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Single-particle cryo-electron microscopy (cryo-EM) has 
emerged as a powerful means in modelling macromolecular 
structures at near-atomic resolution (3–5 Å)1. While high-res-

olution density maps enable the direct construction of atomic struc-
tures with limited conformation sampling using software programs 
traditionally used for X-ray crystallography2,3, the performance of 
these programs is poor when the resolution of the density map is 
relatively low (for example, >3 Å)4. For these challenging cases, a 
common approach is to fit a homologous structure to the density 
map, followed by atomic-level structural refinement5,6. However, the 
success of this approach depends strongly on the quality of the start-
ing models, while for many proteins, no previously solved struc-
tures for homologous proteins are available.

This difficulty becomes particularly critical for multi-domain 
proteins consisting of multiple, structurally autonomous subunits. 
In fact, such multi-domain proteins are common in nature, and sta-
tistics has shown that more than two-thirds of prokaryote proteins 
and four-fifths of eukaryote proteins are composed of two or more 
domains,7 whereas only one-third of the structures in the Protein 
Data Bank (PDB)8 contain multiple domains (Supplementary  
Fig. 1a). Due to this lack of multi-domain templates and the dif-
ficulty of ab initio domain orientation modelling, the field of 
computational structural biology has traditionally focused on 
the study of individual domains, including the community-wide 
Critical Assessment of protein Structure Prediction experiments 
assessing the quality of protein structure predictions mainly on 
individual domains9. Therefore, although cryo-EM provides great 
potential for determining large-size proteins1 and there are a con-
siderably greater portion of multi-domain proteins in the Electron 
Microscopy Data Bank (EMDB)10 than in the PDB (Supplementary 
Fig. 1b), it is usually difficult to apply homology modelling to cre-
ate appropriate frameworks for density-map fitting and structural 
refinements of multi-domain proteins. These factors represent a 
significant challenge for multi-domain structural modelling based 
on cryo-EM maps, and currently only less than half of the cryo-EM 

density maps in the EMDB have atomic structures (Supplementary  
Fig. 1c). An additional barrier to large-scale cryo-EM structural 
modelling is that almost all structure fitting and refinement tools 
are not fully automated, even with given homologous models. For 
example, many approaches require human interventions in the ini-
tial model-to-map fitting, a procedure that often impacts signifi-
cantly on the quality of the final models11. Hence, the development 
of advanced cryo-EM methods that could automatically yet reliably 
assemble multi-domain structures becomes increasingly urgent 
given the rapid progress of cryo-EM structural biology.

Here, we propose an automated approach, termed domain 
enhanced modeling using cryo-EM (DEMO-EM), to create accu-
rate full-length structural models for multi-domain proteins from 
cryo-EM density maps. In addition to its unique dedication to 
multi-domain proteins, DEMO-EM has several novelties and 
advantages compared with many existing methods: (1) DEMO-EM 
integrates the single-domain structural modelling from iterative 
threading assembly refinement (I-TASSER)12 with deep-neural-
network restraints to enhance the modelling accuracy for regions 
that lack density maps or have low-resolution data, (2) the hierar-
chical protocol starting with separate domain modelling followed 
by distance-profile-guided inter-domain structure reassembly sim-
ulation enables hybrid multi-domain protein structure prediction 
without requiring homologous full-length template structures and 
(3) the procedure is fully automated and can start from the pro-
tein sequence alone with no additional information or manual set-
tings required. While a previous method, DEMO13, was proposed 
to model inter-domain orientations through rigid-body docking 
guided with analogous templates, a critical differentiating feature 
of DEMO-EM is its ability to model domain orientations directly 
from cryo-EM density maps without the need for templates and 
the efficiency of utilizing map data for atomic-level flexible struc-
tural refinement of the entire chain of multi-domain proteins. To 
systematically examine its strengths and weaknesses, DEMO-EM 
was tested on a large-scale benchmark dataset consisting of various  
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numbers of continuous and discontinuous domains over synthe-
sized and experimental density maps. The results demonstrate 
the advantages of DEMO-EM for cryo-EM-guided domain struc-
ture assembly and refinement compared with state-of-the-art 
approaches in the field.

Results
Method overview. DEMO-EM uses cryo-EM density maps to 
obtain structural models for multi-domain proteins through a pro-
gressive domain assembly and refinement procedure (Fig. 1). The 
pipeline can start from either experimentally determined domain 
structures or amino acid sequences. When starting from amino acid 
sequences, DEMO-EM first constructs multiple sequence align-
ments from metagenome sequence databases and splits the query 
into domains using FUpred14 and ThreaDom15, and then generates 
an initial structural model for each domain using distance-guided 
iterative threading assembly refinement (D-I-TASSER)16, a new ver-
sion of I-TASSER12, by incorporating deep-learning-based spatial 
restraints. Meanwhile, a deep convolutional neural-network pre-
dictor DomainDist is extended from our residue-contact predic-
tion method TripletRes17 to predict inter-domain distance maps. 

To create full-length structural models, DEMO-EM performs a 
quasi-Newton search for the initial domain and cryo-EM density 
map fitting, followed by multiple steps of rigid-body domain struc-
ture assembly and atomic-level flexible structure refinements. The 
domain assembly and refinement simulations are primarily guided 
by the model-density correlations, assisted with a knowledge-based 
force field and the DomainDist inter-domain distance map pre-
dictions, where the final models are selected from the low-energy 
conformations and further refined by fragment-guided molecule 
dynamics (FG-MD) simulations18.

Multi-domain structure construction from synthesized maps. 
Table 1 and Fig. 2 present a summary of the DEMO-EM models 
assembled using experimental domain structures and domain mod-
els predicted by D-I-TASSER16, respectively, for a benchmark set of 
357 non-redundant proteins (Supplementary Section 1), where the 
density maps are simulated according to the experimental struc-
tures by EMAN219 (Supplementary Section 2). When the experi-
mentally determined domain structures are used, DEMO-EM was 
able to assemble nearly perfect full-length models for almost all the 
targets, resulting in an average template modeling score (TM-score) 
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Fig. 1 | Flowchart of DEMO-EM. The flowchart is illustrated with a three-domain protein from the iron-dependent regulator of Mycobacterium tuberculosis 
(PDB ID 1fx7A). Starting from the query sequence, domain boundaries are first predicted by FUpred14 and ThreaDom15, and models of each domain are 
generated by D-I-TASSER16. Meanwhile, inter-domain distances are predicted with a deep convolutional neural-network predictor DomainDist. Second, 
each of the domain models is independently fit to the density map by quasi-Newton searching. Third, the initial full-length models are optimized by 
a two-step rigid-body REMC simulation to minimize the DCS) between the density map and full-length model (equation (1)). Fourth, the lowest DCS 
model selected from the rigid-body assembly simulations is refined by flexible assembly with atom-, segment- and domain-level refinements using REMC 
simulation guided by the DCS, inter-domain distance profiles and a knowledge-based force field, with the resulting decoy conformations clustered by 
SPICKER53 to obtain a centroid model. Finally, the flexible assembly simulation is performed again for the full-atomic model with constraints from centroid 
models adding to the energy, and the final model is created from the lowest-energy model after side-chain repacking with FASPR54 and FG-MD18.
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of 0.99 and root-mean-square deviation (RMSD) of 0.6 Å (Fig. 
2a,b). Importantly, the individual domain structures were well 
folded in final full-length models with an average TM-score of 
0.98 and average RMSD of 0.6 Å, despite the fact that the atomic 
structure of the full-length models is kept completely flexible in the 
domain assembly simulations. This suggests that the combination 
of the inherent DEMO-EM force field and the density-map data 
is capable of recognizing and maintaining correct folded domain 
structures. Here, the TM-score is a metric defined to evaluate the 
topological similarity between protein structures (Supplementary 
Section 3), taking values (0, 1], where a higher value indicates 
closer structural similarity20.

When predicted domain models are used, local structure errors 
and incorrect domain models can negatively impact full-length 
model assembly simulations. Nevertheless, DEMO-EM success-
fully assembled full-length models with a correct global fold (that 
is, TM-score >0.5)21 for 94.1% of the test cases (Fig. 2a, blue his-
togram). Figure 2c presents a head-to-head TM-score comparison 
between the initial model obtained by matching predicted domains 
with the cryo-EM maps versus the final DEMO-EM model, show-
ing that the TM-score of the final model was improved in nearly all 
test cases (with an average increase from 0.62 to 0.85, correspond-
ing to P = 1.5 × 10−47 in Student’s t-test). Because a model with a 
high TM-score must achieve correct modelling of both individual 
domains and inter-domain orientations, the data in Fig. 2c indi-
cate that DEMO-EM domain assembly simulations could signifi-
cantly improve the inter-domain orientations. Since the domain 
structures are kept flexible in DEMO-EM, part of this increase 
in the TM-score of the full-length model may also result from an 
improvement in the quality of individual domain structures. To 
examine this, Fig. 2d compares the TM-score of the initial individ-
ual domains with that of the final models provided by DEMO-EM, 
revealing an improvement for the latter in 810 out of 890 indi-
vidual domains. On average, the TM-score of individual domains 
increased from 0.77 to 0.83 (P = 1.3 × 10−22, Student’s t-test), indi-
cating that the domain-level structural improvements brought 
about by DEMO-EM are statistically significant. The remaining 
80 domain models for which the TM-score decreased after flex-
ible assembly are studied in Supplementary Section 4. In addi-
tion, the performance of DEMO-EM on large proteins, cases with  

discontinuous domains and proteins with incorrect domain models 
is discussed in Supplementary Section 5.

Table 1 presents a comparison of the results obtained from 
the molecular dynamics flexible fitting (MDFF)5,22 and Rosetta23 
models, which are widely used for modelling guided by cryo-EM 
density maps (Supplementary Section 6). Since both of these meth-
ods must start from full-length models, we built initial full-length 
models by fitting each domain model to density maps using Situs24, 
one of the best publicly available structure–density map programs. 
A quick Monte Carlo simulation procedure was also performed to 
rebuild the broken inter-domain linkers of the initial Situs mod-
els (Supplementary Section 6). Note that there are many differ-
ent advanced MDFF protocols, such as cascade MDFF (cMDFF)5, 
resolution-exchange MDFF5, MultiMap25 and CryoFold26. In our 
experiments, we applied the direct MDFF and cMDFF protocols for 
proteins with cryo-EM density maps with resolution of ≥5 Å and 
<5 Å, respectively. As shown in Table 1, Fig. 2a,b and Supplementary 
Fig. 4a,b, DEMO-EM outperformed both MDFF and Rosetta by a 
margin, with the average TM-score of the full-length models with 
experimental domains being 15.1% and 25.3% higher than that of 
MDFF and Rosetta, respectively. The P value in Student’s t-test was 
2.9 × 10−34 and 4.5 × 10−44, respectively, suggesting that the differ-
ence is statistically significant.

When predicted domains were used, the TM-score improve-
ment when using DEMO-EM increases to 60.4% relative to MDFF 
and 88.9% to Rosetta, corresponding to Student’s t-test P values of 
7.7 × 10−95 and 2.4 × 10−124, respectively. DEMO-EM also made more 
significant improvements in the domain-level structures. When 
starting from the predicted domains, DEMO-EM improved the 
TM-score of individual domains in 91.0% of cases (Fig. 2d), while 
MDFF and Rosetta did so in only 27.3% and 29.4% of cases, respec-
tively (Supplementary Fig. 4d,e). We also compared DEMO-EM 
with a de novo method, MAINMAST27, for cryo-EM density map 
modelling. For full-length models, DEMO-EM achieved an aver-
age TM-score that was 142.8% higher than that of MAINMAST 
(Table 1 and Supplementary Fig. 4c), corresponding to a P value 
of 3.2 × 10−127 in Student’s t-test. DEMO-EM also obtained better 
domain models than MAINMAST, with a 159.3% higher aver-
age TM-score than that of MAINMAST, which corresponds to a 
Student’s t-test P value of 5.8 × 10−296.

Table 1 | Results for the 357 test proteins using synthesized density maps

MDFF Rosetta MAINMAST DEMO-EM

Experimental domain structure assembly

 TM-score 0.86 (0.20) 0.79 (0.23) – 0.99 (0.01)

 RMSD (Å) 7.1 (9.4) 8.1 (9.9) – 0.6 (0.3)

Predicted domain model assembly

 TM-score 0.53 (0.22) 0.45 (0.22) 0.35 (0.26) 0.85 (0.17)

 RMSD 16.6 (8.1) 21.2 (10.9) 18.3 (8.6) 5.9 (6.4)

 TM-score (domain)a 0.63 (0.22) 0.48 (0.26) 0.32 (0.25) 0.83 (0.16)

 RMSD (domain)b 5.9 (3.8) 9.3 (7.1) 13.7 (6.9) 3.9 (3.8)

 Rama favoured (%)c 75.8 (8.5) 84.9 (7.1) 38.5 (14.5) 91.0 (4.1)

 Rotamer outliers (%) 7.1 (4.2) 1.3 (3.4) 41.3 (16.2) 1.2 (1.0)

 Clash score 4.4 (4.9) 36.6 (50.7) 628.7 (611.7) 3.3 (4.0)

 MolProbity score 2.35 (0.61) 2.38 (0.58) 5.17 (0.72) 1.61 (0.57)

 EMringer score 0.32 (0.35) 1.18 (0.91) 1.14 (0.76) 1.48 (0.98)

 iFSC 0.31 (0.19) 0.34 (0.19) 0.44 (0.16) 0.67 (0.16)

Values presented as average (s.d.) with the best result in each category highlighted in bold. aTM-score of individual domain models in full-length models. bRMSD of individual domains models in full-length 
models. cPercentage of ‘Ramachandran favoured’ residues.
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Figure 2e shows the correlation between the map resolution 
and the TM-scores of the full-length models created by the differ-
ent methods using predicted domain modelling or de novo model-
ling. The performance of DEMO-EM is not significantly affected 
by a reduction in the resolution of the density maps, retaining a 
TM-score above 0.8 throughout the resolution range. While the 
performance of MDFF and Rosetta decreased slightly when using 
lower-resolution maps, the average TM-score of DEMO-EM 
remained significantly higher than those of MDFF and Rosetta. In 
contrast, the performance of MAINMAST dropped sharply with 
a decrease in resolution. In addition, Table 1 and Supplementary 
Table 3 summarize the validation scores of the models created by 
using the different methods. Compared with the models generated 
by the three control methods, the DEMO-EM models achieve bet-
ter Molprobity28 and EMringer29 scores (Fig. 2f), thus indicating 
that they have better model geometry and density fit at the side-
chain level. The better global topology and local geometry thus 
allow DEMO-EM models to achieve an integrated Fourier Shell 
Correlation (iFSC)11 of 0.67, which is also higher than the values 
obtained by the control methods.

There are three reasons for the better performance of DEMO-EM 
over the control methods, including better initial model matching,  

hierarchical rigid-body domain assembly and deep-learning-
guided flexible structure refinement (see Supplementary Section 7  
for detailed analyses). Figure 3a summarizes the progress of the 
model accuracy at each step of DEMO-EM, compared with that of 
the two control methods. While MDFF and Rosetta start with ini-
tial models from Situs (with a TM-score of 0.53) and produce final 
models that are comparable to or even worse than the initial models, 
DEMO-EM builds better initial models and its TM-score increases 
at each of the subsequent structural assembly and refinement steps. 
Figure 3b,c also presents two examples illustrating the construc-
tion process in DEMO-EM, reinforcing its advantages for assem-
bling multi-domain protein complex structures (see Supplementary 
Section 8 for detailed analyses).

Assembly of structures from experimental density maps. We fur-
ther tested DEMO-EM on 51 cases with experimental density maps, 
with the domain boundary predicted by FUpred14 and ThreaDom15 
and the individual domain structures modelled by D-I-TASSER 
(Supplementary Section 9). As shown in Fig. 4a, DEMO-EM did 
an acceptable job at domain boundary prediction, and the pre-
dicted number of domains is consistent with that determined by 
DomainParser for 43 of the 51 test proteins. In 82.4% of cases, the 
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domain overlap rate was >80% compared with the DomainParser 
assignment on the target structure, resulting in an average normal-
ized domain overlap (NDO) score of 0.91. The average TM-score 
of these domain models by D-I-TASSER was 0.78, with 96.3% of 
them having a correct fold with a TM-score >0.5 (Supplementary 
Fig. 9b). After the DEMO-EM assembly, the full-length models had 
an average TM-score of 0.88 (Fig. 4b) and an average RMSD of 3.2 Å 
(Table 2), with a correct global fold (TM-score >0.5) achieved in 
98.0% of the cases. Meanwhile, the average TM-score of individual 
domains in the full-length models was increased from 0.78 to 0.84, 
with 90.2% of the domains being improved (Fig. 4c), again demon-
strating the ability of DEMO-EM at the levels of both domain and 
full-length structure refinements. In addition, we also systematically 
study the impact of the domain assignment and map segmentation 
on the accuracy of the final model in Supplementary Section 10.

The average full-length TM-score (0.88) is slightly higher than 
that of the benchmark results on the synthesized density maps 
(0.85), which is probably due to the fact that this dataset contains 

a lower number of predicted domain models with incorrect folds 
(3.7%) than the former benchmark dataset (6.4%). Nevertheless, 
the TM-score of the individual domain models was improved by 
7.7% after the flexible assembly, which is comparable to the former 
benchmark (7.8%). These results are largely consistent with the 
former benchmark data on synthesized density maps, which dem-
onstrate the robustness of DEMO-EM, whose performance does 
not depend on the source of the density maps, that is, from synthe-
sis or experiment. Furthermore, the average runtime required by 
the whole pipeline of DEMO-EM for all 51 test proteins is 8.15 h. 
Supplementary Fig. 10 shows the runtime of each protein, which 
increases nearly linearly with sequence length.

For comparison, Table 2 also presents the results obtained from 
MDFF and Rosetta when starting from the same set of predicted 
domain models with the initial conformation assembled by Situs 
and that by MAINMAST modelling. These data again show that 
DEMO-EM outperformed MDFF, Rosetta and MAINMAST, with 
the average TM-score of the full-length models being 60.0%, 87.2% 
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and 144.4% higher than that of MDFF, Rosetta and MAINMST, 
respectively. These results are further confirmed by the head-to-
head TM-score comparison shown in Supplementary Fig. 13, where 
DEMO-EM achieves a higher TM-score for nearly all the targets. 

When the resolution of the density maps decreases, the TM-scores of 
DEMO-EM, MDFF and Rosetta are not significantly affected, while 
the TM-score of MAINMAST drops obviously (Supplementary  
Fig. 14a). Furthermore, the final models constructed by DEMO-EM 
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The vertical lines represent the 10th to 90th percentile, the red square indicates the median, the shape of the violin plot shows the distribution and the 
diamond marks the TM-score corresponding to the distribution. c, Head-to-head TM-score comparison of the initial individual models by D-I-TASSER 
and of the final full-length models by DEMO-EM. d,e, The model deposited in PDB (PDB ID 6eny) (d) and the model reconstructed by DEMO-EM (e) for 
the human PLC editing module, where different colours represent different domains, and the value is the average Q-score of the region. f, Model quality 
of 6eny evaluated by Q-score and MolProbity. g,h, The model deposited in PDB (PDB ID 5fj6) (f) and the model reproduced by DEMO-EM (g) for the P2 
polymerase inside in vitro assembled bacteriophage phi6 polymerase complex. i, Model quality of 5fj6 assessed by Q-score and MolProbity.
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achieve higher quality in terms of the model geometry and the den-
sity fit, with better MolProbity score, EMringer score and iFSC 
(Supplementary Fig. 14b) than the control methods. Supplementary 
Fig. 14a also presents the modelling results of DeepTracer30, a deep-
learning-based method for fast de novo protein complex struc-
tural modelling from high-resolution density maps. Although 
DeepTracer outperforms other control methods for the targets 
with high resolution (<4 Å), its performance is inferior to that of 
DEMO-EM in all resolution ranges. In particular, the TM-score of 
the DeepTracer models decreases rapidly when the resolution is 
worse than 4.5 Å, resulting in an overall average TM-score (0.33) 
that is 167% lower than that of DEMO-EM.

Figure 4d–i shows two representative examples with density 
maps taken from EMDB. First, Fig. 4d shows the model of the 
human PLC editing module deposited in the PDB (PDB ID 6enyD, 
with the density map from EMD-3906 in EMDB), which was cre-
ated by fitting a homology model (from PDB ID 3f8uC) with the 
cryo-EM density map at a resolution of 5.8 Å (ref. 31) using FlexEM32 
and Chimera33. Although the deposited model (Fig. 4d) shows close 
similarity to the DEMO-EM model (Fig. 4e) with a TM-score of 
0.96 and RMSD of 1.7 Å, many regions of the deposited model are 
exposed to the outside of the density map (for example, the helix 
indicated by the arrow in Fig. 4d), which resulted in an iFSC of 
0.64. In the DEMO-EM model, almost all these exposed regions 
were corrected, where the atom resolvability evaluated by the Q-
score34 was consistently improved (see the Q-score comparisons 
of the two models in Supplementary Fig. 15c,d). Accordingly, the 
iFSC of the DEMO-EM model was improved to 0.66 (see the entire 
DEMO-EM model shown in Supplementary Fig. 15a). In addi-
tion, the DEMO-EM model has a better local geometry, with the 
MolProbity score being improved from 1.74 to 1.28 (Fig. 4f), and 
the side-chain was constructed in the DEMO-EM model while the 
deposited model contains only the backbone.

Figure 4g shows the deposited model of another example from 
the P2 polymerase inside in vitro assembled bacteriophage phi6 
polymerase complex (PDB ID 5fj6A, with the density map from 
EMD-3186), which contains two continuous domains mediated by 
a discontinuous domain. The deposited model was produced by fit-
ting a homology structure (PDB ID 1hhsA) with the density map at 
a resolution of 7.9 Å (ref. 35) using Chimera33 and Phenix36. Again, 
the DEMO-EM model is closely consistent with the deposited 
model, with a TM-score of 0.97 and RMSD of 1.5 Å (Supplementary 
Fig. 15b). As there are many significant noisy grid points in the 
experimental density map, some regions of the deposited model (for 
example, the loops indicated by arrows in Fig. 4g) were incorrectly 
modelled because they were not wrapped in the density map, which 

resulted in low Q-scores (−0.10 and 0.10, respectively). The model 
created by DEMO-EM (Fig. 4h) using the same density map data 
fixed all these local errors with an improvement in the Q-score to 0.40 
and 0.21, respectively, at these two exposed sites. Overall, the aver-
age Q-score of the DEMO-EM model increased from 0.25 to 0.29, 
where 75.5% atoms had an improved Q-score (see Supplementary 
Figs. 15e and 15f for the Q-score of each atom in the deposited 
model and the DEMO-EM model, respectively). Furthermore, the 
DEMO-EM model has a better model geometry compared with the 
deposited model, with the MolProbity score being improved from 
2.85 to 1.26 and the EMringer score from −0.28 to −0.13 (Fig. 4i). 
Interestingly, despite the improved Q-score and local model qual-
ity, the iFSC score of the DEMO-EM model is decreased slightly 
(from 0.35 to 0.31) compared with the deposited model. As shown 
in Supplementary Fig. 15e, many regions that were fit to the map 
had negative Q-scores in the deposited model, suggesting that this 
higher iFSC score might be a result of overfitting.

Finally, we compared DEMO-EM with the most advanced end-
to-end deep-learning structure prediction method, AlphaFold237, on 
all 51 cases. As shown in Supplementary Table 6, although the indi-
vidual domains predicted by AlphaFold2 have a higher TM-score 
(0.89) than that of DEMO-EM (0.84), which is probably because of 
the lower quality of the domain models built by D-I-TASSER, the 
quality of the overall full-length models built by DEMO-EM (with a 
TM-score of 0.88) is better than that achieved by AlphaFold2 (with 
a TM-score of 0.84), with DEMO-EM obtaining a higher TM-score 
than AlphaFold2 on 28 out of 51 proteins. We also fed the same 
full-length models constructed by AlphaFold2 into MDFF, Rosetta 
and DEMO-EM to examine the performance of the flexible assem-
bly and refinement process. All the methods improved the initial 
full-length model, showing the usefulness of cryo-EM data even for 
the best-predicted models. DEMO-EM obtained a clearly higher 
average TM-score (0.93) than MDFF (0.89) or Rosetta (0.88), 
again demonstrating the effectiveness of the DEMO-EM refine-
ment simulations (Supplementary Table 6). Furthermore, probably 
because of the inaccurate local cryo-EM density restraints from the 
low-resolution density map, the average TM-score of the individual 
domain models (0.89) was decreased after refinement by MDFF 
(0.86) and Rosetta (0.85), while only DEMO-EM slightly improved 
the individual domain quality, resulting in an average TM-score of 
0.90. These results again demonstrate the ability of DEMO-EM at 
the levels of both the domain and full-length structure refinements.

Application to structural modelling of the SARS-CoV-2 genome. 
Extended Data Fig. 1 shows the full-length structural models con-
structed by DEMO-EM for all six severe acute respiratory syndrome 

Table 2 | Results for 51 proteins with experimental cryo-EM density maps

MDFF Rosetta MAINMAST DEMO-EM

TM-score 0.55 (0.24) 0.47 (0.28) 0.36 (0.24) 0.88 (0.09)

RMSD (Å) 17.7 (11.0) 24.1 (16.6) 23.0 (10.3) 4.2 (3.2)

TM-score (domain)a 0.56 (0.21) 0.47 (0.26) 0.42 (0.32) 0.84 (0.13)

RMSD (domain) (Å)b 7.2 (4.2) 11.4 (10.0) 12.0 (8.1) 3.2 (2.8)

Rama favoured (%)c 72.0 (7.4) 88.1 (5.2) 47.4 (28.8) 86.1 (5.9)

Rotamer outliers (%) 8.6 (3.3) 0.5 (0.4) 20.3 (21.4) 3.9 (2.2)

Clash score 3.9 (4.0) 9.8 (7.1) 821.5 (1,137.3) 2.1 (0.2)

MolProbity score 2.49 (0.41) 2.02 (0.36) 4.74 (0.68) 1.66 (0.55)

EMringer score 0.33 (0.31) 1.08 (0.78) 0.79 (0.69) 1.45 (0.95)

iFSC 0.30 (0.15) 0.37 (0.20) 0.35 (0.17) 0.55 (0.23)

Values presented as average (s.d.), with the best results in each category in bold. aTM-score of individual domain models in full-length models. bRMSD of individual domains models in full-length models. 
cPercentage of ‘Ramachandran favoured’ residues.
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coronavirus 2 (SARS-CoV-2) proteins38 with cryo-EM data depos-
ited in EMDB. Based on the FUpred and ThreaDom predictions, 
five proteins contain multiple domains and two of them include dis-
continuous domains (Supplementary Table 7). Compared with the 
deposited models, many of which contained missed residues due 
to the loss of density data, the DEMO-EM models have an aver-
age TM-score and RMSD of 0.97 and 1.3 Å, respectively, for the 
regions where the deposited models have structure. Furthermore, 
the DEMO-EM models exhibit better model geometry and local 
quality as measured by different validation scores (Supplementary 
Table 8 and Supplementary Section 11).

The X-ray structure of the receptor binding domain of the spike 
protein, which SARS-CoV-2 uses to bind angiotensin-convert-
ing enzyme 2 to invade host cells, was released recently (PDB ID 
7bz5A)39. Extended Data Fig. 1g shows a comparison of the struc-
tural model built by DEMO-EM versus the released X-ray structure, 
where the DEMO-EM model has a TM-score of 0.97 and RMSD 
of 0.92 Å, slightly better than those of the deposited model (with 
a TM-score of 0.96 and RMSD of 0.97 Å). Furthermore, we also 
constructed the complex structures of these SARS-CoV-2 proteins 
using a simply extended version of DEMO-EM in which each chain 
is treated as a virtual ‘domain’ but the connectivity requirement 
between the virtual ‘domains’ is ignored. As shown in Supplementary 
Fig. 17, the complex models achieve an average TM-score of 0.97 
and an RMSD of 1.1 Å versus the experimental structures, showing 
the feasibility of extending DEMO-EM for protein–protein complex 
structural modelling. A systematic test of more advanced cryo-EM-
based protein complex structural modelling strategies will be pub-
lished elsewhere. These results suggest that although DEMO-EM 
was designed and mainly tested for multi-domain proteins, it can 
be used to build models of single- and multi-domain proteins and 
protein–protein complexes.

Discussion
Due to the scarcity of multi-domain template structures in the 
PDB, automated determination of multi-domain protein struc-
tures from cryo-EM density becomes a significant challenge, 
as most approaches in the community rely on fitting and refine-
ment of homology models. To address this issue, we developed a 
method, DEMO-EM, dedicated to structure assembly of multi-
domain proteins from cryo-EM density maps. Without relying on 
global homologous templates, the method integrates single-domain 
modelling and deep residual network learning techniques with 
progressive rigid-body and flexible Monte Carlo simulations into 
a hierarchical pipeline that is ready for automated and large-scale 
multi-domain protein structure prediction.

The good performance of DEMO-EM stems partly from its ability 
for quick and reliably framework construction, which is enabled by 
the unique single-domain structural modelling from D-I-TASSER 
and the coarse-grained density-map space enumeration driven by 
the quasi-Newton search process. Next, the domain-level rigid-
body assembly simulation is capable of correcting domain positions 
and inter-domain orientations by combining density map restraints 
with inter-domain potentials, even when domain poses are occa-
sionally incorrectly assigned in the initial frameworks. Finally, 
the atomic-level flexible structural assembly simulations couple 
density-map correlations with deep-learning-based inter-domain 
distance profiles, which helps to fine-tune local structural packing 
and inter-domain orientations simultaneously and resulted in con-
sistent improvement of both local and global structures. Note that 
DEMO-EM does not rely on D-I-TASSER, and domain structures 
constructed by any methods could be assembled by DEMO-EM.

Despite the promising domain assembly results, the applica-
bility and accuracy of DEMO-EM could be further improved in 
several aspects. First, most of the density maps in our tests are seg-
mented from the full density map by Chimera33. Although manual  

segmentation is often straightforward, the automatic map seg-
mentation techniques (for example, the methods in Phenix and 
MAINMAST) could be introduced into DEMO-EM because the 
segmented map is helpful to improve the accuracy and reduce the 
computational time. Second, all the individual domain models are 
directly produced by D-I-TASSER without guidance from the den-
sity data. An incorrect initial domain model may lead to a poor final 
model because it will affect the ability of the algorithm to identify 
correct poses for initial framework constructions. Therefore, com-
bining the restraints from density data with potentials for individual 
domain model generation will be helpful to improve the accuracy of 
the final models. Studies along these lines are in progress.

Methods
DEMO-EM is a hierarchical approach to multi-domain protein structure 
determination based on cryo-EM maps, consisting of four consecutive steps: (1) 
determining domain boundaries and modelling individual domains, (2) matching 
domain models with a density map for the initial framework generation, (3) rigid-
body domain structure assembly for domain position and orientation optimization 
and (4) flexible structure assembly and refinement simulation of full-length 
structural models (Fig. 1).

Domain parsing and individual domain structure folding. Starting from the 
query amino acid sequence, we first run LOMETS40 to create multiple template 
alignments from the PDB, where ThreaDom15,41 is employed to predict the domain 
boundary according to the domain conservation score. If the protein is defined 
as an ‘easy’ target by LOMETS and the alignment coverage is >95%, the domain 
definition predicted by ThreaDom is applied. Otherwise, the domain boundary is 
predicted through FUpred14 by maximizing the number of intradomain contacts 
and minimizing the number of inter-domain contacts on the contact map 
predicted by a deep-learning-based neural network program, ResPRE42. Next, 
the structural model of each domain is generated using D-I-TASSER16, which is 
a version of I-TASSER12 updated by incorporating the interresidue contact and 
distance maps and hydrogen-boding potentials predicted by deep learning into 
the iterative threading assembly simulations. According to the sequence of each 
domain, D-I-TASSER firstly constructs the multiple sequence alignments (MSAs) 
through DeepMSA43 by iteratively searching the whole-genome and metagenome 
sequence databases. The top MSAs are then selected based on the contacts 
predicted by TripletRes44 and inputted into the deep residual neural network-
based predictor extended from ResPre42 and TripletRes44 to predict the distance 
maps, hydrogen-bonding networks and torsion angles. These predicted restraints 
are integrated into the I-TASSER force field to guide the replica-exchange Monte 
Carlo (REMC) simulation, and the final model is clustered by SPICKER and 
refined by FG-MD. For discontinuous domains that contain two or more segments 
from separate regions of the query sequence, the domain models are obtained by 
sequentially connecting the sequences of all segments.

Deep neural network-based inter-domain distance prediction. To help guide 
the domain orientation assembly, an inter-domain distance map is predicted by 
a deep residual neural-network algorithm, DomainDist, whose architecture is 
outlined in Supplementary Fig. 18. DomainDist is an extension of TripletRes17, 
which was originally developed to predict interresidue contact maps based 
on a triplet of coevolutionary matrices but is extended here to predict the 
probability of interresidue distance within 36 bins in the range of 2–20 Å. The 
DomainDist program was trained on a non-redundant dataset of 26,151 proteins 
collected from the PDB, where the MSA for each protein was constructed using 
HHblits45 searching against the Uniclust30 sequence database46. In addition to 
the two-dimensional (2D) coevolutionary features employed in TripletRes, three 
one-dimensional (1D) features, including a hidden Markov model, one-hot 
representation of sequence and field parameters of Potts model, were adopted and 
tiled to two dimensions and concatenated with the 2D coevolutionary features. 
The neural network structure was designed following convolutional strategies, 
using ResNet basic blocks47. The neural network model was trained by the Adam 
optimization algorithm to marginally minimize the cross-entropy loss. Both 
intra- and inter-domain distance information was considered during the training, 
although only inter-domain distance information was considered by DEMO-EM.

Quasi-Newton-based matching of domain and cryo-EM density map. For each 
individual domain model from D-I-TASSER, we used limited-memory Broyden–
Fletcher–Goldfarb–Shanno (L-BFGS), a quasi-Newton optimization algorithm 
with six-dimensional (6D) translation–rotation degrees of freedom, to identify 
the best location and orientation of the domain with the highest correlation with 
the density map (Supplementary Fig. 19a). Since L-BFGS is a local optimization 
method whose results depend on the initial solutions, we started the L-BFGS 
simulation from multiple initial positions (translation vector) and orientations 
(rotation angle) by enumerating all combinations of Euler angles (ϕ, θ and ψ ) with 
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a step size of Srot_ang across the density-map space (Supplementary Fig. 19b). For a 
given domain pose, a density correlation score (DCS) calculated as

Edcs = 1 −

∑Nvol
i=1 (ρEM (vi) − ρ̄EM) (ρMO (vi) − ρ̄MO)√∑Nvol

i=1 (ρEM (vi) − ρ̄EM)2
∑Nvol

i=1 (ρMO (vi) − ρ̄MO)
2

(1)

is used to guide the L-BFGS simulations. Here, Nvol is the number of voxels (grid 
points) in the density map and ρEM (vi) is the experimental density of the ith voxel 
vi. The density probed from the decoy structure is calculated as

ρMO (vi) =

L∑

j=1
m 3

√(
π

(2.4 + 0.8R)2
)2

exp
(
−

(
π

2.4 + 0.8R

)2 ∣∣vi − xj
∣∣2
)
,

where xj is the position of the jth atom in the decoy, m is its mass and R is the 
resolution of the density map48. To speed up the matching process, a density map 
with voxel size of 2 Å interpolated from the original density map is employed. After 
the L-BFGS simulation, all poses for each domain with DCS <0.5 (or the top ten 
poses when more than ten poses have DCS of <0.5) are pooled and combined with 
the top poses of other domains to form the initial models of the full-length models. 
The combination is made by permutating the initial poses of all the domains and 
allows for domain overlaps, where the top 30 full-length models with the lowest 
DCS are selected for the next step of rigid-body domain matching and assembly. 
Here, Srot_ang is set to 30◦, which is well within the large basin of attraction of the 
search and can balance precision and efficiency according to the recommendation 
in Situs24.

Rigid-body domain assembly. Two rounds of rigid-body domain assembly 
simulations are performed to optimize the domain positions and orientations. In 
the first round, the domains are treated as particles and a quick REMC simulation 
is carried out to adjust the positions of the individual domains based on the global 
model-density correlations. In this step, the energy function contains only DCS 
(equation (1)), where the movements include rigid-body translation and rotation 
around each domain’s centre of mass (Supplementary Fig. 20a,b). Note here 
that the DCS is calculated for the full chain model, which should lead to a more 
optimal model result compared with the previous step where the optimization was 
based on the DCS of individual domains. The density map with a voxel size of 3 Å 
interpolated from the original map is applied to reduce the computational cost. 
Thirty replicas are sampled in parallel, with the temperature ranging from 0.1 to 
15, and a global swap movement between two neighbouring replicas is performed 
for every 200 Monte Carlo movements. The simulation is terminated when the 
number of swaps reaches 20 × Ndom, where Ndom is the number of domains. The 
top 30 models according to the DCS are selected for the next round.

The second round of rigid-body REMC simulation is applied to fine-tune 
the domain poses with a more detailed energy force field as defined in equations 
(2)–(5), where a more elaborate density map with a voxel size of 2 Å is interpolated 
from the original density map for the assembly. Besides the translation and 
rotation movements used in the first round, three new movements are added 
(Supplementary Fig. 20c–e), including self-rotation around the N-to-C axis of each 
domain, translation along the neighbouring domains in the sequence and pose 
exchange between two domains with similar structures (that is, with TM-score 
≥ 0.75) according to TM-align49, which is designed to reduce the case where 
domains with similar topology are swapped in their initial positions. a similar 
parameter setting as the first round is employed for the REMC simulation, but the 
top 40 models according to the DCS are selected for the next step.

Energy function for rigid-body simulation. Conformations in the rigid-body 
assembly are assessed by using an energy function with four terms

Erigid = wdcsEdcs + wrgErg + wbc

Ndom−1∑

m=1
Ebc(m,m + 1) + wsc

Ndom∑

m=1

Ndom∑

n=m+1
Esc(m, n),

(2)

where the first term is the density correlation score and is defined as in equation 
(1), but here used for the full-length model.

The second term is the radius-of-gyration restraint, defined as

Erg =






(Rgmax − Rgdecoy)2, if Rgdecoy > Rgmax

(Rgdecoy − Rgmin)
2, if Rgmin < Rgdecoy

0, otherwise

, (3)

where Rgdecoy is the radius of gyration of the decoy structure, and Rgmax and Rgmin 
are the maximum and minimum estimated radius of gyration, respectively. The 

former is calculated as Rgmax =

√(∑N′vol
i=1 (vi − vcentre)2

)
/N′

vol from the N′

vol 

voxels with density ≥0.05 after normalizing the density values to the range of 0–1, 

where vcentre = 1
N′vol

∑N′vol
j=1 vj is the centre point of these voxels. Rgmin = 2.849L0.319 

(where L is the query sequence length) is the statistical radius of gyration based 
on the known multi-domain protein models in the PDB, which has a Pearson 
correlation coefficient of 0.995 with real values (Supplementary Fig. 21).

The third term is the domain boundary connectivity, which is designed to 
constrain the connectivity of two neighbouring domains along the sequence 
(m < n) and is calculated as

Ebc (m, n) = (bmn − b0)2 , (4)

where bmn is the Cα atom distance between the C-terminal residue of the 
mth domain and the N-terminal of the nth domain. For the case including 
discontinuous domains, bmn = (d1 + d2)/2 is the average of two linker 
distances connecting the continuous domain with the discontinuous segments 
(Supplementary Fig. 22). b0 = 3.8 Å is the standard distance between 
neighbouring Cα atoms.

The last term describes steric clashes and penalizes domain pairs occupying the 
same space, being defined as

Esc (m, n) =

Lm∑

i=1

Ln∑

j=1






1
dmn
ij
, if dmn

ij < dcut

0, otherwise
, (5)

where Lm and Ln represent the sequence length of the mth and nth domain, 
respectively. dmn

ij  is the distance between the ith Cα atom of the mth domain and the 
jth Cα atom of the nth domain in the decoy structure. dcut = 3.75 Å is the distance 
cutoff to define a clash.

The weighting factors in Erigid are optimized based on a training set of 425 
proteins that has sequence identity <30% with the test proteins, by maximizing the 
correlation between the total energy and RMSD of the decoy models with respect 
to the native using the differential evolution algorithm50,51. This resulted in values 
of wdcs = 300, wrg = 1.13, wbc = 0.55 and wsc = 0.91.

Atomic-level flexible domain assembly and refinement. The process of flexible 
domain assembly and refinement contains two stages of simulations with 
progressive voxel resolutions and sampling focuses. In the first stage, six different 
movements are implemented (Supplementary Fig. 23): (1) LMProt52 perturbation, 
(2) segment rotation around the axis connecting two terminus, (3) conformational 
shift of segments along the sequence, (4) rigid-body segment translation, (5) rigid-
body tail rotation and (6) rigid-body domain-level translation and rotation. To 
enhance the efficiency, a nine-residue sliding window is used to determine which 
region needs more aggressive conformation sampling, where a local score (LCi) for 
the sliding window of the centre residue (i) is computed as the average correlation 
coefficient between the nine-residue fragment and the entire density map. The 
probability for the ith residue to be selected for movement is set as

pi =






1, if LCi < 0.05

0.95
(
1 −

LCi−LCmin
LCmax−LCmin

)
, if LCi ≥ 0.05

, (6)

where LCmax and LCmin (= 0.05) represent the maximum and minimum local 
score, respectively. As illustrated in Supplementary Fig. 24, the setting in equation 
(6) helps ensure that the residues that are poorly correlated with the density map 
can receive more sampling than others. An atomic-level force field (equations 
(7)–(13)) is designed to guide the REMC simulation at this stage, where a density 
map with voxel size of 3 Å interpolated from the original density map is applied 
to reduce the computation cost and the DCS is calculated based on backbone 
atoms. Similarly, 40 replicas with temperature ranging from 0.01 to 15 are sampled 
in parallel. The global swap movement between two neighbouring replicas is 
performed for every 10

√

L movements, where the simulation stops when the 
number of swaps reaches 200. All accepted decoys in the simulation are clustered 
by SPICKER53, and the centroid model in the first cluster is selected as a reference 
model for the second stage.

In the second stage, a finer density map with voxel size of 2 Å is implemented 
with the DCS computed on all atoms. In addition, all residues have equal 
probability to be selected for movement and sampling. The REMC simulation is 
guided by the same force field as defined in equations (7)–(13), but the reference 
model in equation (10) is replaced by the centroid structure of the first cluster 
determined by SPICKER in the first stage. The simulation is terminated when the 
number of swaps reaches 100. The lowest-energy decoy is selected to construct  
the final model, with the side-chain atoms repacked by FASPR54 followed by 
FG-MD18 refinement.

DEMO-EM force field for flexible assembly simulation. The flexible domain 
assembly simulations are implemented at a semi-atomic level, with each residue 
represented by N, Cα, C, O, Cβ, H and side-chain centre of mass (SC). Among 
the seven modelling units, only the three backbone atoms (N, Cα and C) have 
coordinates determined directly in conformation sampling, while the other four 
are determined based on their positions relative to the three backbone atoms using 
the parameters presented in Supplementary Table 9. The simulations are guided by 
a composite force field consisting of seven energy terms
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Eflexible = wdcsEdcs + wdt
Ndom∑
m=1

Ndom∑
n=m+1

Edt(m, n) + wtaEta + wdrEdr

+
L∑

i=1

L∑
j=i+1

[
wevEev (i, j) + whbEhb (i, j, Tk) + wgscEgsc (i, j)

]
, (7)

The first term accounts for the density correlation, having the same form as 
equation (1) but calculated for the full-length model.

The second term is the inter-domain Cβ distance map as predicted by 
DomainDist

Edt (m, n) = −

Lm∑

i=1

Ln∑

j=1
log

(
P
(
i, j, k

(
dmn
ij

))
+ ε

)
, (8)

where dmn
ij  is the distance between the ith Cβ (Cα for glycine) atom in the mth 

domain and jth Cβ atom in the nth domain, P(i, j, k(dmn
ij )) is the predicted 

probability of the distance dmn
ij  located in the kth distance bin and ε = 1 × 10−4 is 

the pseudo count to offset low-probability bins. In the calculation, we only consider 
atom pairs with probability peak located in [2 Å, 20 Å], excluding those atom pairs 
with predicted probabilities >0.5 in the last bin [>20 Å], which represents a low 
prediction confidence in [2 Å, 20 Å].

The third term accounts for torsion angle variations by

Eta = −

L−1∑

i=2
log (P (ϕi , ψ i|Ai, Si)) , (9)

where ϕi and ψ i represent the backbone torsion angle pair of the ith residue, Ai is 
the amino acid type of the ith residue, Si is the secondary structure type of the ith 
residue as predicted by PSSpred55 and P(ϕi , ψ i|Ai, Si) is the conditional probability 
calculated based on the Ramachandran map of 6,023 high-resolution protein 
structures culled from the PDB using the PISCES server56 based on a resolution 
cutoff of 1.8 Å, identity cutoff of 25% and R-factor cutoff of 0.25.

The fourth term is the domain structure restraint to prevent topologies of 
individual domains deviating too far from the initial structures generated by 
D-I-TASSER

Edr =
Ndom�

m=1





���� 1
Lm

�����

Lm�

i=1
xi,m − x′i,m

�����

2


 , (10)

where Lm is the sequence length of the mth domain, xi,m represents the ith Cα atom 
in the mth domain of the decoy after superposing the domain onto the reference 
model by D-I-TASSER and x′i,m is the corresponding atom in the reference model.

The fifth term describes the excluded volume interaction and is defined as

Eev (i, j) =

{ d2ij − σ2
ij , if dij < σij

0, otherwise
, (11)

where dij is the distance between the ith and jth atoms from different residues and 
σij is the sum of the van der Waals radius of the atom pairs taken from QUARK57,58 
(Supplementary Table 10).

The sixth term is the hydrogen bonding extended from QUARK57,58. As shown 
in Supplementary Fig. 25, only backbone H-bonds between residues (i and j) are 
considered, where four geometric features, that is, the distance between Oi and Hj 
(D(Oi ,Hj)), the internal angle between Ci, Oi and Hj (A(Ci ,Oi ,Hj)), the internal 
angle between Oi, Hj and Nj (A(Oi ,Hj ,Nj)) and the torsion angle between Ci, Oi,  
Hj and Nj (T(Ci ,Oi ,Hj ,Nj)), are selected to evaluate the bonding. We consider 
four types of hydrogen bonds (T1: helix, j = i + 4; T2: helix, j = i + 3; T3: parallel 
β-sheets; and T4: antiparallel β-sheets). The energy term of a single backbone 
hydrogen bond is thus calculated as

Ehb (i, j,Tk) =






4∑
l=1

(fl(i,j)−μkl)
2

2δ2kl
, if k = 1, 2

3∑
l=1

(fl(i,j)−μkl)
2

2δ2kl
, otherwise

, (12)

where Tk represents the kth type of hydrogen bond, fl (i, j) denotes the lth feature 
of the decoy structure and μkl and δkl are the mean and standard deviation of the 
lth feature in the kth-type hydrogen bond, which were precalculated from the high-
resolution PDB structures and are listed in Supplementary Table 11.

The last term is the generic side-chain-atom contact potential and is used to 
evaluate the contacts between SC in one residue (i) and N, Cα, C, O, Cβ and SC 
atoms in another residue (j) as

Egsc (i, j) = Uplo(Ai, Aj, Mi, Mj, dij), (13)

where Ai (or Aj) is the amino acid type of residue i (or j), Mi (or Mj) represents 
the atom type of the ith (or jth) residue, dij is the distance between the SC of the 
ith residue and the Mj atom of the jth residue and Uplo(Ai, Aj, Mi, Mj, dij) is the 
corresponding polarity potential precalculated from 6,500 non-redundant high-
resolution PDB structures (https://zhanggroup.org/DEMO-EM/potential.html).

Similarly, the weighting parameters in equation (7) are determined by 
maximizing the correlation between the total energy and RMSD of the structure 
decoys of the 425 training proteins. This results in values of wdcs = 320, wta = 0.3, 
wdr = 1.5, wdt = 0.15, wev = 0.1, whb = 0.05 and wgsc = 0.1.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The authors declare that the data supporting the findings and conclusions of this 
study are available within the paper and its Supplementary Information. The 
experimental domain models together with the simulated density maps used for 
training and testing, the models constructed by DEMO-EM from experimental 
cryo-EM density maps and the models of the SARS-CoV-2 coronavirus genome 
built by DEMO-EM are available at https://zhanggroup.org/DEMO-EM/. The full 
experimental cryo-EM density maps can be downloaded from EMDB (http://www.
emdataresource.org/) using the code provided in Supplementary Table 5. All data 
are also available at Zenodo59. Source data for Tables 1–2, Figs. 2–4 and Extended 
data Fig. 1 are provided with this paper.

Code availability
The source code is freely available for academic use at https://zhanggroup.org/ 
DEMO-EM/ and Zenodo59.
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Extended Data Fig. 1 | Overlay of structural models by DEMO-EM on the cryo-EM density maps for the six proteins in SARS-CoV-2 genome. (a) Spike 
protein (density map from EMD-21375). (b) NSP8 (EMD-11007). (c) Helicase/NSP13 (EMD-22160). (d) ORF3a (EMD-22136). (e) NSP7 (EMD-11007).  
(f) RNA-directed RNA polymerase/NSP12 (EMD-11007). (g) Comparison of the Spike RBD domain by DEMO-EM (cyan) with the X-ray structure  
(red, PDB 7bz5A).
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