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Abstract

Motivation: Template-based and template-free methods have both been widely used in predicting the structures of
protein–protein complexes. Template-based modeling is effective when a reliable template is available, while
template-free methods are required for predicting the binding modes or interfaces that have not been previously
observed. Our goal is to combine the two methods to improve computational protein–protein complex structure
prediction.

Results: Here, we present a method to identify and combine high-confidence predictions of a template-based
method (SPRING) with a template-free method (ZDOCK). Cross-validated using the protein–protein docking bench-
mark version 5.0, our method (ZING) achieved a success rate of 68.2%, outperforming SPRING and ZDOCK, with suc-
cess rates of 52.1% and 35.9% respectively, when the top 10 predictions were considered per test case. In conclu-
sion, a statistics-based method that evaluates and integrates predictions from template-based and template-free
methods is more successful than either method independently.
Availability and implementation: ZING is available for download as a Github repository (https://github.com/weng-
lab/ZING.git).
Contact: zhiping.weng@umassmed.edu
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Protein–protein interactions (PPIs) are integral to cellular functions
(Bruce, 1998). Through PPIs, cells control and regulate numerous bio-
logical processes, e.g. signal transduction, transcription regulation
and metabolism. Experimental approaches such as yeast two-hybrid
(Brückner et al., 2009) and affinity purification-mass spectrometry
(Huttlin et al., 2015) can identify interacting proteins on a large scale.
However, these methods do not provide the three-dimensional (3D)
structures of the complexes, which are essential for a complete under-
standing of the interaction mechanisms. Approaches such as X-ray
crystallography, nuclear magnetic resonance (NMR) spectroscopy
and cryogenic electron microscopy (cryoEM) can provide this struc-
tural information, but they are resource and time intensive and they
do not succeed for many complexes. Therefore, experimentally deter-
mined structures are available only for a small fraction of the cellular
interactome, making computational approaches an important alterna-
tive for structural characterization of PPIs.

The computational methods for predicting the quaternary struc-
ture of proteins can be broadly classified into two categories—tem-
plate-free (ab initio) (Dominguez et al., 2003; Lyskov and Gray,
2008; Ritchie et al., 2008; Chen et al., 2003) and template-based

(Aytuna et al., 2005; Chen and Skolnick, 2008; Guerler et al., 2013;
Günther et al., 2007; Kundrotas and Vakser, 2010; Lu et al., 2002;
Mukherjee and Zhang, 2011; Tuncbag et al., 2011). Given the un-
bound structures of the component proteins, template-free methods
use statistical or thermodynamic energy potentials to find the most
likely binding mode and predict the complex structure. In contrast,
template-based approaches use known structures of homologous
protein–protein complexes, assuming that homologous proteins
adopt the same binding modes.

It has been shown that just like the limited set of protein folds,
there exists a limited set of structurally unique protein–protein inter-
faces despite the large number of possible complexes (Patrick and
Robert, 2004; Zhang et al., 2012). Thus, template-based methods
could potentially outperform template-free methods since they in-
volve identifying the best fit from a database of observed PPIs.
However, the collection of experimentally determined, structurally
unique protein–protein interfaces is still incomplete (Kundrotas
et al., 2012; Skolnick and Gao, 2010). Therefore, in the cases where
a reliable template cannot be identified, template-free methods are
preferred. Even when a template is available, template-free methods
may still produce more accurate complex structures than template-
based methods.
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Because template-based and template-free methods fundamental-
ly focus on different information, they complement each other if
each can be utilized to its full strength (Vreven et al., 2014). As an
example, the predictions of the two types of methods have been
combined with simple pooling. A prediction list comprising the top
two predictions from the template-based algorithm SPRING
(Guerler et al., 2013) and the top three predictions from the
template-free algorithm ZDOCK (Chen et al., 2003) performed bet-
ter than using the top five predictions from either method (Guerler
et al., 2013). Alternatively, some template-based prediction algo-
rithms incorporate template-free features like de-solvation energies
and steric clash penalties in their scoring functions (Guerler et al.,
2013; Kundrotas et al., 2017). Xue et al. (Xue et al., 2016) used the
restraints predicted by their template-based interface prediction al-
gorithm PS-HomPPI (Xue et al., 2011) to guide their template-free
algorithm HADDOCK (Dominguez et al., 2003). The resulting
HADDOCK predictions had better interface root mean square devi-
ations (I-RMSDs), fewer clashes and more native contacts than the
predictions produced without these restraints. Thus, by combining
the results of ab initio and template-based methods, an improvement
in PPI structure prediction can be achieved.

Here, we explored a new approach for combining a template-
based algorithm (SPRING) and a template-free algorithm
(ZDOCK). We started by running the two methods independently
to retain their respective strengths. We then assigned a confidence
score to each SPRING and ZDOCK prediction that represents the
probability of the prediction being correct. Thereafter, instead of
selecting a fixed number of SPRING and ZDOCK predictions as in
a previous work (Guerler et al., 2013), we used the confidence
scores to assemble an optimally combined list of predictions from
the two algorithms. Cross-validated using the protein–protein dock-
ing benchmark version 5.0, our new method, ZING, achieved a suc-
cess rate higher than that of SPRING or ZDOCK.

2 Materials and methods

2.1 Dataset
For training and testing our method, ZING, we used the protein–
protein docking benchmark 5.0 (Vreven et al., 2015), which con-
tains high-quality X-ray crystal structures of 230 protein–protein
complexes and X-ray crystal or NMR structures of their unbound
components. The benchmark is non-redundant at the SCOP
(Murzin et al., 1995) family-family pair level, which ensures that the
sequence identity between two proteins is never more than 30%,
and even lower when they also have similar function and structure.
The resulting set includes 88 enzyme-substrate/inhibitor, 40 anti-
body-antigen and 102 other complexes. Split by expected docking
difficulty, the benchmark contains 151 rigid-body, 45 medium-
difficulty and 34 difficult complexes. SPRING cannot handle multi-
chain proteins; thus, we excluded the 88 entries with multi-chain
component proteins. The docking difficulty distribution was ap-
proximately retained in the remaining 142 cases (91, 28 and 23
rigid-body, medium-difficulty and difficult complexes, respectively).
Only two antibody-antigen complexes remained, whose antibodies
had just the heavy chain, along with 72 enzyme-substrate/inhibitor
and 68 other complexes.

2.2 Performance evaluation
2.2.1 Interface root mean square deviation (I-RMSD)

An interface residue is defined as a residue with any of its
atoms within 10 Å of the partner protein in the bound structure.
The I-RMSD of a prediction is the RMSD of the Ca atoms of its
interface residues calculated after superposition of the Ca atoms in
the prediction onto the bound structure. We consider a prediction to
be correct when its I-RMSD is less than 5 Å.

2.2.2 Integrated success rate

The success rate of an algorithm for a given number of predictions per
test case (N) is defined as the percentage of test cases in the dataset

with at least one correct prediction (also called a hit). The integrated
success rate (ISR) is the normalized area-under-the-curve of the success
rate plotted against the log10(N). The ISR ranges between 0 and 1,
with a higher value indicating a more successful method (Vreven et al.,
2011).

2.3 SPRING
We used the downloadable version of SPRING (Guerler et al.,
2013), which comes with its own template library and uses the same
algorithm as the server version but makes more predictions and
provides more detailed log files. Given the sequences of the two
component proteins, SPRING first employs the threading algorithm
HH-search (Söding, 2005) to find single-chain template structures
for the sequences separately, and constructs a model for each protein
using the top-ranking template. SPRING then searches all the single-
chain templates from HH-search against a library of complex tem-
plates constructed using the Protein Data Bank (PDB). Finally, the
models of the component proteins are superposed onto the identified
complex templates, using interface residues only, to obtain the com-
plex models, which are then scored. The SPRING score (SSP), is a
linear combination of three terms—an interface contact potential
(E), a template modeling score (TMscore) and a Z-score for thread-
ing the input sequence to the template—which it uses to rank its pre-
dictions. The total number of complex models is capped at 50, but
could be fewer when templates are limited.

2.3.1 Confidence score for SPRING predictions

We needed a confidence score for evaluating SPRING predictions so
that they could be compared with ZDOCK predictions. Thus, we
defined the confidence score for SPRING using a logistic regression
model. To train the model, we used a binary response variable—a
prediction was classified as correct if its I-RMSD was less than 5.0 Å
or incorrect otherwise. We tested five features derived from quanti-
ties computed by SPRING—minTM (the smaller of the TMscores,
TMscoreA and TMscoreB), minZ (the smaller of the Z-scores for
threading, Z-scoreA and Z-scoreB), Coverage (fraction of the input
sequences that are aligned with the template structures), E (an inter-
face contact potential) and minS (the smaller of the sequence identi-
ties between the input sequences and their templates, SeqidA and
SeqidB), where subscripts A and B refer to the two query proteins,
respectively. We performed feature selection on all 25–1 possible
combinations of the five features with 4-fold cross-validation while
ensuring that all predictions from a test case were assigned to the
same fold. Brier’s score, the mean squared error of predicted proba-
bilities, was used to evaluate the logistic regression models. Among
the models with Brier’s scores within one standard error of the min-
imum score, we selected the model with the smallest number of
features.

We intended to train the model using the 142 test cases in the
docking benchmark 5.0 that contained only single-chain component
proteins (described above). However, since SPRING’s template
database was derived from the PDB, the complex structures in the
docking benchmark could also be present in SPRING’s template
database. To prevent SPRING from using known complex struc-
tures as the templates, we required all SPRING predictions to have
<95% sequence identity (using global alignment) to both query pro-
teins. We note that even though the sequence identity threshold was
set at 95%, most of the top-ranked templates identified by SPRING
were not close homologs—in the majority (78%) of the cases, one of
the proteins of the top ranked templates from SPRING had a se-
quence identity less than 50% (Supplementary Fig. S1a). There were
21 cases where all SPRING predictions had �95% sequence identity
to the query proteins. Thus, we restricted our training of the logistic
regression model to the 121 (85%) test cases which had at least one
prediction that cleared the sequence identity filter. Furthermore, the
number of predictions per test case varied depending on template
availability (capped at 50), and we did not want template availabil-
ity to bias our choice of features. So, we performed bootstrapping to
reduce the bias against test cases with fewer than 50 predictions—a
bootstrapped dataset was generated by adding predictions via
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sampling with replacement from available predictions for each test
case, yielding 50 predictions per test case. We generated 100 such
bootstrapped datasets.

The feature selection process for the logistic regression model, as
described above, was repeated for each of the 100 bootstrapped
datasets, and the feature set selected most frequently among the 100
trials was then deemed the final feature set and used for computing
the SPRING confidence score.

2.4 ZDOCK
For template-free predictions, we used ZDOCK version 3.0.2
(Mintseris et al., 2007; Pierce et al., 2011; Chen and Weng, 2003;
Chen et al., 2003), which was developed in our lab. ZDOCK is a
grid-based docking algorithm that uses fast Fourier transforms to ac-
celerate an exhaustive search in the 6D rotational and translational
space, sampling the three Euler angles with a 6� or 15� spacing and
the three translational degrees of freedom with a 1.2 Å spacing.
For each set of rotational angles, only the best-scoring translation is
retained, which results in 3600 or 54 000 predictions for 15� or 6�

rotational sampling, respectively. The predictions are ranked
according to the ZDOCK scoring function, which combines shape
complementarity, electrostatics and de-solvation. In the current
work, we used the 15� sampling, resulting in a total of 3600 docking
decoys per test case.

2.4.1 Confidence score for ZDOCK predictions

To be able to compare SPRING and ZDOCK predictions, we
needed to assign a confidence score to ZDOCK predictions, analo-
gous to that of SPRING. The ZDOCK score could not be used dir-
ectly because its scoring function was optimized to discriminate
between different binding modes of the same pair of proteins, but
we required a score that could evaluate the likelihood of a prediction
being correct across different pairs of proteins. Therefore, we deter-
mined the probability of a correct prediction at each ZDOCK rank,
across the 142 cases of our dataset and then used this probability to
convert a rank into a confidence score.

2.5 Combining SPRING and ZDOCK predictions
The confidence scores for SPRING and ZDOCK predictions can be
directly compared; hence, we combined these predictions, sorted by
the confidence score (Fig. 1). For test cases without any SPRING
predictions, the final list consisted of ZDOCK predictions only.
When comparing the success rate of the combined method ZING
with ZDOCK and SPRING, we performed another round of 4-fold
cross-validation to obtain SPRING confidence scores. ZDOCK does
not require training; hence, it was run only once. To assess the ro-
bustness of the results, we performed the 4-fold cross-validation for
SPRING five times by randomly partitioning the test cases each
time. We did not use bootstrapping in this step (i.e. generate 50
models per test case, as was employed for the feature selection),

because we wanted the performance of SPRING (and hence ZING)
to reflect the actual template availability.

3 Results

3.1 Testing SPRING and ZDOCK individually
We tested the performance of SPRING on a subset of the protein–
protein docking benchmark 5.0 (Vreven et al., 2015) consisting of
142 complexes with single-chain component proteins. For 21 cases
SPRING did not find appropriate templates (Section 2). Figure 2a
shows that the success rate of SPRING was 44.4% with only the
top-ranking prediction, and increased to 55.6% when all models
from SPRING were included (up to 50 per test case). For only five
test cases (PDB IDs: 1J2J, 1QA9, 2OZA, 1PPE, 1CLV), the best hit
was ranked after 10 (Supplementary Fig. S1b), corresponding to a
mere 3% improvement in the success rate when predictions ranked
after 10 were included. This shows that if SPRING found a correct
template, it typically ranked the template at the top. The success
rate was 50.7% when the top five predictions were considered,
which was similar to that reported earlier (Guerler et al., 2013) on
version 3.0 of the docking benchmark.

The success rate for ZDOCK was 14.1%, 35.9% and 52.8% for
the top one, top 10 and top 50 predictions, respectively. These val-
ues are similar to those reported earlier (Vreven et al., 2015).
As expected, ZDOCK performed better on the rigid-body cases than
the medium-difficulty and difficult cases. ZDOCK’s success rates for
the 21 test cases that SPRING did not find appropriate templates
were comparable with its success rates for the remaining 121 test
cases (19.1%, 28.6% and 38.1% versus 13.2%, 37.2%, 55.4% for
N¼1, 10 and 50, respectively).

Out of the 142 test cases, ZDOCK and SPRING yielded a hit in
the top 10 predictions for 51 and 74 cases, respectively. ZDOCK’s per-
formance for rigid-body cases was close to that of SPRING (N¼10),
while SPRING outperformed ZDOCK in the medium-difficulty and
difficult categories. This is expected because template-based methods
like SPRING are not affected by the flexibility of the interfacial resi-
dues upon complex formation. Overall, the two methods are highly
complementary: at least one method ranked a hit in the top 10 for 98
test cases, while both methods succeeded for only 27 cases (Fig. 2c).
Thus, if we combine the results such that the best predictions from
both methods are ranked near the top, we could potentially achieve a
better success rate than that for either method independently.

3.2 Logistic regression model for SPRING: feature

selection
To formulate a method for combining ZDOCK and SPRING, we
needed to determine the confidence in each prediction. For SPRING
we performed logistic regression modeling using five features that re-
late the input sequence to the template (Section 2): minTM
(a template modeling score), minZ (a threading Z-score), Coverage
(fraction of the input sequence that is aligned), E (an interface contact

Fig. 1. Workflow for combining predictions from SPRING and ZDOCK. Different intensities of blue and pink are used to represent the confidence scores for the ZDOCK and

SPRING predictions respectively (deep shades representing high confidence). (Color version of this figure is available at Bioinformatics online.)
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potential) and minS (sequence identity between input and template).
Among these five features, E is slightly anti-correlated with the other
four features, which are positively correlated with one another; espe-
cially, Coverage and minTM are highly correlated (correlation coeffi-
cient¼ 0.96; Supplementary Fig. S2).

The goal of the logistic regression model was to produce a nor-
malized output PLR (between 0 and 1) to estimate the probability
that a SPRING prediction was correct. For training and testing of lo-
gistic regression models, we used the 2405 predictions that SPRING
generated for the aforementioned subset of 121 test cases in the
docking benchmark (Section 2). We performed an exhaustive search
of the feature space using 100 bootstrapped datasets. Figure 3a
shows the results for one such dataset, and an interesting observa-
tion is that although E is the worst single feature, it is included in all
the multi-feature models with the lowest errors. Besides E, other fea-
tures present in such models include Coverage and minTM.
Notably, the five models with lowest errors all contained E and
Coverage (Fig. 3a).

To account for model complexity, we selected the model for each
dataset to be the one with the smallest number of features among the
models that had mean squared errors within one standard error of the
minimum mean squared error (Section 2). In 94 of the 100 trials of
cross-validation, the selected model combined two features, E and
Coverage (both with a higher value implying a more stable complex),
to calculate the SPRING logistic regression score (SLR):

SLR ¼ k0 þ k1�Coverage þ k2�E (1)

PLR ¼
1

1þ e�SLR
(2)

where k0 ¼ –14.23, k1 ¼ 12.48 and k2 ¼ 0.18 when computed using
the entire dataset. k1 and k2 are both positive, indicating that E and
Coverage both positively contribute to SLR and hence to PLR.

We then compared our confidence score (PLR) with the score com-
puted by SPRING. The default SPRING score (SSP) is a linear sum of
three terms: E, minTM and minZ, while E and Coverage were identi-
fied as key features by our feature selection process for logistic regres-
sion modeling (Fig. 3a). PLR is correlated with SSP (correlation
coefficient ¼ 0.68; P-value < 0.0001; Fig. 3b). When only the top-
ranked prediction was considered for each test case, PLR predicted
hits for two more test cases than SSP (65 versus 63 out of 121).
Furthermore, when a SSP score cutoff was used to decide whether the
top-ranked prediction was a hit (i.e. prediction with a SSP score higher
than the cutoff), the maximal accuracy of SSP was 75.2% with the
cutoff set at 8.75 to maximize the accuracy (the horizontal line in
Fig. 3b). For PLR, the maximal accuracy cutoff was 0.5 (the vertical
line in Fig. 3b), and its accuracy at this cutoff was 79.3%, higher than
SSP. A logistic model with the same three features as SSP had slightly
higher mean squared error than our final two-feature model (Fig. 3a);
however, a two-feature model is simpler than and thus more likely to
outperform a three-feature model on future test cases. Thus, we
decided on the two-feature model with E and Coverage.

3.3 Combining SPRING and ZDOCK predictions
The complementarity between template-based and template-free
methods (Vreven et al., 2014) suggests that a combined approach
could lead to better results, and Guerler et al. pooled ZDOCK and
SPRING predictions (top 3 predictions from ZDOCK and top 2
from SPRING) to achieve a better performance than either method
independently (Guerler et al., 2013). Instead of using a fixed ratio of
predictions from the two methods, in this study, we combined pre-
dictions from both methods and ranked them by their confidence
scores, which we have designed to be comparable. For SPRING, we
used the probability predicted by our logistic regression model [PLR,
Eq. (2)] as the confidence score. For ZDOCK, we used the frequency
that the prediction at a specific ZDOCK rank is correct across the
142 test cases, as the confidence score (Supplementary Fig. S3). We
named this combined approach ZING.

To evaluate the performance of ZING, we partitioned the test
cases randomly into 4-folds and then trained and tested using 4-fold
cross-validation. To assess the consistency of the success rate and es-
timate associated errors, we performed the 4-fold cross-validation
five times, each time with a different random partitioning of the
dataset.

Figure 4 shows the success rate curves for ZDOCK, SPRING
and our new approach ZING. While the success rate of ZDOCK
kept growing with the number of predictions per test case (N), that
of SPRING was constant after it had made the maximum of N¼50
predictions per test case. The success rate of the methods for N¼10
is often cited because the CAPRI experiment (Lensink et al., 2018)
uses 10 predictions in the assessments of its participants’ perform-
ance, and it is also a reasonable number for follow-up experiments
or more accurate computational modeling. At N¼10, the success
rate of ZING was 68.2%, better than that of both ZDOCK and
SPRING, at 35.9% and 52.1%, respectively (Fig. 4a). We then com-
pared the overall performance of the methods, using the ISR (ISR,
Section 2) for values of N between 1 and 100. ZING, with an ISR of
0.66 performed better than ZDOCK and SPRING with ISRs of 0.37
and 0.52, respectively. For the results shown in Figure 4, we used a
query-template sequence identity threshold of 95% to filter predic-
tions from SPRING (Section 2). However, the results in Figure 4
also extend to using lower levels (70%, 50% and 30%) of query-
template sequence identity thresholds (Supplementary Fig. S4).
Furthermore, the improvement of ZING is robust to random parti-
tioning of the data, as it yielded higher success rates than ZDOCK
and SPRING across all five random partitionings of the data for
4-fold cross-validation. We also looked at the number of unique and
shared cases between the three methods. Considering the top 10 pre-
dictions, we observed two cases for which ZING succeeded but nei-
ther ZDOCK nor SPRING. ZING also succeeded for 94 of the 98
cases where at least one of the methods was successful (Fig. 4b).

3.4 Detailed analysis of individual test cases
We inspected the performance of ZING, ZDOCK and SPRING on a
case-by-case basis, at N¼10, shown in Figure 5. The columns in the

Fig. 2. Performance of SPRING and ZDOCK on the docking benchmark. Success rates for SPRING (a) and ZDOCK (b), respectively. The success rate was calculated as the

percentage of test cases with at least one hit (I-RMSD < 5.0 Å) when the top N predictions were considered for each test case, where N¼ 1, 5, 10, or 50. (c) Number of unique

and shared test cases that ZDOCK and SPRING succeeded in producing at least one hit at N¼ 10
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figure correspond to the five random partitionings of the data, each
used for one round of cross-validation. The effect of data partition-
ing on the results is small as indicated by the consistent results across
the five different runs for each case. There were 27 cases where both
ZDOCK and SPRING had a hit in the top 10 predictions and ZING
retained the hit(s) as well, indicated by zs-labeled grid squares
(Fig. 5). There are also 42 cases where neither SPRING nor ZDOCK
yielded a hit (entirely-red rows). In contrast, there were 71 cases for
which only one of the methods provides a hit(s) and ZING suc-
ceeded in picking up 68 of those cases (green grid squares with either
z or s only), attesting to the power of combining template-based and
template-free methods.

Five test cases (labeled z*, s* or p, in Fig. 5) deviated from
expected behavior due to the re-ranking of predictions using PLR or
PZD. For two test cases (1QA9 and 2OZA; labeled p in Fig. 5), high
PLR values pushed a hit to the top 10 predictions in ZING. In both

these cases, the hits had high Coverage values, a feature included in
our PLR but not in the original SPRING score. For three other cases,
the hit(s) identified by SPRING (1SYX; labeled s* in Fig. 5) or
ZDOCK (2HRK and 1GL1; labeled z* in Fig. 5) were not included
in the top 10 predictions of ZING. We examine these three cases
below.

1SYX (Nielsen et al., 2007) involves the interaction between two
proteins—U5-52K and U5-15K in the spliceosomal complex.
SPRING generated only one prediction that was a hit (I-RMSD ¼
3.8 Å), for which the complex template (PDB ID: 4J3C) is a homo-
dimer of a 16S ribosomal RNA methyltransferase. However, the
complex template only partially matches the query complex, as
shown in Figure 6a, which leads to a low Coverage value (which is
one of the features for PLR) and hence a low PLR. As a result, ZING
did not include the prediction in its top 10 predictions.

1GL1 is an enzyme inhibitor complex with bovine a-chymotryp-
sin and a protease inhibitor LCM II (Roussel et al., 2001). There
were four predictions (none of them were hits) by SPRING with
higher confidence scores than the top-ranked ZDOCK prediction
(which was not a hit either). ZDOCK did produce a hit but ranked
it seventh. This ZDOCK hit was ranked 11 by ZING and hence not
included in ZING’s top 10 predictions.

Finally, we examined 2HRK, the complex of Glutamyl-tRNA
synthetase (GluRS) and tRNA aminoacylation factor 1 (Arc1-p) in
yeast (Simader et al., 2006). ZDOCK made a correct prediction
(ranked 2) in the top 10, but it was ranked 50 by ZING as 48 incor-
rect SPRING predictions had higher confidence scores. This case

Fig. 3. Logistic regression modeling of SPRING predictions. (a) The mean squared

errors for the 31 possible combinations of the five features (E, Coverage, minTM,

minZ, minS) tested for logistic regression modeling, colored by the number of fea-

tures in the model. E; minTM; minZ (enclosed in pink) and E; Coverage (enclosed

in black) are feature sets, used by SPRING and selected by our model selection pro-

cess, respectively. (b) Each point represents a test case (121 cases in total), with the

scores of the top-ranked predictions by the two scoring metrics (SSP versus PLR) on

the test set during cross-validation. A point is colored green if the top-ranked predic-

tion by SSP is a hit and the top-ranked prediction by PLR is also a hit; a point is col-

ored red if the top-ranked prediction by SSP is not a hit and the top-ranked

prediction by PLR is not a hit either. For four test cases (1AY7, 4IZ7, 1FLE, 1D6R;

represented by a top-green and bottom-red point with a black outline), the top-

ranked prediction by PLR is a hit but the top-ranked prediction by SSP is not a hit.

For two other cases (3PC8 and 1Z0K; represented by two top-green and bottom-red

points with a black outline), the top-ranked prediction by SSP is not a hit but the

top-ranked prediction by PLR is a hit. Two lines indicate the cutoffs that separate

positive and negative predictions: 0.5 for PLR and 8.75 for SSP. (Color version of

this figure is available at Bioinformatics online.)

Fig. 4. Comparing the performance of ZDOCK, SPRING and ZING. (a) The suc-

cess-rate curves for ZDOCK, SPRING and ZING. The error bars indicate the SD

calculated from five different random partitions of the dataset into 4-fold training

and test sets. The ISRs for the corresponding methods are shown in parentheses. (b)

The number of unique and overlapping test cases that ZDOCK, SPRING and ZING

succeeded in predicting one or more hits at N¼10. The unique cases for each

method are identified by their PDB IDs
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exemplifies the failures that violate the premise of template-based
docking (and our combined approach), due to the existence of hom-
ologous protein–protein complexes with different binding modes.
GluRS contains a GST-like fold, which is commonly found in many
different proteins (Dulhunty et al., 2001; Morris et al., 2011) and as
a result, SPRING identified many templates with high confidence.
However, in 2HRK, GluRS shows an alternative, unique binding
mode for the GST fold that is not observed in any other PDB entry.
The incorrect templates overwhelmed ZING predictions and pushed
the correct ZDOCK prediction outside the top 10.

4 Discussion

We presented a method that combines results from a template-based
algorithm (SPRING) and a template-free algorithm (ZDOCK) to
predict protein–protein complexes. Our combined method ZING
achieved a higher success rate than either SPRING or ZDOCK. The
strength of ZING is that it ranks SPRING and ZDOCK predictions
with confidence scores that are directly comparable, such that high
confidence predictions from both methods are ranked higher up in
the final list of predictions for ZING, leading to a consolidation of
the successes of the individual methods.

Our logistic regression only used two features (E and Coverage)
to classify the predictions from SPRING as hits or non-hits for test
cases in the docking benchmark. Guerler et al. used three features in
the SPRING score—E, minTM and minZ—with their weights
trained from 200 randomly selected protein complexes (Guerler
et al., 2013). The difference between the feature sets of the two
approaches is minimal because Coverage and minTM are highly cor-
related with each other (Supplementary Fig. S2) and the inclusion of
the minZ feature led to only a small increase in the error of our

logistic regression model (Fig. 3a). If a single feature were to be con-
sidered, minTM on its own is the most informative feature, although
less accurate than our two-feature (E and Coverage) model (Fig. 3a).
A value of 0.7 or higher for minTM generally indicates a good
chance for the SPRING prediction to be correct.

The maximum probability (PZD) calculated for ZDOCK predic-
tions is 0.104 across all test cases; on average, 17% of the SPRING
predictions per case have PLR values higher than 0.1. Thus, the top
ZING predictions often rely on the template-based method (for
74% of the test cases). The remainder of the ZING prediction list is
populated by both template-free and template-based methods de-
pending on template availability and the confidence scores. Given
that homologous proteins often have conserved binding modes, it is
reasonable for most top-ranking predictions in the combined list to
come from the template-based method. Such a scenario may lead to
cases as 2HRK discussed above where a high-scoring, incorrect
binding mode gains precedence over a correctly identified structure
using the template-free method. However, we identified only three
cases out of 142 where the top 10 combined predictions did not in-
clude a hit that was included in the top 10 predictions of either
ZDOCK or SPRING. This shows that our method is robust in get-
ting the best of both the template-based and template-free methods.

Ideally, we would like to compare our approach with other
template-based methods. However, such a comparison would be dif-
ficult to carry out because the performance of template-based meth-
ods depends on their template libraries. For biological applications,
users are expected to use SPRING’s template library inclusive of all
template structures regardless of their sequence similarity to the tar-
get. The library will be updated to keep up with growth of the PDB.

We will continue to evaluate the performance of ZING by mak-
ing predictions in the CAPRI (Lensink et al., 2018) and CASP-
CAPRI (Lensink et al., 2017) challenges. Until now, we have

Fig. 5. Evaluation of ZING on a case-by-case basis across five random partitionings of the dataset, each used for one round of cross-validation. Green and red grid squares indi-

cate at least one hit or no hits, respectively, in the top 10 predictions of the ZING prediction list. The labels show which method contributed towards the hit(s) in the ZING

prediction list–z: ZDOCK; s: SPRING; p: ZING prediction list includes a hit because of PLR or PZD re-ranking (not included in the top 10 predictions from either of the parent

methods), *: a hit from ZDOCK or SPRING not retained in the top 10 ZING predictions. (Color version of this figure is available at Bioinformatics online.)
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manually combined homology-modeled and ab initio predictions;
we will use ZING to select the predictions from the two approaches
in future challenges. This automation will also allow us to partici-
pate more effectively as a server, which requires automated selection
of predictions.
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in red and U5-52K in yellow ribbons) superposed on the SPRING prediction (green

and cyan wire-frame structures), which is classified as a hit. (b) 2HRK (GluRS in red

and Arc1-p in yellow ribbons) superposed on the SPRING prediction (GluRS in

green and two predicted positions of Arc1-p in blue and cyan wire-frame struc-
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predictions for these cases do not have a hit(s), that was present in the top 10 predic-

tions of one of the parent methods––SPRING/ZDOCK. (Color version of this figure

is available at Bioinformatics online.)
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