-better/1.

4) Parameter Adaption of DE: The effect of the param-
eter adaption can be studied by the comparison between
GLCDE and its three variants with fixed settings of F and CR.
According to the suggestion in [1] and [47], F is set as 0.5, and
CRis setto 0.1, 0.5, and 0.9, respectively. These three GLCDE
variants are, respectively, named as GLCDE(CR = 0.1),
GLCDE(CR = 0.5), and GLCDE(CR = 0.9). The detailed
results attained by them are reported in Table S19 of the sup-
plementary material. Clearly, GLCDE provides better results
compared to the three GLCDE variants with fixed F and CR.
Meanwhile, the results computed by Wilcoxon and Friedman
test given in Table XII also reveals that GLCDE is the most
effective one among these four GLCDE algorithms.
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TABLE XIII
SIGNIFICANCE TEST RESULTS AND FRIEDMAN RANKINGS BETWEEN
GLCDE AND GLCDE VARIANTS WITH ADVANCED PARAMETER
ADAPTION TECHNIQUES

GLC-SaDE GLC-jDE GLC-SHADE GLC-JADE GLCDE
+ 12 17 13 13
~ 5 4 5 4
— 6 2 5 6 -
Ranking 3.00 4.24 2.37 3.17 2.20
TABLE XIV

KRUSKAL—WALLIS TEST RESULTS AND FRIEDMAN RANKINGS FOR
GLCDE WITH DIFFERENT COMBINATIONS OF THE COMPONENTS

GLCDE1 GLCDE2 GLCDE3 GLCDEI2 GLCDE13 GLCDE23 GLCDE
Ky 2 8 5 11 8 10 18
K 1 2 0 1 2 1 1
K_ 20 13 18 11 13 12 4
Ranking| 6.48 4.22 4.91 3.07 4.24 2.96 2.13

Furthermore, GLCDE is also compared with four GLCDE
using the parameter adaption methods proposed in SaDE [16],
jDE [50], SHADE [49], and JADE [42] to further ver-
ify the performance of our proposed parameter adaption
approach. The four GLCDE algorithms are named as GLC-
SaDE, GLC-jDE, GLC-SHADE, and GLC-JADE, respec-
tively. Their parameters of the parameter adaption methods
are set according to the corresponding publication. Table S20
of the supplementary material reports the results of each func-
tion obtained by the five GLCDE algorithms. It is clear that
GLCDE achieves lower mean function errors than the four
competitors on most of the cases. The Wilcoxon test results
presented in Table XIII indicates that GLCDE attains the
significantly better results on 12, 17, 13, and 13 functions
compared to GLC-SaDE, GLC-jDE, GLC-SHADE, and GLC-
JADE, respectively. On the basis of the Friedman test results,
GLCDE also gets the best ranking, followed by GLC-SHADE,
GLC-SaDE, GLC-JADE, and GLC-jDE.

5) Sensitivity Analysis: The sensitivity analysis is con-
ducted to reveal the most crucial components of the proposed
GLCDE. In this experiment, GLCDE is compared with dif-
ferent combinations of the three components (i.e., GLCDEI,
GLCDE2, GLCDE3, GLCDE12, GLCDEI13, and GLCDE23),
where 1, 2, and 3 represents the adaptive underestimation
model, better-based mutation strategies, and parameter adap-
tive scheme of DE, respectively. In these algorithms, the global
and local cooperation scheme is still included. Table S21 of
the supplementary material gives the results achieved by these
seven algorithms for all functions. As seen, GLCDE which
uses all components performs better than other algorithms
using some of the components. The total results calculated by
Kruskal-Wallis test [89] and Friedman test are summarized
in Table XIV, where K; means that the algorithm obtains the
best result among all algorithms, and K_ and Kx indicate
that the algorithm is significantly worse than and almost sim-
ilar to the best algorithm, respectively. The results show that
GLCDE obtains the best performance since it achieves the best
results on 18 out of 23 functions and gets the best ranking. In
addition, the results are obviously improved when the rest one
component is added to GLCDE12, GLCDE13, and GLCDE23
(see Table S22 of the supplementary material). This indicates

TABLE XV
KRUSKAL—WALLIS TEST RESULTS AND FRIEDMAN RANKINGS FOR
GLCDE WITH DIFFERENT POPULATION SIZE (NP)

NP=30 NP=40 NP=30 NP=60 NP=80 NP=100
Kr 6 7 15 2 9 3
Kx 3 2 2 1 1 2
K_ 14 14 6 10 13 13

Ranking | 3.76 3.17 235 3.17 4.15 439

TABLE XVI

KRUSKAL-WALLIS TEST RESULTS AND FRIEDMAN RANKINGS FOR
GLCDE WITH DIFFERENT LG

LG=20 LG=30 LG=40 LG=30 LG=60
Ky 16 4 7 4 3
Kx 2 3 3 1 1
K_ 4 6 12 17 18
Ranking |  2.00 2.00 3.17 3.70 4.13

that each component play an important role in the proposed
GLCDE. However, the contribution of the better-based muta-
tion strategies may be larger than other components as the
ranking of GLCDEI13 are improved from 4.24 to 2.13 when
it is combined to GLCDE.

F. Parameter Study

In this section, all 30-D classical benchmark functions are
utilized to analyze the sensitivity of population size and LG.

1) Population Size: In order to investigate the impact of
NP, six frequently used settings, i.e., 30, 40, 50, 60, 80, and
100, are employed in GLCDE. The rest parameter settings
are the same as that described at the start of Section VI.
Table S23 of the supplementary material reports the results
of each function. It is clear that CLCDE with NP = 50
obtains better performance compared to GLCDE using other
NP settings. Furthermore, the Kruskal-Wallis test results and
Friedman rankings are summarized in Table XV. It indicates
that NP = 50 achieves the best results on 15 out of 23
functions, and obtains the best ranking. From these data, we
can conclude that NP = 50 is more suitable for GLCDE,
although large NP will increase the computation complexity
as described in Section IV-E.

2) Learning Generation: In this experiment, the influence
of LG on the performance of GLCDE is studied. The parame-
ter settings given in the beginning of Section VI are employed,
except for LG, which varies from 20 to 60 with a step of 10
according to the suggestion in [16]. The mean and standard
deviation of the function error for each function are listed in
Table S24 of the supplementary material. The data shows that
GLCDE with LG = 20 performs better than GLCDE using
other LG values. Table XVI gives the results obtained by
Kruskal-Wallis and Friedman tests. The Kruskal-Wallis test
results reveal that LG = 20 attains the best results in 16 out of
23 functions. In addition, LG = 20 and LG = 30 get the same
Friedman rankings which are better than other competitors.
Therefore, LG = 20 is a better choice for GLCDE.

G. Algorithm Complexity

The algorithm complexity of the proposed GLCDE is evalu-
ated according to the method in CEC competitions [67]. Table
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TABLE XVII
ALGORITHM COMPLEXITY OF GLCDE

To T Ty (T2 —T1)/To
D =10 0.511 3.875 38.667
D = 30 0.087 1.585 11.532 114.333
D =50 2.495 18.394 182.747

XV lists the calculated algorithm complexity on D = 10, 30,
and 50, where T is running time of the following test problem:

for i=1 1000000
x=0.55+(double)i; x=x+1; x=X./2; X=X*X;
x=sgrt(x); x=log(x); x=exp(x); y=X/X;

end

T, is the computational time to run the test problem F4 in
CEC 2013 [67] at D dimensions with 200 000 function evalu-
ations, and 7, represents the computational time for GLCDE
to optimize F14 at D dimensions with 200 000 function eval-
uations. Tz is the mean value of 7> for 5 runs. Based on the
data given in Table XVII, 71 and ?2 increase linearly with the
number of dimensions, and (/fz — T1)/Ty grows linearly.

H. Performance on PSP

In this experiment, we compare GLCEA with CoDE [37],
SaDE [16], UMS-CoDE [31], UMDE [13], and Rosetta [62]
over ten nonredundant proteins with various lengths of the
amino acid sequence. The parameters of these methods are
kept the same as in the corresponding publications. The
fragment length is set to 9 in each algorithm. In all DE vari-
ants, the mutation and crossover operations are performed
by the fragment exchange between different conformations
as described in Section V. Therefore, CoDE, SaDE, UMS-
CoDE, and UMDE are, respectively, renamed as CoEA, SaEA,
UMS-CoEA, and UMEA in this experiment. Each protein is
predicted over 30 independent runs. For each run, the confor-
mation with the lowest energy is considered as its predicted
model, and the model with the lowest energy among the 30
runs is selected as the final model. In order to evaluate the
prediction accuracy, the TM-score [90] and the root-mean-
squared-deviation (RMSD) between the predicted and the
native structures are calculated after the optimal rigid-body
superposition of C, atoms. The range of TM-score is (0, 1],
and the higher value is preferable while RMSD is opposite.

Tables S25-S27 of the supplementary material report the
RMSD, TM-score, and energy of the final model predicted by
the six algorithms within MaxFES = 300000, respectively.
It should be note that the results of the top six proteins dif-
fer from those of [31] because the final model is selected by
the energy without using any information of native according
to the rules of CASP [63]. As shown in the table, GLCEA
achieves better models for the majority of proteins. From the
average results reported in Table XVIII, the average RMSD,
TM-score, and energy of GLCEA are 6.55 A, 0.48, and
—28.86, which are 22.44%, 20.00%, and 84.47% better than
the best of the compared algorithms, respectively. The distri-
bution of RMSD for all decoys generated in the prediction
process is shown in Fig. S3 of the supplementary material.
Fig. S4 of the supplementary material displays a comparison

TABLE XVIII
AVERAGE RESULTS OF ROSETTA, SAEA, COEA, UMEA, UMS-COEA,
AND GLCEA WITHIN THE MAXFES

Rosetta ~ SaEA  CoEA UMEA UMS-CoEA GLCEA
RMSD 8.02 10.38 10.70 9.60 8.48 6.55
TM-score 0.40 0.31 0.33 0.36 0.36 0.48
Rosetta energy | —15.59 —2.03 —2.82 —4.40 —10.84 —28.76
TABLE XIX

AVERAGE RESULTS OF ROSETTA, SAEA, COEA, UMEA, UMS-COEA,
AND GLCEA WITHIN THE RUNTIME

Rosetta ~ SaEA CoEA  UMEA UMS-CoEA GLCEA
RMSD 8.04 11.54 9.47 8.49 7.79 6.68
TM-score 0.43 0.32 0.35 0.39 0.38 0.46
Rosetta energy | —25.28 —1.10 —7.62 —17.82 —24.79 —33.55

between the predicted model and the native structure on two
representative cases.

In order to verify the efficiency of GLCEA, we further
compare the final model of GLCEA obtained within 2 h (the
average runtime required by Rosetta) with those of the five
algorithms. The results for each algorithm on each protein are
summarized in Tables S28-S30 of the supplementary mate-
rial, respectively. It is clear that the structures predicted by
GLCEA are better than that generated by the comparison algo-
rithms on most of the proteins. Table XIX lists the average
results of all proteins. The results indicate that GLCEA gets
an average RMSD of 6.68 A, which is 20.36% lower than
that of the best comparison algorithms (8.04 A). When con-
sidering TM-score, GLCEA is also the best algorithm among
these six algorithms as it achieves the highest TM-score (0.46).
The superior performance is attributed to GLCEA can gener-
ate conformations with lower energy (—33.55) compared to
other algorithms.

The proposed GLCEA is further compared with CSM-
SHADE, GPEME, ESMDE, LLUDE, and UMS-SHADE on
the ten proteins. The parameters of these control methods
are determined in the light of their published papers. Since
the mutation and crossover operations of them are performed
by the fragment exchange and fragment assembly, CSM-
SHADE, ESMDE, LLUDE, and UMS-SHADE are called
CSM-SHAEA, ESMEA, LLUEA, and UMS-SHAEA, respec-
tively. All algorithms are stopped when the number of energy
function evaluations reaches 300000 for each independent
run. Tables S31-S33 of the supplementary material shows the
results of the final model on each protein, respectively. It is
clear that the models predicted by GLCEA are better than
the comparison algorithms for most of the cases. The average
results of all proteins listed in Table XX reveal that GLCEA
attains the lowest RMSD (6.55 A). In terms of TM-score, the
average result of GLCEA is 0.48, which is higher than all com-
pared algorithms. The average energy of GLCEA (—28.76) is
also lower than the compared methods.

The final models of GLCEA predicted within 2 h are also
compared with those generated by CSM-SHAEA, GPEME,
ESMEA, LLUEA, and UMS-SHAEA. The RMSD, TM-score,
and energy of each test protein are given in Tables S34-S36
of the supplementary material, respectively. The data indicates
that GLCEA models provide better results compared to the
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TABLE XX
AVERAGE RESULTS OF CSM-SHAEA, GPEME, ESMEA, LLUEA,
UMS-SHAEA, AND GLCEA WITHIN THE MAXFES

CSM-SHAEA GPEME ESMEA LLUEA UMS-SHAEA GLCEA
RMSD 7.72 8.36 9.40 9.24 7.06 6.55
TM-score 0.41 0.37 0.30 0.30 0.44 0.48
Rosetta energy| —16.49 —13.88 2.79 0.12 —19.92 —28.76
TABLE XXI

AVERAGE RESULTS OF CSM-SHAEA, GPEME, ESMEA, LLUEA,
UMS-SHAEA, AND GLCEA WITHIN THE RUNTIME

CSM-SHAEA GPEME ESMEA LLUEA UMS-SHAEA GLCEA
RMSD 7.58 8.44 9.45 9.29 7.13 6.68
TM-score 0.40 0.35 0.30 0.32 0.43 0.46
Rosetta energy —26.04 —19.68 —15.97 —17.57 —26.78 —33.55

control methods for the majority of proteins. Furthermore, the
average results given in Table XXI reveal that GLCEA obtains
an average TM-score of 0.46, which is the highest among
these approaches and 6.5% higher than that of the best control
method. Also, the average RMSD and energy of GLCEA are
6.68 A and —33.55, which are obviously lower than that of
the competitors.

VII. CONCLUSION

An improved DE, called GLCDE, is presented in this article
to enhance the effectiveness and efficiency of DE. In GLCDE,
two phases, the global exploration phase and the local exploita-
tion phase are performed for each generation. The global
phase is performed for each target individual by using multiple
explorative mutation strategies, while in the local phase, the
better-based mutation strategies which apply individuals better
than the target individual are designed to refine all individuals
accepted in the global phase. In both global and local phases,
a set of trial vectors is produced by various mutation strate-
gies and assessed by an adaptive underestimation model, in
which the slope control parameter of the supporting functions
is automatically adjusted to obtain an accurate underestima-
tion. The global phase aims to locate the promising regions
quickly, and the local phase helps the approach to enhance
the convergence speed. A simple parameter adaption scheme
is also designed to determine F' and CR adaptively during the
searching process. Moreover, we applied GLCDE to predicted
the 3-D structure of the protein.

The performance of GLCDE is demonstrated by comparing
with state-of-the-art DE variants, up-to-date DE methods, and
the top DE algorithms in the CEC 2014-2017 competitions
over the classical benchmark functions, CEC 2013, 2014, and
2017 test sets. The results indicate that GLCDE is obviously
superior to or at least comparable with the competitors in the
majority of cases. The effect of each components of GLCDE is
also investigated by various experiments. In addition, GLCDE
is utilized in the PSP problem, termed GLCEA, to verify the
effectiveness and efficiency for the real-world application. The
results show that the structures predicted by GLCEA are more
accurate than those of the competitors because GLCEA can
identify lower energy conformations.

The proposed GLCDE (or GLCEA) is successfully applied
to the real-world problem with 324 (108 x 3, protein 1THX)

dimensions. However, as discussed in Section IV-E, the run-
time complexity of GLCDE depends on the dimension of
the problem and the population size. The computational time
required to construct the underestimation model will increase
with the growth of the problem dimensionality and population
size. Therefore, it is very important to simplify the approach
to obtain an efficient and effective underestimation model
for large-scale problems. Moreover, integrating the population
reduction mechanisms, such as [40] and [56] into GLCDE will
be an interesting direction for future research.
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