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Abstract

Motivation: Protein structure and function are essentially determined by how the side-chain atoms interact with
each other. Thus, accurate protein side-chain packing (PSCP) is a critical step toward protein structure prediction
and protein design. Despite the importance of the problem, however, the accuracy and speed of current PSCP pro-
grams are still not satisfactory.

Results: We present FASPR for fast and accurate PSCP by using an optimized scoring function in combination with a
deterministic searching algorithm. The performance of FASPR was compared with four state-of-the-art PSCP meth-
ods (CISRR, RASP, SCATD and SCWRL4) on both native and non-native protein backbones. For the assessment on
native backbones, FASPR achieved a good performance by correctly predicting 69.1% of all the side-chain dihedral
angles using a stringent tolerance criterion of 20�, compared favorably with SCWRL4, CISRR, RASP and SCATD
which successfully predicted 68.8%, 68.6%, 67.8% and 61.7%, respectively. Additionally, FASPR achieved the highest
speed for packing the 379 test protein structures in only 34.3 s, which was significantly faster than the control meth-
ods. For the assessment on non-native backbones, FASPR showed an equivalent or better performance on I-
TASSER predicted backbones and the backbones perturbed from experimental structures. Detailed analyses
showed that the major advantage of FASPR lies in the optimal combination of the dead-end elimination and tree de-
composition with a well optimized scoring function, which makes FASPR of practical use for both protein structure
modeling and protein design studies.

Availability and implementation: The web server, source code and datasets are freely available at https://zhanglab.
ccmb.med.umich.edu/FASPR and https://github.com/tommyhuangthu/FASPR.

Contact: zhng@umich.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Protein side-chain conformations are closely relevant to their bio-
logical functions (Miao and Cao, 2016), and therefore the accurate
modeling of protein side-chains is of great significance. Protein side-
chain packing (PSCP) is an important step in protein structure pre-
diction (Roy et al., 2010; Yang et al., 2015), structure-based protein
and enzyme design (He et al., 2018; Huang et al., 2017; Pearce
et al., 2019; Shultis et al., 2019) and structure refinement (Chitsaz
and Mayo, 2013; Zhang et al., 2011).

Typically, a PSCP method is composed of three components: (i)
a rotamer library, (ii) a scoring function and (iii) a searching method
(Huang et al., 2020b). Solving a PSCP problem thus involves identi-
fying a set of amino acid conformations from a rotamer library that
minimizes the protein folding energy calculated by the scoring func-
tion using a searching method. Many programs have been developed

to address the PSCP problem, which use different rotamer libraries,
scoring functions and searching methods (Cao et al., 2011; Krivov
et al., 2009; Lu et al., 2008; Miao et al., 2011; Xu and Berger,
2006). These programs achieved similar performance on side-chain
torsion angle prediction by correctly predicting 84–86% of the v1 di-
hedral angles and 71–75% of the v1 þ 2 angles for native protein
backbones using a widely used tolerance criterion of 40�. The
searching algorithms used by these packers can be categorized into
two classes: (i) deterministic, such as dead-end elimination (DEE)
(Desmet et al., 1992; Goldstein, 1994; Pierce et al., 2000), A*
(Leach and Lemon, 1998), linear and integer programming
(Kingsford et al., 2005), mixed integer linear programming (Huang
et al., 2013a, b; Pantazes et al., 2015), branch-and-bound (Gordon
and Mayo, 1999), graph-theoretic algorithm (Canutescu et al.,
2003; Samudrala and Moult, 1998), residue-rotamer-reduction (Xie
and Sahinidis, 2006) and tree decomposition (Xu and Berger, 2006),
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and (ii) non-deterministic, such as Monte Carlo (Lu et al., 2008;
Miao et al., 2011), simulated annealing (Peterson, 2004) and genetic
algorithms (Liu et al., 2002). More attention has been paid to the
development of efficient deterministic searching algorithms for
PSCP. Among the packing programs, the SCWRL series developed
by Dunbrack’s laboratory are the most popular ones due to their ac-
curacy, determinacy and robustness (Canutescu et al., 2003; Krivov
et al., 2009). As a consequence, SCWRL4 was incorporated into the
first version of our evolution-based de novo protein sequence design
program, EvoDesign (Mitra et al., 2013). However, the relatively
slow speed of SCWRL4 significantly limits the number of Monte
Carlo steps that can be performed during design simulations, and
subsequently, SCWRL4 was replaced by a much faster but similarly
accurate packer, RASP (Miao et al., 2011), which allows for running
more simulation steps within an identical computational time in an
updated version of EvoDesign for protein–protein interaction design
(Pearce et al., 2019). Although RASP is sufficiently fast for side-
chain modeling, its major drawback is that it incorporates a stochas-
tic searching procedure, thus different structure models may be
obtained from independent runs. This results in great difficulty
tracking the repacked structure models in protein design simula-
tions. Therefore, it is quite desirable to develop a new packing tool
that is fast, accurate and deterministic.

To achieve a good balance between accuracy, speed and deter-
minacy, we developed a new method, FASPR, for solving PSCP
problems effectively and efficiently. We compared the performance
of FASPR with four other state-of-the-art packers, CISRR (Cao
et al., 2011), RASP (Miao et al., 2011), SCATD (Xu and Berger,
2006) and SCWRL4 (Krivov et al., 2009), on both native and non-
native protein backbones. With the exception of RASP, the other
four programs, including FASPR, utilize deterministic searching
methods. In the native backbone assessment, the 379 non-redundant
experimental structures used to test SCWRL4 were used, while in
the non-native backbone assessment, two sets of backbones were
utilized: (i) a set of 379 structure models constructed using I-
TASSER (Yang et al., 2015) from the sequences extracted from the
379 SCWRL4 test proteins and (ii) 10 sets of 379 structural models
obtained by perturbing the main-chains with different variances
using the SCWRL4 test proteins, which were constructed by Xu
et al. (2019). The results demonstrate that FASPR achieved very
high accuracy and the highest speed among all the programs tested
on both native and non-native backbones. The advantageous com-
bination of high accuracy, speed and determinacy for modeling the
side-chains of both native and non-native backbones makes FASPR
a useful tool for protein structure modeling. Except for the standard
C/Cþþ libraries, FASPR is completely independent from any other
third-party program or library, making it easy to propagate and be
used in different operating systems. Moreover, the source code of
FASPR is freely available to the community, allowing users to opti-
mize it for their own needs.

2 Materials and methods

2.1 Overview of the FASPR algorithm
The flowchart of the FASPR algorithm is illustrated in Figure 1. The
input is the protein backbone coordinates in PDB format and op-
tionally an amino acid sequence to be packed on the given back-
bone. When repacking a new sequence, its length must be identical
to the number of residues of the provided backbone. FASPR samples
the amino acid side-chain conformations from the Dunbrack rota-
mer library (Shapovalov and Dunbrack, 2011). To construct the
side-chain rotamers, there should be no missing main-chain atoms
(i.e. N, Ca, C and O). The coordinates of all side-chain atoms are
built using the standard topology given in Engh and Huber (1991)
and the dihedral angles taken from the Dunbrack rotamer library,
and are converted into Cartesian space using the NeRF method
(Parsons et al., 2005).

For each rotamer at a packing position, the self-energy between
the rotamer side-chain and the fixed backbone is calculated using an
empirical scoring function. The rotamers whose self-energies are

higher than a given threshold relative to the lowest self-energy at
that position are unlikely to be a part of the global minimum energy
configuration (GMEC) and are directly eliminated (see below).
After this process, the residues with only one rotamer left are fixed
and the side-chain conformation is taken as the retained rotamer.
The pairwise energy between rotamer pairs located at different resi-
dues is calculated for the unfixed positions. Then Goldstein DEE
(Goldstein, 1994) and Split DEE (Pierce et al., 2000) are performed
to eliminate the rotamers that cannot be in the GMEC state and
similarly the residues with only one rotamers left are fixed. For the
remaining unfixed residues, a residue interaction graph is con-
structed using a depth-first-search approach; the whole graph is in
general comprised of one or more separated subgraphs. Each sub-
graph is subjected to a tree decomposition procedure (Krivov et al.,
2009; Xu and Berger, 2006) and exhaustive enumeration of rotamer
combinations if the width of the tree is �5, otherwise an extra edge
decomposition technique is repeated until the width is �5 (see
below). Once all the subgraphs are solved via tree decomposition,
the PSCP solution is obtained and the repacked structure model is
generated.

2.2 Rotamer library
FASPR uses the latest version of the Dunbrack rotamer library
(Shapovalov and Dunbrack, 2011), which was shown to be the li-
brary that is most suitable for PSCP (Huang et al., 2020b). Rare
rotamers with probability <1% are excluded and the other rotamers
are read until the accumulative probability reaches 97%.

Fig. 1. Flowchart of the FASPR approach
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2.3 Scoring function
The FASPR scoring function is comprised of four terms:

EFASPR ¼ EVDW þ EHB þ ESS þ EROT

¼
P

i;j Evdw i; jð Þ þwhbEhb i; jð Þ þwssEss i; jð Þ½ �

þ
XN
l¼1

wrotErot rlð Þ;

(1)

where EVDW is the total van der Waals energy of non-bonded atom
pairs, EHB is the total hydrogen bonding energy, ESS is the total di-
sulfide bonding energy and EROT is a term related to the rotamer fre-
quencies derived from the Dunbrack rotamer library. whb, wss and
wrot are the energy weights for their corresponding energy terms,
where a summary of the energy weights is listed in Supplementary
Table S1. The energy terms are mainly adapted from the EvoEF2
force field (Huang et al., 2020a) with some modification to allow
for rapid caculation. For example, the solvation energy term is
excluded from the FASPR scoring function, hydrogens are not expli-
citly considered in the orientation-dependent hydrogen bonding
term, and the two dihedral angle (Ca � Cb � Sc � Sc) terms for disul-
fide bonding energy scoring are not considered.

The van der Waals energy between atoms i and j takes the form:

Evdw i; jð Þ ¼

10; d�ij < 0:015

10
d�ij � 1

0:015� 1
; d�ij 2 0:015; 1½ Þ

4eij
1
d�

ij

� �12 � 1
d�

ij

� �6
� �

; d�ij 2 1; 1:9½ Þ

0; d�ij � 1:9

;

8>>>>>>>><
>>>>>>>>:

(2)

where rij ¼ ri þ rj is the sum of their hard-sphere van der Waals

atomic radii, eij is the combined well-depth for atoms i and j

(eij ¼
ffiffiffiffiffiffiffi
eiej
p

) and dij is the distance between atoms i and j. d�ij is

defined to be dij=rij. A total of 18 non-hydrogen atom types were

taken from OPUS-Rota (Lu et al., 2008) and the corresponding r
and e values were reoptimized in this work. A summary of the opti-
mized atomic parameters is listed in Supplementary Table S2.

The hydrogen bonding energy between the donor atom (D) and
the acceptor atom (A) is calculated as:

Ehb D;Að Þ ¼ 5
d

DDA

� �12

� 6
d

DDA

� �6
" #

cos2 h�HDð Þcos2 /� UAð Þ;

(3)

where d is the distance between D and A, h is the angle between the
donor-base (DB), D and A and / is the angle between D, A and the
acceptor-base (AB). DDA is the optimal hydrogen bond length,
which is set to 2.8 Å. HD and UA are the optimal h and / angles cen-
tered on atoms D and A, respectively. The values of HD and UA are
set to 120� for D and A atoms in sp2 hybridized states or 109.5� for
sp3 hybridized D and A atoms. The value of Ehb is evaluated only if
d 2 2:6; 3:2½ � Å and h;/ � 90�. The amino acid hydrogen bonding
donors and acceptors are listed in Supplementary Table S3.

The disulfide bonding energy between two cysteines is calculated
as:

EssðSc1; Sc2Þ ¼ 100ðd � DSSÞ2 þ 0:01ðu1 �WCSSÞ2

þ0:01ðu2 �WCSSÞ2 þ 2 cos ð2xÞ � 8;
(4)

where d is the distance between sulfur atoms Sc1 and Sc2, u1 is the
angle between atoms Cb1, Sc1 and Sc2, u2 is the angle between atoms
Cb2, Sc2 and Sc1 and x is the torsional angle between atoms Cb1, Sc1,
Sc2 and Cb2. DSS is the optimal disulfide length which is set to 2.03 Å
and WCSS is the optimal C–S–S angle which is set to 105�. The value
of Ess is calculated only if d 2 1:73; 2:53½ � Å and u1;2 2 75�;135�½ �.

The rotamer frequency term is calculated as:

Erot rlð Þ ¼ �ln
P rlj/l;wl

	 

max P rlj/l;wl

	 
 ; (5)

where /l;wlð Þ are the main-chain torsional angles at the l-th amino
acid position along a protein chain, rl is a rotamer with the specified
type and P rlj/l;wl

	 

is the probability for rotamer rl, which is taken

from the Dunbrack rotamer library.

2.4 Searching method
Solving a PSCP problem involves identifying a set of rotamers that
makes the folded protein system adopt the GMEC state. FASPR sol-
ves PSCP problems using DEE in combination with tree
decomposition.

The total energy of the protein system can be calculated as:

Etotal ¼ Ebackbone þ
XN
i¼1

Eself rið Þ þ
XN�1

i¼1

XN
j¼iþ1

Epair ri; ujð Þ; (6)

where Ebackbone is the energy of the backbone and can be ignored be-
cause it is a constant given a fixed backbone, N is the number of
positions that are placed with rotatable residues (Ala and Gly are
excluded because they do not have rotatable non-hydrogen side-
chain atoms) and ri and uj are the rotamers chosen at positions i and
j, respectively. Eself rið Þ is the energy between rotamer ri and the fixed
protein backbone, while Epair ri; ujð Þ represents the energy between
rotamers ri and uj at different positions. Eself rið Þ and Epair ri; ujð Þ are
calculated using Equations (1)–(5) and the rotamer frequency
term is only included in the calculation of Eself . To efficiently calcu-
late all the Epair ri; ujð Þ values, we only consider the pairs of residues
that are in contact. A pair of residues i and j is defined to be in
contact if the distances between their Cb and Ca atoms satisfy
the following conditions: d Cb;i;Cb;j

	 

< Ri þ Rj þ 4:25 Å and

d Cb;i;Cb;j
	 


< d Ca;i;Ca;j
	 


þ 2:35 Å, where Ri and Rj are the radii
of the side-chain hemispheres for residues i and j, respectively. A list
of the hemisphere radii for all 20 amino acids is given in
Supplementary Table S4.

Some rotamers with high self-energies are eliminated since they
are very unlikely to be a part of the GMEC structure in reality. For
each residue, a rotamer with self-energy higher than 15 kcal/mol
relative to the lowest self-energy rotamer is removed; this threshold
was determined during the parameter optimization process.

Following this, the Goldstein DEE theorem (Goldstein, 1994) is
used to eliminate rotamers that cannot be a part of the GMEC:

Eself rið Þ � Eself sið Þ þ
X
j 6¼i

min Epair ri; ujð Þ � Epair si;ujð Þ
� �

> 0; (7)

which states that rotamer ri can be eliminated if its contribution to
the total energy can be reduced by using an alternative rotamer, si.

Subsequently, the Split DEE theorem (Pierce et al., 2000) is used
to further eliminate non-GMEC rotamers:

Eself rið Þ � Eself sið Þ þ
P

j 6¼i6¼k min Epair ri; ujð Þ � Epair si; ujð Þ
� �

þ Epair ri; vkð Þ � Epair si; vkð Þ
� �

> 0;
(8)

which states that rotamer ri can be eliminated if, for each splitting
rotamer v at some splitting position k 6¼ i, there exists a rotamer si

that achieves a lower energy contribution. The Goldstein and Split
DEE steps are repeated until no rotamers can be removed.

Next, a residue interaction graph is constructed for the residues
that have more than one remaining rotamer. In the graph, vertices
represent residues while edges between vertices indicate that at least
one rotamer of one residue has a non-zero interaction with rotamers
from another residue. Typically, the resulting interaction graph may
contain several separated subgraphs with no edges between them.
Each of these subgraphs is then subjected to a tree decomposition
procedure which was described by Krivov et al. (2009) in detail. The
algorithmic complexity of a tree decomposition is exponentially
dominated by the width of the tree, which is the size of the largest
node minus one. For a given graph, different tree decompositions
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can be built and the optimal decomposition is the one with the min-
imum width, which is also called the treewidth. Unfortunately, it is
difficult to determine the treewidth of an optimal tree decompos-
ition, which has been proven to be NP-hard (Krivov et al., 2009). In
this work, we utilized the minimal-degree approach to carry out tree
decomposition, which was proposed by Xu and Berger (2006).

During tree decomposition, the minimum energy rotamer config-
uration of a subgraph is calculated through a bottom-to-top process
to assign the energies from the branch nodes to the root node and a
top-to-bottom process to determine the optimal rotamer from the
root to the branches via backtracking (Krivov et al., 2009).
Sometimes, even with efficient tree decomposition, the calculation
still remains intractable because the width of a tree is too large and
the actual search for the local solution is done via exhaustive enu-
meration. When the number of rotamer combinations within a node
is sufficiently large, the exhaustive search can be very time-
consuming. Since the product is exponentially related to the width
of a tree decomposition, a threshold of the width is used to check if
the decomposition is easily tractable. In this work, when the width
is larger than 5, the edge decomposition technique is utilized to re-
move edges that can be approximated as the sum over single-residue
energies (Krivov et al., 2009). The threshold for decomposing an
edge is set to 0.5 kcal/mol and doubled for each iteration of the edge
decomposition procedure. After each iteration of edge decompos-
ition, the new width is determined and the tree is enumerated if the
width is �5, otherwise edge decomposition is repeated. Based on
our benchmark, in general two iterations of edge decomposition are
sufficient.

2.5 Datasets
Training set. The 100 crystal structures that were used to train
SCWRL4 were also used to train FASPR in this work. The PDB IDs
of these 100 structures are listed in Supplementary Table S5. It
should be noted that the PDB ID 1PS4 has been replaced by 1Q2U
in the Protein Data Bank database (Berman et al., 2002). Test set.
We evaluated FASPR’s performance on both native and non-native
protein backbones. For the native backbone assessment, the 379 ex-
perimental structures (DB379) that were used to test SCWRL4 were
employed to test FASPR. The PDB IDs of these 379 structures are
listed in Supplementary Table S6. Notably, five PDB IDs, 1P6Z,
1YO3, 2DPO, 2O37 and 2PZ4 have been replaced by 3SSW,
5WOF, 3ADO, 4RWU and 3PHS in the Protein Data Bank database
(Berman et al., 2002), respectively. We performed two kinds of non-
native backbone assessments. In the first non-native backbone test,
we used I-TASSER (Yang et al., 2015) to remodel the 379 structures
given the corresponding sequences and then repacked the structures
based on the modeled main-chain conformations. As shown in
Supplementary Table S7, 378 out of 379 models adopted the same
global topologies as their native counterparts with TM-score >0.5
(Xu and Zhang, 2010), suggesting that the I-TASSER models are of
sufficiently high quality to be used for PSCP assessment on non-
native backbones. In the second non-native backbone test, we direct-
ly used the 10 non-native test sets compiled by Xu et al. (2019)
based on DB379. To be specific, the non-native sets were con-
structed by using the main-chain torsional angles with their original
values multiplied by a modulating factor randomly sampled from a
Gaussian distribution for all proteins in DB379. Ten different levels
of noise strength were used; the mean values of the Gaussians were
1.0, and the standard deviations were 0.001, 0.003, 0.005, 0.008,
0.01, 0.013, 0.014, 0.015, 0.016 and 0.02. Therefore, each of the
10 non-native test sets contained 379 proteins. The corresponding
average main-chain root mean square deviations (RMSDs) between
the perturbed structures and the native counterparts at each noise
level were 0.21, 0.57, 0.93, 1.48, 1.88, 2.38, 2.55, 2.74, 2.95 and
3.68 Å, respectively. The native structures, I-TASSER models and
perturbed backbones are freely available on our website (see
Availability and implementation section of the abstract).

Although all the training and test proteins had a high resolution
(�1.8 Å), the side-chains of many residues were still not well
defined. The coordinates of some side-chain atoms were missing due
to low electron density. Similarly, some atoms had poor coordinates

due to high mobility, given the large B-factor values. To eliminate
the negative effects of these ill-defined side-chains, Krivov et al.
(2009) only took the side-chains with electron density above the
25th percentile to benchmark SCWRL4. In this work, to generate re-
liable side-chains for training and testing FASPR, we also culled the
datasets, but in a slightly different way. Specifically, we defined and
calculated the B-factor value of a residue as the arithmetic mean of
those of its non-hydrogen atoms. For a residue with missing atoms,
its B-factor was arbitrarily set to a large value (i.e. 1000). Only the
residues with the average B-factor value below the 75th percentile
were used for training and testing. As a result, a total of 43 921 resi-
dues were reserved in the test set, where Ala and Gly were excluded.
As a comparison, Krivov et al. (2009) collected 45 216 residues for
testing SCWRL4 based on the electron density rule. To be consist-
ent, the corresponding 43 921 residues were also used for the assess-
ment on non-native backbones. Krivov et al. (2009) also reported
that considering the crystal lattice improved protein side-chain pre-
diction accuracy on the native backbones, but the crystal informa-
tion was not considered in this study, because it was not available
for the I-TASSER models and/or the randomly perturbed main-
chains.

2.6 Evaluation criteria
The accuracy of side-chain prediction is usually assessed in terms of
dihedral angle deviations and RMSDs between the predicted and na-
tive conformations. In previous studies, usually only the v1 and
v1 þ 2 dihedral angles were considered and a dihedral angle was
regarded as being predicted correctly if its value was within 40� to
that of the native structure (Canutescu et al., 2003; Cao et al., 2011;
Krivov et al., 2009; Miao et al., 2011; Xu and Berger, 2006).
However, recently we showed that this criterion was relatively loose
and good performance could be easily achieved by all the methods
(i.e. the success rates for v1 and v1 þ 2 were above 85% and 70%,
respectively), thus underestimating the difficulty of the PSCP prob-
lem. Instead, when we used a more stringent criterion (i.e. all pre-
dicted v angles were within 20� to that of the native structure), the
performance of all methods dropped significantly and the prediction
accuracy was much lower than the maximum achievable accuracy
level (Huang et al., 2020b). In this work, we continued to report the
performance, denoted as v1 � 4 recovery rate, following this strin-
gent criterion. As a second metric, the RMSD was only calculated
for the non-hydrogen side-chain atoms without atom Cb. There are
two ways to calculate RMSD among a set of proteins: overall and
average RMSD. The overall RMSD is calculated by summing over
all of the residues in all of the proteins, while the average RMSD is
simply the average value of the sum of RMSDs for each of the pro-
teins from the set. The value of overall RMSD is usually larger than
that of average RMSD and was used in this work. The symmetry of
residues Asp, Glu, Phe, Arg and Tyr were considered during the dih-
eral angle and RMSD calculations. For residues Asn, Gln and His,
their terminal groups were also flipped due to the difficulty of distin-
guishing different terminal atoms (Cao et al., 2011). Ala and Gly
were excluded in the analyses.

In addition to the dihedral angles and RMSDs, we also calcu-
lated the steric clashes to examine the quality of models constructed
by FASPR as described in the study by Miao et al. (2011).
Specifically, two non-bonded atoms were regarded to have a clash if
their distance was <60% of the sum of their van der Waals radii
taken from the AMBER force field (Case et al., 2005).

2.7 Parameter optimization
In this section, we describe in detail how the parameters were opti-
mized in the FASPR method. The parameters include the energy
weights (whb, wss and wrot), the radii and well-depths for the 18
non-hydrogen atom types (see Supplementary Tables S1 and S2),
and the self-energy threshold. wrot was set to be amino acid-specific;
i.e. it may take different values for different amino acid types. Each
parameter was allowed to vary from the lower bound to the upper
bound in increments (Supplementary Table S8). Starting from a set
of random values, the parameters were first optimized by
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minimizing the objective function shown in Equation (9), which is
calculated from packing the 100 training proteins using a simulated
annealing Monte Carlo (SAMC) procedure.

f ¼ �10 000v1�4 þNclash; (9)

where v1 � 4 is the side-chain recovery rate ranging in [0, 1] and
Nclash is the total number of clashes in the 100 repacked models.

The highest and lowest temperatures were set to kT¼100 and
0.01, respectively, and the temperature decreasing factor was set to
0.8. At each temperature, 1000 Monte Carlo steps were performed,
where a move was accepted or rejected using the Metropolis criteria
(Metropolis and Ulam, 1949). Then three cycles of greedy search
were performed to further optimize the parameters using the same
objective function, starting from the values obtained via SAMC. In
the greedy search, one parameter was changed at a time from its
lower to upper bound (Supplementary Table S8), while the other
parameters were fixed at their optimal values. If the value of the ob-
jective function was improved, then the new parameter was
recorded.

2.8 Definition of core and surface residues
It was shown that the side-chain prediction accuracy was quite dif-
ferent for residues located in distinct regions (e.g. core and surface)
of a protein (Cao et al., 2011). In this work, the core and surface res-
idues were defined using the same criteria as before (Huang et al.,
2020a). Specifically, we defined core residues as those positions that
had more than 20 Cb atoms within 10 Å of the Cb atom of the resi-
due of interest, while the surface residues were required to have less
than 15 Cb atoms within the same region. The Ca atoms were
counted for Gly.

3 Results

3.1 Performance of FASPR on native backbones
We compared FASPR with CISRR, RASP, SCATD and SCWRL4
for side-chain modeling on the representative test set DB379, which
was first compiled by Krivov et al. (2009). The results are shown in
Table 1. SCWRL4 by default samples subrotamers to enhance PSCP
accuracy, and therefore is more time-consuming. To compare with
FASPR in an identical conformational space, we also ran SCWRL4
without subrotamer sampling (Table 1, row 6). In general, with the
exception of SCATD, the performance of FASPR, CISRR, RASP and
the default SCWRL4 were quite comparable. FASPR achieved the
highest overall v1 � 4 recovery rate of 69.1% and the lowest overall
RMSD of 1.457 Å on the whole test set (Table 1, column 2). In the
protein core, FASPR achieved slightly lower v1 � 4 recovery rates
and higher RMSD values than CISRR and the default SCWRL4
(Table 1, column 3), while in the protein surface, FASPR outper-
formed the other methods in terms of both v1 � 4 recovery rate and
RMSD (Table 1, column 4). The high accuracy of CISRR for the
core residues was probably because CISRR rotates the side-chain
conformations to reduce steric clashes, while the default SCWRL4
achieved a high accuracy for core residues due to the effective subro-
tamer sampling. The accuracy of SCWRL4 decreased somewhat
when the subrotamers were disabled, which was much worse than
that of FASPR for the residues in all three categories. The side-chain
modeling accuracy for each of the 18 amino acid types (Ala and Gly
excluded) is listed in Supplementary Table S9. It was shown that,
with the exception of SCATD, none of the methods could outper-
form the others for every residue type in each of the three categories.

In addition to the side-chain recovery rate and RMSD, it is also
important to evaluate the quality of the repacked structures. Based
on our test, CISRR achieved the least number of steric clashes in all
the 379 models, probably because CISRR was specifically optimized
to minimize the number of clashes by rotamer relaxation rather than
maximize the side-chain recovery rate. FASPR yielded 149 clashes
(Table 1, column 5), which was greater than that of CISRR but
much less than that produced by the other methods. The clashes
obtained in this work were different from those reported by Miao

et al. (2011), where RASP, CISRR and SCWRL4 had 47, 59 and
411 clashes in the structure models on the DB379 dataset. The great
discrepancy of the clashes was obtained for RASP models probably
because no rotamer relaxation phase was included as reported for
rapid side-chain packing (Miao et al., 2011). As shown by Cao et al.
(2011), a rotamer relaxation procedure was very time-consuming.

With respect to the speed, FASPR showed the highest computa-
tional efficiency, and overall, FASPR was about 44.09, 26.77, 5.11,
4.93 and 1.27 times faster than CISRR, the default SCWRL4 with
subrotamers sampled, SCWRL4 with subrotamers disabled, SCATD
and RASP, respectively (Table 1). The computational time for PSCP
on the 379 native backbones is shown in Supplementary Table S10.
It took only 34.3 s for FASPR to repack all of the 379 test proteins,
which was even faster than the previously fastest packer, RASP
(Colbes et al., 2017; Miao et al., 2011). To the best of our know-
ledge, FASPR may be the most efficient packing program developed
so far. In addition, compared to RASP, FASPR uses a deterministic
searching method, which allows for easy tracking of the repacked
structure models in our protein design algorithm, EvoDesign (Pearce
et al., 2019), or similar protein design approaches that separately
consider the sequence space and rotamer space.

3.2 Performance of FASPR on I-TASSER-modeled

backbones
It is important to test the ability of FASPR to perform side-chain
modeling on non-native protein backbones, e.g. the predicted mod-
els produced by a typical protein structure prediction software.
Previous studies demonstrated that PSCP programs can be applied
to the protein backbones predicted by homology modeling
(Kingsford et al., 2005; Lu et al., 2008), where higher side-chain
modeling accuracy was achieved when the sequence identity be-
tween the modeled and template structures was higher (Lu et al.,
2008).

We evaluated the performance of FASPR for side-chain modeling
on the non-native main-chain structures extracted from the 379 I-
TASSER models. The results are summarized in Table 2. The side-
chain modeling accuracy on the I-TASSER backbones for the 18
amino acids with rotamers is listed in Supplementary Table S11.
Compared to the results in Table 1, the overall prediction accuracy
in terms of v1 � 4 recovery rate dropped by about 10% for all of the
methods, indicating that protein backbone conformations signifi-
cantly impact the accuracy of side-chain prediction. Nevertheless,
FASPR still achieved the highest overall side-chain torsion angle

Table 1. Comparison of FASPR with four popular side-chain pack-

ing programs on the native structures from DB379, where bold

fonts mark the best performer in each category

Methoda v1 � 4 recovery rate (%)/RMSD (Å) #Clashb Relative

timec

All Core Surface

FASPR 69.1/1.457 80.3/0.983 56.8/1.906 149 1.00

CISRR 68.6/1.526 81.4/0.958 54.8/2.022 60 44.09

RASP 67.8/1.551 78.9/1.067 55.5/1.998 785 1.27

SCATD 61.7/1.856 74.7/1.279 48.4/2.318 1388 4.93

SCWRL4 68.8/1.524 80.7/0.966 55.5/1.991 557 26.77

SCWRL4v 67.0/1.620 78.9/1.061 54.1/2.072 232 5.11

aSCWRL4 by default samples subrotamers and thus searches in a larger

rotamer space; SCWRL4v runs the SCWRL4 program by disabling the subro-

tamers sampling with option “-v”. The other PSCP programs also use the

Dunbrack rotamer library without sampling subrotamers.
b#Clash, the total number of clashes for all the 379 packed structure

models.
cReports how much slower on average the other methods are than FASPR.

These values were calculated by averaging the ratio of the computational time

at each column with respect to the FASPR column in Supplementary Table

S10. All the programs were run on the XSEDE Comet server (Towns et al.,

2014) using a single CPU [Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50 GHz].
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recovery rates among all of the programs by correctly predicting
58.0% of the side-chains. FASPR also yielded the second least num-
ber of clashes for the I-TASSER backbones, which was only worse
than CISRR. These results reveal that FASPR may be more suitable
for repacking structural models generated by I-TASSER than the
other PSCP programs, demonstrating its usefulness in protein struc-
ture prediction.

3.3 Performance of FASPR on perturbed backbones
We also tested the performance of FASPR on a series of non-native
backbones by randomly perturbing the main-chains of the 379 struc-
tures from DB379. Main-chain perturbation was found to be useful
in flexible-backbone protein design (Ollikainen et al., 2013;
Saunders and Baker, 2005). This kind of non-native backbone is dif-
ferent from the I-TASSER modeled backbones because no energy
minimization was performed to generate these main-chains. Ten sets
of non-native main-chains were taken from the work by Xu et al.
(2019).

The results are illustrated in Figure 2. The side-chain modeling
accuracy on the perturbed backbones for the 18 amino acids with
rotamers is listed in Supplementary Tables S12–S21. A summary of
the steric clashes produced by different methods for distinct main-
chain RMSD levels is listed in Supplementary Table S22. In general,
the v1 � 4 recovery rate quickly decreased and meanwhile the num-
ber of clashes rapidly increased in the repacked structures for all the
methods, as the main-chain RMSD increased (Fig. 2). Compared to
the other methods, FASPR achieved a good performance in terms of
v1 � 4 recovery rate at different main-chain RMSD perturbation lev-
els for the residues in all three categories (Fig. 2A–C). For the core
residues, the difference between the performances of the five pro-
grams was only moderate (Fig. 2B), while for the surface residues,
FASPR considerably outperformed the other programs (Fig. 2C). As
shown in Fig. 2D and Supplementary Table S22, a large number of
clashes were produced in the repacked structures for all the methods
when the main-chain RMSD was very large (e.g. >2.38 Å); this was
because the non-native backbones were generated by randomly per-
turbing the native main-chains and the tertiary folds might not be
maintained when the RMSD is large. However, the performance on
the backbones with small main-chain RMSDs (e.g. <0.93 Å) was to
some extent meaningful, as much less steric clashes were obtained.
For these low-RMSD backbones, FASPR achieved a good balance
between packing accuracy and steric clashes.

Most regular proteins possess a globular fold shape with a
hydrophobic core and a hydrophilic surface. The state-of-the-art
packing algorithms achieved about 20–30% higher v1 � 4 recovery
rates for packing the core residues than for packing the surface resi-
dues on both the native and near-native (e.g. I-TASSER models)
structures (Tables 1 and 2), indicating that the I-TASSER models
were in well-folded shapes. However, it can be seen that the differ-
ence between the v1 � 4 recovery rates for the core and surface

residues was less than 10% when the main-chain perturbation
RMSD was large, e.g. >2.38 Å (Supplementary Tables S17–S21),
suggesting that the folds may be destroyed. Therefore, the side-chain
modeling results on the perturbed backbones revealed that, for
flexible-backbone protein design, the main-chain conformation
should not be changed too much so as not to damage the global fold
and the designability. It has been suggested that a de novo protein
sequence design case may be regarded as successful if the designed
sequence can fold into a structure with a global RMSD <2 Å to the
template used for design (Bazzoli et al., 2011), and ideally, this may
also be an upper limit for the main-chain variation in flexible-
backbone protein design.

4 Discussion and conclusion

In this work, we developed a new deterministic method, FASPR, for
fast and accurate modeling of protein side-chain conformations.
FASPR takes rotamers from the Dunbrack rotamer library
(Shapovalov and Dunbrack, 2011). Atomic interactions are calcu-
lated using an optimized empirical scoring function that is mainly
adapted from the EvoEF2 force field (Huang et al., 2020a) but with
modifications to facilitate fast calculation. FASPR utilizes a deter-
ministic searching algorithm, which combines self-energy checks,
DEE (Goldstein, 1994; Pierce et al., 2000) and tree decomposition
(Xu and Berger, 2006).

As a standard benchmark, the performance of FASPR was first
evaluated and compared with four other state-of-the-art PSCP meth-
ods (i.e. CISRR, RASP, SCATD and SCWRL4) on a representative
set of 379 native backbones. FASPR slightly outperformed CISRR,
RASP and SCWRL4 by correctly predicting 69.1% of all the side-
chains using a stringent tolerance criterion of 20�, and considerably
outperformed SCATD, which only achieved a low v1 � 4 recovery
rate of 61.7%. FASPR, SCATD and SCWRL4 also utilize DEE and
tree decomposition to solve the PSCP problem, and FASPR and
SCWRL4 use the same rotamer library (Shapovalov and Dunbrack,
2011) but different scoring functions. Meanwhile, SCATD uses an
older rotamer library (Dunbrack and Cohen, 1997) and a simple
scoring function which contains only the van der Waals and rotamer
probability terms. This comparison suggests that the accuracy of
FASPR should be ensured by the optimized scoring function and the
state-of-the-art rotamer library. Although FASPR uses similar
searching techniques as SCATD and SCWRL4, the architectures
of the search engines used by these programs are different.
For instance, to enhance the computational efficiency of tree decom-
position, Split DEE (Pierce et al., 2000) was introduced to further
eliminate the non-GMEC rotamers after the application of the
Goldstein DEE theorem (Goldstein, 1994). In practice, we found

Table 2. Comparison of FASPR with four popular side-chain pack-

ing programs on the I-TASSER-modeled structures from DB379,

where bold fonts mark the best performer in each category

Method v1 � 4 recovery rate (%)a #Clash

All Core Surface

FASPR 58.0 70.9 44.0 397

CISRR 57.1 70.7 42.5 224

RASP 55.9 68.4 42.8 1633

SCATD 52.7 66.7 38.5 2452

SCWRL4 57.4 71.0 42.9 893

SCWRL4v 55.3 68.5 41.7 647

aThe v1 � 4 recovery rate was calculated between the 379 repacked models

based on I-TASSER main chains and the native structures. Since the

I-TASSER models have different main-chain positions compared to the native

structures, the side-chain RMSD values were not calculated. Fig. 2. Comparison of FASPR with four popular side-chain packing programs on

the perturbed backbones. The main-chain RMSD values along the X-axis in each

subplot are 0.21, 0.57, 0.93, 1.48, 1.88, 2.38, 2.55, 2.74, 2.95 and 3.68 Å,

respectively
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that Split DEE significantly improved the speed, as it took 0.6 and
1.0 min to pack all of the 379 native structures with and without
Split DEE, respectively. To our knowledge, Split DEE has not been
implemented in the other four programs. To show the efficiency of
FASPR in detail, we listed the number and ratio of rotamers which
were eliminated at each searching stage (i.e. self-energy check,
Goldstein DEE, Split DEE and tree decomposition) for each of the
379 test cases on native backbones. As shown in Supplementary
Table S23, overall self-energy check, Goldstein DEE, Split DEE and
tree decomposition eliminated 11.55%, 75.62%, 4.25% and 8.57%
of the rotamers, respectively. Alternatively, on average,
10.76 6 3.19%, 76.97 6 5.92%, 3.86 6 3.23% and 8.41 6 3.25%
of the rotamers were eliminated at the four stages, respectively. The
relatively low ratio of rotamers eliminated by Split DEE was because
it was performed after self-energy check and Goldstein DEE.
Nevertheless, we can see from Supplementary Table S23 that Split
DEE eliminated more than 10% of the rotamers for many cases.
Only two cases, 1HZ6 and 2VC8, can be directly solved by self-
energy check and DEE, indicating that the efficiency of FASPR can
be attributed to the elaborate collaboration of the four filters. As
expected, it took a longer time to pack larger proteins with more
rotamers and/or residues (Supplementary Fig. S1); but it was still
sufficiently efficient for large proteins (e.g. >500 amino acids).
Moreover, it is likely that the prediction accuracy is independent
from the size of a protein (Supplementary Fig. S2).

For protein structure prediction and flexible-backbone protein
design, the main-chain of a protein scaffold is not native. Therefore,
it is of great significance to examine the ability of packing methods
to model the side-chains of non-native backbones. To this end, we
compared FASPR and the other four packers on the 379 I-TASSER
backbones and 10 sets of perturbed backbones derived from DB379.
In both kinds of tests, FASPR also performed equivalently or even
better than the other methods, although all of them showed reduced
performance.

Although FASPR achieved high prediction accuracy, the per-
formance was still far from the maximum accuracy level that can be
achieved, due to the inaccuracy of scoring functions and rotamer
libraries (Colbes et al., 2017; Huang et al., 2020b). Recently, Xiong
et al. (2020) reported that their protein design method, ABACUS2,
significantly outperformed SCWRL4 if it was repurposed for PSCP.
We also evaluated ABACUS2 on both native and non-native back-
bones in this work. ABACUS2 indeed outperformed the other PSCP
methods including FASPR in terms of v1 � 4 recovery rate and the
number of steric clashes on both experimental backbones
(Supplementary Table S9) and I-TASSER modeled backbones
(Supplementary Table S11), but with much longer computational
time (Supplementary Table S10). It was mentioned that the improve-
ment of high prediction accuracy of ABACUS2 was due to the com-
bination of a novel Cartesian-space conformer library collected
from experimental side-chain coordinates, which is quite different
from the Dunbrack rotamer library, and an elaborate statistical
scoring function. We also tested ABACUS2 on the perturbed main-
chains, and it was shown in Supplementary Tables S12–S21 that
ABACUS2 outperformed FASPR only when the main-chain RMSD
was sufficiently low (i.e. 0.21 Å), while FASPR significantly outper-
formed ABACUS2 when the main-chain RMSD was higher (e.g.
�0.57 Å).

We performed side-chain packing assessment on perturbed back-
bones as a comparison with a previous study (Xu et al., 2019).
However, it should be noted that the perturbed main-chains may
form a poor test set to benchmark side-chain repacking methods, be-
cause the random structure perturbations applied to generate these
main-chains may lead to violations of some basic constraints on the
polypeptide backbone conformations. For the perturbed main-
chains, ABACUS2 had significantly fewer atomic clashes than the
other methods (Supplementary Table S22), but its performance was
reduced the most as the perturbation increased (Supplementary
Tables S12–S21). The I-TASSER modeled structures constitute a
much more reasonable benchmark set to evaluate the ability of dif-
ferent methods to tolerate backbone variations.

Intrinsically disordered proteins (IDPs) are a large and function-
ally important class of proteins that lack a fixed or ordered three-
dimensional (3D) structure (Dunker et al., 2008; Dyson and Wright,
2005). The discovery of IDPs has challenged the paradigm that pro-
tein function depends on a fixed 3D structure, where it is commonly
thought that proteins fold into the GMEC in the protein folding
field. FASPR also followed this principle to determine the side-chain
conformations of amino acids. For IDPs, protein dynamics may be
more important for modeling their structures and functions.
Nevertheless, technically, given a protein backbone, FASPR can be
used to pack the side-chains whether or not the protein is an IDP.
But since FASPR is not benchmarked on IDPs, the quality of the
repacked models cannot be guaranteed. Additionally, since FASPR
employs a deterministic searching method, it cannot produce an en-
semble of side-chain configurations. For the case where an ensemble
of conformations is required, stochastic methods such as EvoEF2
(Huang et al., 2020a, b) can be utilized.

In addition to the high accuracy and speed, another important
feature of FASPR is its determinacy. In our last updated version of
EvoDesign for de novo protein design, we found that it was difficult
to track the packed structure models for a given protein sequence be-
cause RASP introduces a stochastic searching procedure for side-
chain modeling. In some design cases (e.g. the designed protein has
>500 amino acids), the RASP model might not be of good quality in
protein design simulations, which can harm the design results.
Therefore, RASP has been replaced by FASPR for side-chain model-
ing in the EvoDesign package. In summary, the combination of high
accuracy, speed and determinacy for modeling the side-chains of
both native and non-native main-chain conformations makes
FASPR a very useful tool for protein structure modeling and protein
design.
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